1
|
Steigmann JC, Zhou X, Suttenberg LN, Salman I, Rehmathullah ZF, Weinberg JB. Effects of immunoproteasome inhibition on acute respiratory infection with murine hepatitis virus strain 1. J Virol 2024; 98:e0123824. [PMID: 39508578 PMCID: PMC11650983 DOI: 10.1128/jvi.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1. IP inhibition using ONX-0914 did not affect MHV-1 replication in bone marrow-derived dendritic cells in vitro. IP inhibition in vivo exacerbated virus-induced weight loss and mortality but had no effect on virus replication in lungs or livers. IP inhibition had minimal effect on virus-induced pulmonary inflammation but led to substantially increased liver pathology, including greater upregulation of pro-inflammatory cytokines and histological evidence of inflammation and necrosis. Those findings were associated with evidence of increased endoplasmic reticulum stress although not with accumulation of ubiquitinated protein. Our results indicate that the IP is a protective host factor during acute MHV-1 infection. IMPORTANCE Inflammatory responses triggered by acute infection by respiratory viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drive morbidity and mortality. Infection of mice with murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, is a useful model to study the pathogenesis of coronavirus respiratory infections. The immunoproteasome is an inducible component of the ubiquitin proteasome system that is poised to contribute to multiple aspects of immune function, inflammation, and protein homeostasis during an infection. We used the MHV-1 model to define the role of the immunoproteasome in coronavirus pathogenesis. We found that immunoproteasome subunit expression increases in the lungs and the liver during acute MHV-1 respiratory infection. Inhibition of immunoproteasome activity did not affect MHV-1 replication but increased MHV-1-induced weight loss, mortality, and inflammation in lungs and livers. Thus, our findings indicate that the immunoproteasome is a critical protective host factor during coronavirus respiratory infection.
Collapse
Affiliation(s)
- Jacob C. Steigmann
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaofeng Zhou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren N. Suttenberg
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Irha Salman
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Zainab F. Rehmathullah
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason B. Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
3
|
Padget RL, Zeitz MJ, Blair GA, Wu X, North MD, Tanenbaum MT, Stanley KE, Phillips CM, King DR, Lamouille S, Gourdie RG, Hoeker GS, Swanger SA, Poelzing S, Smyth JW. Acute Adenoviral Infection Elicits an Arrhythmogenic Substrate Prior to Myocarditis. Circ Res 2024; 134:892-912. [PMID: 38415360 PMCID: PMC11003857 DOI: 10.1161/circresaha.122.322437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
Collapse
Affiliation(s)
- Rachel L. Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael J. Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Grace A. Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Xiaobo Wu
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael D. North
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | | - Kari E. Stanley
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Chelsea M. Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - D. Ryan King
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gregory S. Hoeker
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - James W. Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Mouse Adenovirus Type 1 Persistence Exacerbates Inflammation Induced by Allogeneic Bone Marrow Transplantation. J Virol 2022; 96:e0170621. [PMID: 35045262 DOI: 10.1128/jvi.01706-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone marrow transplantation (BMT) recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus. Human adenovirus persistence in mucosal lymphocytes has been described, but specific cellular reservoirs of persistence and effects of persistence on host responses to unrelated stimuli are not completely understood. We used mouse adenovirus type 1 (MAV-1) to characterize persistence of an adenovirus in its natural host and test the hypothesis that persistence increases complications of bone marrow transplantation (BMT). Following intranasal infection of C57BL/6J mice, MAV-1 DNA was detected in lung, mediastinal lymph nodes, and liver during acute infection at 7 days post infection (dpi), and at lower levels at 28 dpi that remained stable through 150 dpi. Expression of early and late viral transcripts was detected in those organs at 7 dpi but not at later time points. MAV-1 persistence was not affected by deficiency of IFN-γ. We detected no evidence of MAV-1 reactivation in vivo following allogeneic BMT of persistently infected mice. Persistent infection did not substantially affect mortality, weight loss, or pulmonary inflammation following BMT. However, T cell infiltration and increased expression of pro-inflammatory cytokines consistent with graft-versus-host disease (GVHD) were more pronounced in livers of persistently infected BMT mice than in uninfected BMT mice. These results suggest that MAV-1 persists in multiple sites without detectable evidence of ongoing replication. Our results indicate that MAV-1 persistence alters host responses to an unrelated challenge, even in the absence of detectable reactivation. Importance Long-term persistence in an infected host is an essential step in the life cycle of DNA viruses. Adenoviruses persist in their host following acute infection, but the nature of adenovirus persistence remains incompletely understood. Following intranasal infection of mice, we found that MAV-1 persists for a prolonged period in multiple organs, although we did not detect evidence of ongoing replication. Because BMT recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus in the recipient, we extended our findings using MAV-1 infection in a mouse model of BMT. MAV-1 persistence exacerbated GVHD-like inflammation following allogeneic BMT, even in the absence of virus reactivation. This novel finding suggests that adenovirus persistence has consequences, and it highlights the potential for a persistent adenovirus to influence host responses to unrelated challenges.
