1
|
McCloskey E, Kashipathy M, Cooper A, Gao P, Johnson DK, Battaile KP, Lovell S, Davido DJ. HSV-1 ICP0 Dimer Domain Adopts a Novel β-barrel Fold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575752. [PMID: 38293217 PMCID: PMC10827139 DOI: 10.1101/2024.01.16.575752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine β-strands and two α-helices. Interestingly, two adjacent β-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two β-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two β-strands of each dimer, creating a "stacking" of the β-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.
Collapse
Affiliation(s)
- Erick McCloskey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Maithri Kashipathy
- Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - Anne Cooper
- Protein Production Group, University of Kansas, Lawrence, KS, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, KS, USA
| | - David K Johnson
- Chemical Computational Biology Core, University of Kansas, Lawrence, KS, USA
| | | | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - David J Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
3
|
Jan Fada B, Guha U, Zheng Y, Reward E, Kaadi E, Dourra A, Gu H. A Novel Recognition by the E3 Ubiquitin Ligase of HSV-1 ICP0 Enhances the Degradation of PML Isoform I to Prevent ND10 Reformation in Late Infection. Viruses 2023; 15:v15051070. [PMID: 37243155 DOI: 10.3390/v15051070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Upon viral entry, components of ND10 nuclear bodies converge with incoming DNA to repress viral expression. The infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) contains a RING-type E3 ubiquitin ligase that targets the ND10 organizer, PML, for proteasomal degradation. Consequently, ND10 components are dispersed and viral genes are activated. Previously, we reported that ICP0 E3 differentiates two similar substrates, PML isoforms I and II, and demonstrated that SUMO-interaction has profound regulatory effects on PML II degradation. In the present study, we investigated elements that regulate the PML I degradation and found that: (i) two regions of ICP0 flanking the RING redundantly facilitate the degradation of PML I; (ii) downstream of the RING, the SUMO-interaction motif located at residues 362-364 (SIM362-364) targets the SUMOylated PML I in the same manner as that of PML II; (iii) upstream of the RING, the N-terminal residues 1-83 mediate PML I degradation regardless of its SUMOylation status or subcellular localization; (iv) the reposition of residues 1-83 to downstream of the RING does not affect its function in PML I degradation; and (v) the deletion of 1-83 allows the resurgence of PML I and reformation of ND10-like structures late in HSV-1 infection. Taken together, we identified a novel substrate recognition specific for PML I, by which ICP0 E3 enforces a continuous PML I degradation throughout the infection to prevent the ND10 reformation.
Collapse
Affiliation(s)
- Behdokht Jan Fada
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Udayan Guha
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Yi Zheng
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Eleazar Reward
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Elie Kaadi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Ayette Dourra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Haidong Gu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Perusina Lanfranca M, van Loben Sels JM, Ly CY, Grams TR, Dhummakupt A, Bloom DC, Davido DJ. A 77 Amino Acid Region in the N-Terminal Half of the HSV-1 E3 Ubiquitin Ligase ICP0 Contributes to Counteracting an Established Type 1 Interferon Response. Microbiol Spectr 2022; 10:e0059322. [PMID: 35730940 PMCID: PMC9430112 DOI: 10.1128/spectrum.00593-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a human pathogen capable of establishing lifelong latent infections that can reactivate under stress conditions. A viral immediate early protein that plays important roles in the HSV-1 lytic and latent infections is the viral E3 ubiquitin ligase, ICP0. ICP0 transactivates all temporal classes of HSV-1 genes and facilitates viral gene expression. ICP0 also impairs the antiviral effects of interferon (IFN)-β, a component of host innate defenses known to limit viral replication. To begin to understand how ICP0 allows HSV-1 to disarm the IFN-β response, we performed genetic analyses using a series of ICP0 truncation mutants in the absence and presence of IFN-β in cell culture. We observed that IFN-β pretreatment of cells significantly impaired the replication of the ICP0 truncation mutants, n212 and n312, which code for the first 211 and 311 amino acids of ICP0, respectively; this effect of IFN-β correlated with decreased HSV-1 early and late gene expression. This increased sensitivity to IFN-β was not as apparent with the ICP0 mutant, n389. Our mapping studies indicate that loss of 77 amino acids from residues 312 to 388 in the N-terminal half of ICP0 resulted in a virus that was significantly more sensitive to cells pre-exposed to IFN-β. This 77 amino acid region contains a phospho-SUMO-interacting motif or -SIM, which we propose participates in ICP0's ability to counteract the antiviral response established by IFN-β. IMPORTANCE Interferons (IFNs) are secreted cellular factors that are induced by viral infection and limit replication. HSV-1 is largely refractory to the antiviral effects of type 1 IFNs, which are synthesized shortly after viral infection, in part through the activities of the viral regulatory protein, ICP0. To understand how ICP0 impedes the antiviral effects of type 1 IFNs, we used a series of HSV-1 ICP0 mutants and examined their viral replication and gene expression levels in cells stimulated with IFN-β (a type 1 IFN). Our mapping data identifies a discrete 77 amino acid region in the N-terminal half of ICP0 that facilitates HSV-1 resistance to IFN-β. This region of ICP0 is modified by phosphorylation and binds to the posttranslational modification SUMO, suggesting that HSV, and potentially other viruses, may counteract type 1 IFN signaling by altering SUMO and/or SUMO modified cellular proteins.
