1
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
2
|
Shah AU, Peddireddi L, Wood B, Hemida MG. Some novel field isolates belonging to lineage-1 of the genotype GI-avian infectious bronchitis virus (AIBV) show strong evidence of recombination with field/vaccinal strains. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105723. [PMID: 39892727 DOI: 10.1016/j.meegid.2025.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Avian infectious bronchitis virus (AIBV) infection remains one of the significant challenges for the poultry industry due to the high rates of morbidity, mortality, and poor production performance. The AIBV genome is prone to frequent changes due to the possibility of drift and recombination between various genotypes. Despite the massive administration of several types of vaccines, many outbreaks of AIBV continue to be reported worldwide. One of the major goals of this study was to monitor genetic changes in the viral genomes of some recent field isolates of the AIBV from broiler chickens. To achieve these goals, we tested several pools of tissue specimens (trachea and kidneys) from some suspected AIBV outbreaks in broiler chickens by quantitative real-time PCR (q-RT-PCR). We selected two samples, one from the trachea (IBV-4) and one from the kidney (AIBV-6), for the next-generation sequencing (NGS). The full-length genomes of these two isolates were deposited in the GenBank (Accession Numbers: PQ468962 and PQ468963). The viral genome size of AIBV-4 and AIBV-6 was 27,475 and 27,469 nucleotides in length. AIBV-4 have typical AIBV genome organization (5'UTR, ORF1a, ORF1b, S, 3a, 3b, E, M, 4b, 5a, 5b, N, and 3'UTR), while AIBV-6 lack 5b. These two AIBV isolates belong to sublineage-1 of the genotype GI-1 based on the phylogenetic using the full-length, the S, and the N protein sequences. The S1/S2 cleavage sites show polybasic amino acid sequences (RR-F-RR) as direct evidence of virulence of these isolates. The analysis shows multiple recombination events of these isolates with some natural and vaccine strains. The potential major parent for both AIBV-4 and AIBV-6 was AIBV Beaudette. Active and vigilant monitoring of the AIBV sequences of the currently circulating strains in chickens is highly encouraged to help develop novel vaccines and diagnostic assays that match the field circulating strains.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548NY, USA
| | - Lalitha Peddireddi
- North Carolina Veterinary Diagnostic Laboratory Services, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States of America
| | - Beverly Wood
- North Carolina Veterinary Diagnostic Laboratory Services, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States of America
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548NY, USA.
| |
Collapse
|
3
|
Liu H, Wei X, He Y, Pan S, Wang C, Cheng J, Zhao Q, Shi K, Si H. Elucidating the antiviral effects of a novel compound throat anti-viral through metabolomics and network pharmacology: A study on infectious bronchitis virus in poultry. Poult Sci 2025; 104:104956. [PMID: 40127563 PMCID: PMC11984592 DOI: 10.1016/j.psj.2025.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Infectious bronchitis virus (IBV) is a major pathogen that causes significant economic losses in the global poultry industry. Current vaccination strategies provide only partial protection, highlighting the need for more effective prevention and treatment methods. This study aimed to develop a novel compound throat anti-viral (CTA) from natural plants using data from the Traditional Chinese Medicine Inheritance System and identification through liquid chromatography-mass spectrometry. CTA demonstrated substantial anti-IBV effects both in vitro and in vivo studies. In vitro, CTA significantly inhibited IBV multiplication and alleviated the pathological lesions in chicken embryonic kidney cells, tracheal rings, and chicken embryos. In vivo, a seven-day treatment with CTA obtained much milder clinical signs, enhanced growth performance, and better immune organ indices in infected chickens. Additionally, CTA treatment