Collapse
|
5
|
Abstract
Several non-redundant features of the tumour microenvironment facilitate immunosuppression and limit anticancer immune responses. These include physical barriers to immune infiltration, the recruitment of suppressive immune cells and the upregulation of ligands on tumour cells that bind to inhibitory receptors on immune cells. Recent insights into the importance of the metabolic restrictions imposed by the tumour microenvironment on antitumour T cells have begun to inform immunotherapeutic anticancer strategies. Therapeutics that target metabolic restrictions, such as low glucose levels, a low pH, hypoxia and the generation of suppressive metabolites, have shown promise as combination therapies for different types of cancer. In this Review, we discuss the metabolic aspects of the antitumour T cell response in the context of immune checkpoint blockade, adoptive cell therapy and treatment with oncolytic viruses, and discuss emerging combination strategies.
Collapse
|
6
|
French T, Israel N, Düsedau HP, Tersteegen A, Steffen J, Cammann C, Topfstedt E, Dieterich D, Schüler T, Seifert U, Dunay IR. The Immunoproteasome Subunits LMP2, LMP7 and MECL-1 Are Crucial Along the Induction of Cerebral Toxoplasmosis. Front Immunol 2021; 12:619465. [PMID: 33968021 PMCID: PMC8099150 DOI: 10.3389/fimmu.2021.619465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (β1i/LMP2, β2i/MECL-1 and β5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anne Tersteegen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Daniela Dieterich
- Institute of Pharmacology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
7
|
Peruzzi L, Coppo R, Cocchi E, Loiacono E, Bergallo M, Bodria M, Vergano L, Krutova A, Russo ML, Amore A, Lundberg S, Maixerova D, Tesar V, Perkowska-Ptasińska A, Durlik M, Goumenos D, Papasotiriou M, Galesic K, Toric L, Papagianni A, Stangou M, Mizerska-Wasiak M, Gesualdo L, Montemurno E, Benozzi L, Cusinato S, Hryszko T, Klinger M, Kamińska D, Krajewska M. The switch from proteasome to immunoproteasome is increased in circulating cells of patients with fast progressive immunoglobulin A nephropathy and associated with defective CD46 expression. Nephrol Dial Transplant 2020; 36:1389-1398. [PMID: 32582935 DOI: 10.1093/ndt/gfaa092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
The proteasome to immunoproteasome (iPS) switch consists of β1, β2 and β5 subunit replacement by low molecular weight protein 2 (LMP2), LMP7 and multicatalytic endopeptidase-like complex-1 (MECL1) subunits, resulting in a more efficient peptide preparation for major histocompatibility complex 1 (MHC-I) presentation. It is activated by toll-like receptor (TLR) agonists and interferons and may also be influenced by genetic variation. In a previous study we found an iPS upregulation in peripheral cells of patients with immunoglobulin A nephropathy (IgAN). We aimed to investigate in 157 IgAN patients enrolled through the multinational Validation Study of the Oxford Classification of IgAN (VALIGA) study the relationships between iPS switch and estimated glomerular filtration rate (eGFR) modifications from renal biopsy to sampling. Patients had a previous long follow-up (6.4 years in median) that allowed an accurate calculation of their slope of renal function decline. We also evaluated the effects of the PSMB8/PSMB9 locus (rs9357155) associated with IgAN in genome-wide association studies and the expression of messenger RNAs (mRNAs) encoding for TLRs and CD46, a C3 convertase inhibitor, acting also on T-regulatory cell promotion, found to have reduced expression in progressive IgAN. We detected an upregulation of LMP7/β5 and LMP2/β1 switches. We observed no genetic effect of rs9357155. TLR4 and TLR2 mRNAs were found to be significantly associated with iPS switches, particularly TLR4 and LMP7/β5 (P < 0.0001). The LMP7/β5 switch was significantly associated with the rate of eGFR loss (P = 0.026), but not with eGFR at biopsy. Fast progressors (defined as the loss of eGFR >75th centile, i.e. -1.91 mL/min/1.73 m2/year) were characterized by significantly elevated LMP7/β5 mRNA (P = 0.04) and low CD46 mRNA expression (P < 0.01). A multivariate logistic regression model, categorizing patients by different levels of kidney disease progression, showed a high prediction value for the combination of high LMP7/β5 and low CD46 expression.