Collapse
Affiliation(s)
| | | | - Cindy Y. Ly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Adit Dhummakupt
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P. PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection. J Virol 2022; 96:e0027922. [PMID: 35353002 PMCID: PMC9044927 DOI: 10.1128/jvi.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Sp100 (speckled protein 100 kDa) is a constituent component of nuclear structure PML (promyelocytic leukemia) bodies, playing important roles in mediating intrinsic and innate immunity. The Sp100 gene encodes four isoforms with distinct roles in the transcriptional regulation of both cellular and viral genes. Since Sp100 is a primary intranuclear target of infected-cell protein 0 (ICP0), an immediate early E3 ligase encoded by herpes simplex virus 1 (HSV-1), previous investigations attempting to analyze the functions of individual Sp100 variants during HSV-1 infection mostly avoided using a wild-type virus. Therefore, the role of Sp100 under natural infection by HSV-1 remains to be clarified. Here, we reappraised the antiviral capacity of four Sp100 isoforms during infection by a nonmutated HSV-1, examined the molecular behavior of the Sp100 protein in detail, and revealed the following intriguing observations. First, Sp100 isoform A (Sp100A) inhibited wild-type HSV-1 propagation in HEp-2, Sp100-/-, and PML-/- cells. Second, endogenous Sp100 is located in both the nucleus and the cytoplasm. During HSV-1 infection, the nuclear Sp100 level decreased drastically upon the detection of ICP0 in the same subcellular compartment, but cytosolic Sp100 remained stable. Third, transfected Sp100A showed subcellular localizations similar to those of endogenous Sp100 and matched the protein size of endogenous cytosolic Sp100. Fourth, HSV-1 infection induced increased secretion of endogenous Sp100 and ectopically expressed Sp100A, which copurified with extracellular vesicles (EVs) but not infectious virions. Fifth, the Sp100A level in secreting cells positively correlated with its level in EVs, and EV-associated Sp100A restricted HSV-1 in recipient cells. IMPORTANCE Previous studies show that the PML body component Sp100 protein is immediately targeted by ICP0 of HSV-1 in the nucleus during productive infection. Therefore, extensive studies investigating the interplay of Sp100 isoforms with HSV-1 were conducted using a mutant virus lacking ICP0 or in the absence of infection. The role of Sp100 variants during natural HSV-1 infection remains blurry. Here, we report that Sp100A potently and independently inhibited wild-type HSV-1 and that during HSV-1 infection, cytosolic Sp100 remained stable and was increasingly secreted into the extracellular space, in association with EVs. Furthermore, the Sp100A level in secreting cells positively correlated with its level in EVs and the anti-HSV-1 potency of these EVs in recipient cells. In summary, this study implies an active antiviral role of Sp100A during wild-type HSV-1 infection and reveals a novel mechanism of Sp100A to restrict HSV-1 through extracellular communications.