reduced IBV levels in the trachea and lungs and increased specific antibody titers. CTA also maintained body homeostasis, exhibiting strong antioxidant and anti-inflammatory properties that mitigated respiratory tract damage. Metabolomics and network pharmacology analyses, revealed that CTA's antiviral effects are mediated through the FoxO signaling pathway. This study successfully developed an effective prescription database based on the Traditional Chinese Medicine Inheritance System and validated the antiviral efficacy of CTA through comprehensive in vitro and in vivo experiments. The findings elucidated the mechanisms of CTA's action, particularly through the FoxO signaling pathway, and highlighted its potential for clinical application as a novel antiviral treatment for IBV in the poultry industry.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaofang Wei
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Sijia Pan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chenchen Wang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Junze Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiyuan Zhao
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
4
|
Gong X, Feng S, Wang J, Gao B, Xue W, Chu H, Fang S, Yuan Y, Cheng Y, Liao M, Sun Y, Tan L, Song C, Qiu X, Ding C, Tijhaar E, Forlenza M, Liao Y. Coronavirus endoribonuclease nsp15 suppresses host protein synthesis and evades PKR-eIF2α-mediated translation shutoff to ensure viral protein synthesis. PLoS Pathog 2025; 21:e1012987. [PMID: 40096172 PMCID: PMC11975131 DOI: 10.1371/journal.ppat.1012987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/07/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025] Open
Abstract
The endoribonuclease (EndoU) nsp15 of coronaviruses plays a crucial role in evading host innate immune responses by reducing the abundance of viral double-stranded RNA (dsRNA). However, our understanding of its interactions with host cellular targets remains limited. In this study, we demonstrate that overexpression of nsp15 from four coronavirus genera inhibits cellular protein synthesis and causes nuclear retention of PABPC1. Mutation analysis confirms the essential role of EndoU activity in these processes. Fluorescence in situ hybridization (FISH) analysis shows that cellular mRNA co-localizes with nsp15 in certain cells. Real time RT-PCR indicates that the mRNA levels of several antiviral genes decrease in cells expressing nsp15, and this reduction depends on the EndoU activity of nsp15. Using infectious bronchitis virus (IBV) as a model, we investigate the inhibitory effect of nsp15 on protein translation during infection. We find that infection with IBV with functional nsp15 suppresses protein synthesis in a PKR-eIF2α independent manner, with PABPC1 mainly located in the cytoplasm. However, infection with EndoU activity-deficiency mutant virus rIBV-nsp15-H238A results in the accumulation of viral dsRNA, triggering a PKR-eIF2α-dependent shutdown of protein synthesis and leading to the nuclear relocation of PABPC1. In the absence of the PKR-eIF2α pathway, IBV is still able to suppress host protein synthesis, while the inhibitory effect of rIBV-nsp15-H238A on protein synthesis was significantly reduced. Although nsp15 locates to replication-transcription complex (RTC) during infection, RNA immunoprecipitation (RIP)-Seq analysis confirms that IBV nsp15 binds to six viral RNAs and 237 cellular RNAs. The proteins encoded by the nsp15-associated cellular RNAs predominantly involved in translation. Additionally, proteomic analysis of the nsp15 interactome identifies 809 cellular proteins, which are significantly enriched in pathways related to ribosome biogenesis, RNA processing, and translation. Therefore, nsp15 helps virus circumvent the detrimental PKR-eIF2α pathway by reducing viral dsRNA accumulation and suppresses host protein synthesis by targeting host RNAs and proteins. This study reveals unique yet conserved mechanisms of protein synthesis shutdown by catalytically active nsp15 EndoU, shedding light on how coronaviruses regulate host protein expression.