Collapse
Affiliation(s)
- Licia Peruzzi
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy.,Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Enrico Cocchi
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Elisa Loiacono
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Massimilano Bergallo
- Department of Nephrology, Dialysis and Transplantation, Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | | | - Luca Vergano
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | | | - Maria Luisa Russo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Alessandro Amore
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Sigrid Lundberg
- Department of Clinical Sciences, Nephrology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dita Maixerova
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Magdalena Durlik
- Department of Transplantation Medicine and Nephrology, Warsaw Medical University, Warsaw, Poland
| | - Dimitris Goumenos
- Department of Nephrology, University Hospital of Patras, Patras, Greece
| | | | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Luka Toric
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loreto Gesualdo
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Eustacchio Montemurno
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Luisa Benozzi
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Stefano Cusinato
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Tomasz Hryszko
- Department of Nephrology, Transplantation and Dialysis, Medical University of Bialystok, Bialystok, Poland
| | - Marian Klinger
- Department of Internal Medicine, Opole University, Poland
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
8
|
Calhoun PJ, Phan AV, Taylor JD, James CC, Padget RL, Zeitz MJ, Smyth JW. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J 2020; 34:9694-9712. [PMID: 32485054 DOI: 10.1096/fj.202000667r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023]
Abstract
Adenoviruses are responsible for a spectrum of pathogenesis including viral myocarditis. The gap junction protein connexin43 (Cx43, gene name GJA1) facilitates rapid propagation of action potentials necessary for each heartbeat. Gap junctions also propagate innate and adaptive antiviral immune responses, but how viruses may target these structures is not understood. Given this immunological role of Cx43, we hypothesized that gap junctions would be targeted during adenovirus type 5 (Ad5) infection. We find reduced Cx43 protein levels due to decreased GJA1 mRNA transcripts dependent upon β-catenin transcriptional activity during Ad5 infection, with early viral protein E4orf1 sufficient to induce β-catenin phosphorylation. Loss of gap junction function occurs prior to reduced Cx43 protein levels with Ad5 infection rapidly inducing Cx43 phosphorylation events consistent with altered gap junction conductance. Direct Cx43 interaction with ZO-1 plays a critical role in gap junction regulation. We find loss of Cx43/ZO-1 complexing during Ad5 infection by co-immunoprecipitation and complementary studies in human induced pluripotent stem cell derived-cardiomyocytes reveal Cx43 gap junction remodeling by reduced ZO-1 complexing. These findings reveal specific targeting of gap junction function by Ad5 leading to loss of intercellular communication which would contribute to dangerous pathological states including arrhythmias in infected hearts.
Collapse
Affiliation(s)
- Patrick J Calhoun
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Allen V Phan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Carissa C James
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Rachel L Padget
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
9
|
Pant K, Chandrasekaran A, Chang CJ, Vageesh A, Popkov AJ, Weinberg JB. Effects of tumor necrosis factor on viral replication and pulmonary inflammation during acute mouse adenovirus type 1 respiratory infection. Virology 2020; 547:12-19. [PMID: 32560900 DOI: 10.1016/j.virol.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023]
Abstract
CD8 T cells contribute to effective clearance of mouse adenovirus type 1 (MAV-1) and to virus-induced pulmonary inflammation. We characterized effects of a CD8 T cell effector, TNF, on MAV-1 pathogenesis. TNF inhibited MAV-1 replication in vitro. TNF deficiency or immunoneutralization had no effect on lung viral loads or viral gene expression in mice infected intranasally with MAV-1. Absence of TNF delayed virus-induced weight loss and reduced histological evidence of pulmonary inflammation, although concentrations of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF) were not significantly affected. BALF concentrations of IL-10 were greater in TNF-deficient mice compared to controls. Our data indicate that TNF is not essential for control of viral replication in vivo, but virus-induced TNF contributes to some aspects of immunopathology and disease. Redundant CD8 T cell effectors and other aspects of immune function are sufficient for antiviral and pro-inflammatory responses to acute MAV-1 respiratory infection.
Collapse
Affiliation(s)
- Krittika Pant
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Christine J Chang
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Vageesh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Hemmi S, Spindler KR. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett 2019; 593:3649-3659. [PMID: 31777948 DOI: 10.1002/1873-3468.13699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Small laboratory animals are powerful models for investigating in vivo viral pathogenesis of a number of viruses. For adenoviruses (AdVs), however, species-specificity poses limitations to studying human adenoviruses (HAdVs) in mice and other small laboratory animals. Thus, this review covers work on naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-1), a member of the species Murine mastadenovirus A. Molecular genetics, virus life cycle, cell and tissue tropism, interactions with the host immune response, persistence, and host genetics of susceptibility are described. A brief discussion of MAdV-2 (member of species Murine mastadenovirus B) and MAdV-3 (member of species Murine mastadenovirus C) is included. We report the use of MAdVs in the development of vectors and vaccines.
Collapse
Affiliation(s)
- Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|