Collapse
Affiliation(s)
- Yilei Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingjing Li
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongchang Dong
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhaoxin Yang
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyue Zhou
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Hou F, Sun Z, Deng Y, Chen S, Yang X, Ji F, Zhou M, Ren K, Pan D. Interactome and Ubiquitinome Analyses Identify Functional Targets of Herpes Simplex Virus 1 Infected Cell Protein 0. Front Microbiol 2022; 13:856471. [PMID: 35516420 PMCID: PMC9062659 DOI: 10.3389/fmicb.2022.856471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can productively infect multiple cell types and establish latent infection in neurons. Infected cell protein 0 (ICP0) is an HSV-1 E3 ubiquitin ligase crucial for productive infection and reactivation from latency. However, our knowledge about its targets especially in neuronal cells is limited. We confirmed that, like in non-neuronal cells, ICP0-null virus exhibited major replication defects in primary mouse neurons and Neuro-2a cells. We identified many ICP0-interacting proteins in Neuro-2a cells, 293T cells, and human foreskin fibroblasts by mass spectrometry-based interactome analysis. Co-immunoprecipitation assays validated ICP0 interactions with acyl-coenzyme A thioesterase 8 (ACOT8), complement C1q binding protein (C1QBP), ovarian tumour domain-containing protein 4 (OTUD4), sorting nexin 9 (SNX9), and vimentin (VIM) in both Neuro-2a and 293T cells. Overexpression and knockdown experiments showed that SNX9 restricted replication of an ICP0-null but not wild-type virus in Neuro-2a cells. Ubiquitinome analysis by immunoprecipitating the trypsin-digested ubiquitin reminant followed by mass spectrometry identified numerous candidate ubiquitination substrates of ICP0 in infected Neuro-2a cells, among which OTUD4 and VIM were novel substrates confirmed to be ubiquitinated by transfected ICP0 in Neuro-2a cells despite no evidence of their degradation by ICP0. Expression of OTUD4 was induced independently of ICP0 during HSV-1 infection. Overexpressed OTUD4 enhanced type I interferon expression during infection with the ICP0-null but not wild-type virus. In summary, by combining two proteomic approaches followed by confirmatory and functional experiments, we identified and validated multiple novel targets of ICP0 and revealed potential restrictive activities of SNX9 and OTUD4 in neuronal cells.
Collapse
Affiliation(s)
- Fujun Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yue Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiyuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
SUMOylation Regulates BmNPV Replication by Moderating PKIP Intracellular Localization. Processes (Basel) 2022. [DOI: 10.3390/pr10020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
SUMOylation is a reversible covalent process between a small ubiquitin-like modifier (SUMO) and its target protein and has become a crucial regulator of protein functions. Here, we report that Bombyx mori nucleopolyhedrovirus (BmNPV) may take advantage of the host SUMOylation system to enhance its own replication, similar to many other viruses. Both the knockdown of BmSUMO by RNAi and chemical blocking by ginkgolic acid both impaired BmNPV replication. Using site mutation and pull-down assays, we found that lysine K70 of the protein kinase-interacting protein (PKIP), which is conserved in all Alphabaculoviruses, was modified by SUMO. Mutation of K70 in PKIP led to its translocation from the cytoplasm to the nucleus. Knockout and rescue experiments showed that the rescue of PKIP mutant virus with wild-type PKIP restored BmNPV replication to the normal level, but this was not true for the K70R mutation. Altogether, these results show that SUMOylation of PKIP plays a key role in BmNPV replication.
Collapse
|
8
|
Zhang R, Tang J. Evasion of I Interferon-Mediated Innate Immunity by Pseudorabies Virus. Front Microbiol 2022; 12:801257. [PMID: 34970252 PMCID: PMC8712723 DOI: 10.3389/fmicb.2021.801257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) mediated innate immunity serves as the first line of host defense against viral infection, ranging from IFN-I production upon viral detection, IFN-I triggered signaling pathway that induces antiviral gene transcription the antiviral effects of IFN-I induced gene products. During coevolution, herpesviruses have developed multiple countermeasures to inhibit the various steps involved to evade the IFN response. This mini-review focuses on the strategies used by the alphaherpesvirus Pseudorabies virus (PRV) to antagonize IFN-I mediated innate immunity, with a particular emphasis on the mechanisms inhibiting IFN-I induced gene transcription through the JAK-STAT pathway. The knowledge obtained from PRV enriches the current understanding of the alphaherpesviral immune evasion mechanisms and provides insight into the vaccine development for PRV control.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lai S, Xu M, Wang Y, Li R, Xia C, Xia S, Chen J. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus. Virulence 2021; 12:2883-2901. [PMID: 34747321 PMCID: PMC8923073 DOI: 10.1080/21505594.2021.2000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lytic replication of human cytomegalovirus (HCMV), a member of β-herpesvirus, is a highly complicated and organized process that requires its DNA polymerase processivity factor, UL44, the first-reported HCMV replication protein subjected to SUMO post-translational modification (PTM). SUMOylation plays a pleiotropic role in protein functions of host cells and infecting viruses. Particularly, formation of herpesviral replication compartments (RCs) upon infection is induced in proximity to ND10 subnuclear domains, the host cell’s intrinsic antiviral immune devices and hot SUMOylation spots, relying just on SUMOylation of their protein components to become mature and functional in restriction of the viral replication. In this study, to unveil the exact role of SUMO PTM on UL44 involved in HCMV replication, we screened and identified PIAS3, an annotated E3 SUMO ligase, as a novel UL44-interacting protein engaged in cellular SUMOylation pathway. Co-existence of PIAS3 could enhance the UBC9-based SUMO modification of UL44 specifically at its conserved 410lysine residue lying within the single canonical ψKxE SUMO Conjugation Motif (SCM). Intriguingly, we found this SCM-specific SUMOylation contributes to UL44 co-localization and interaction with subnuclear ND10 domains during infection, which in turn exerts an inhibitory effect on HCMV replication and growth. Together, these results highlight the importance of SUMOylation in regulating viral protein subnuclear localization, representing a novel way of utilizing ND10-based restriction to achieve the self-controlled slower replication and reproduction of herpesviruses.
Collapse
Affiliation(s)
- Shuyan Lai
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chuan Xia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Sisi Xia
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
| |
Collapse
|
10
|
Keiten-Schmitz J, Röder L, Hornstein E, Müller-McNicoll M, Müller S. SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates? Front Mol Biosci 2021; 8:673038. [PMID: 34026847 PMCID: PMC8138125 DOI: 10.3389/fmolb.2021.673038] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Linda Röder
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michaela Müller-McNicoll
- Faculty of Biosciences, Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Müller
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Chen J, Li G, He H, Li X, Niu W, Cao D, Shen A. Sumoylation of the Carboxy-Terminal of Human Cytomegalovirus DNA Polymerase Processivity Factor UL44 Attenuates Viral DNA Replication. Front Microbiol 2021; 12:652719. [PMID: 33967989 PMCID: PMC8097051 DOI: 10.3389/fmicb.2021.652719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV DNA polymerase processivity factor UL44 plays an essential role in viral DNA replication. To better understand the biology of UL44, we performed a yeast two-hybrid screen for host proteins that could interact with UL44. The most frequently isolated result was the SUMO-conjugating enzyme UBC9, a protein involved in the sumoylation pathway. The UBC9-UL44 interaction was confirmed by in vitro His-tag pull-down and in vivo co-immunoprecipitation assays. Using deletion mutants of UL44, we mapped two small regions of UL44, aa 11–16, and 260–269, which might be critical for the interaction with UBC9. We then demonstrated that UL44 was a target for sumoylation by in vitro and in vivo sumoylation assays, as well as in HCMV-infected cells. We further confirmed that 410lysine located within a ψKxE consensus motif on UL44 carboxy-terminal was the major sumoylation site of UL44. Interestingly, although 410lysine had no effects on subcellular localization or protein stability of UL44, the removal of 410lysine sumoylation site enhanced both viral DNA synthesis in transfection-replication assays and viral progeny production in infected cells for HCMV, suggesting sumoylation can attenuate HCMV replication through targeting UL44. Our results suggest that sumoylation plays a key role in regulating UL44 functions and viral replication, and reveal the crucial role of the carboxy-terminal of UL44, for which little function has been known before.
Collapse
Affiliation(s)
- Jun Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guanlie Li
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiqing He
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenjing Niu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Di Cao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ao Shen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|
13
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
14
|
Gu H, Jan Fada B. Specificity in Ubiquitination Triggered by Virus Infection. Int J Mol Sci 2020; 21:E4088. [PMID: 32521668 PMCID: PMC7313089 DOI: 10.3390/ijms21114088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a prominent posttranslational modification, in which the ubiquitin moiety is covalently attached to a target protein to influence protein stability, interaction partner and biological function. All seven lysine residues of ubiquitin, along with the N-terminal methionine, can each serve as a substrate for further ubiquitination, which effectuates a diverse combination of mono- or poly-ubiquitinated proteins with linear or branched ubiquitin chains. The intricately composed ubiquitin codes are then recognized by a large variety of ubiquitin binding domain (UBD)-containing proteins to participate in the regulation of various pathways to modulate the cell behavior. Viruses, as obligate parasites, involve many aspects of the cell pathways to overcome host defenses and subjugate cellular machineries. In the virus-host interactions, both the virus and the host tap into the rich source of versatile ubiquitination code in order to compete, combat, and co-evolve. Here, we review the recent literature to discuss the role of ubiquitin system as the infection progresses in virus life cycle and the importance of ubiquitin specificity in the regulation of virus-host relation.
Collapse
Affiliation(s)
- Haidong Gu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|