Collapse
Affiliation(s)
- Xiaoqian Gong
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
- Cell Biology and Immunology Group, Wageningen University and Research, Department of Animal Sciences, Wageningen, the Netherlands,
| | - Shanhuan Feng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Jiehuang Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Bo Gao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Wenxiang Xue
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Hongyan Chu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Shouguo Fang
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, China,
| | - Yanmei Yuan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University and Research, Department of Animal Sciences, Wageningen, the Netherlands,
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University and Research, Department of Animal Sciences, Wageningen, the Netherlands,
- Host-Microbe Interactomics Group, Wageningen University and Research, Department of Animal Sciences, Wageningen, the Netherlands
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,
| |
Collapse
|
5
|
Dong H, Xu S, Li P, Ruan W. The battle between infectious bronchitis virus and innate immunity: A mini review. Virology 2025; 603:110321. [PMID: 39644586 DOI: 10.1016/j.virol.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB), leading to acute or persistent infections in poultry. IBV triggers innate immune response, and the production of interferon (IFN) varies depending on the viral strains and host cell types. To evade the host immune system, IBV has developed numerous immune escape strategies. These include hijacking host proteins, modulating protein synthesis, antagonizing IFN production, promoting autophagosome formation and expansion, manipulating apoptosis, blocking antigen presentation, stabilizing viral mRNA, and inhibiting stress granule (SG) formation. The ongoing interaction between IBV and the host immune system reflects a dynamic battle, as the virus employs various tactics to ensure its replication. Understanding these pathogenic mechanisms of IBV is crucial for developing effective control measures.
Collapse
Affiliation(s)
- Hao Dong
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, 102206, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, 102206, China
| | - Peng Li
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50010, USA
| | - Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, 102206, China.
| |
Collapse
|
6
|
Zhao J, Huang Y, Liukang C, Yang R, Tang L, Sun L, Zhao Y, Zhang G. Dissecting infectious bronchitis virus-induced host shutoff at the translation level. J Virol 2024; 98:e0083024. [PMID: 38940559 PMCID: PMC11265393 DOI: 10.1128/jvi.00830-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-β and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yahui Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihua Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihua Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhang W, Chen Y, Yang F, Zhang H, Su T, Wang J, Zhang Y, Song X. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis. Br Poult Sci 2024; 65:119-128. [PMID: 38166582 DOI: 10.1080/00071668.2023.2296929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 μM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 μM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-β compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1β and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-β in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.
Collapse
Affiliation(s)
- W Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - F Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - H Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - T Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Rafique S, Jabeen Z, Pervaiz T, Rashid F, Luo S, Xie L, Xie Z. Avian infectious bronchitis virus (AIBV) review by continent. Front Cell Infect Microbiol 2024; 14:1325346. [PMID: 38375362 PMCID: PMC10875066 DOI: 10.3389/fcimb.2024.1325346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a positive-sense, single-stranded, enveloped RNA virus responsible for substantial economic losses to the poultry industry worldwide by causing a highly contagious respiratory disease. The virus can spread quickly through contact, contaminated equipment, aerosols, and personal-to-person contact. We highlight the prevalence and geographic distribution of all nine genotypes, as well as the relevant symptoms and economic impact, by extensively analyzing the current literature. Moreover, phylogenetic analysis was performed using Molecular Evolutionary Genetics Analysis (MEGA-6), which provided insights into the global molecular diversity and evolution of IBV strains. This review highlights that IBV genotype I (GI) is prevalent worldwide because sporadic cases have been found on many continents. Conversely, GII was identified as a European strain that subsequently dispersed throughout Europe and South America. GIII and GV are predominant in Australia, with very few reports from Asia. GIV, GVIII, and GIX originate from North America. GIV was found to circulate in Asia, and GVII was identified in Europe and China. Geographically, the GVI-1 lineage is thought to be restricted to Asia. This review highlights that IBV still often arises in commercial chicken flocks despite immunization and biosecurity measures because of the ongoing introduction of novel IBV variants and inadequate cross-protection provided by the presently available vaccines. Consequently, IB consistently jeopardizes the ability of the poultry industry to grow and prosper. Identifying these domains will aid in discerning the pathogenicity and prevalence of IBV genotypes, potentially enhancing disease prevention and management tactics.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi, Pakistan
| | - Zohra Jabeen
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi, Pakistan
| | - Treeza Pervaiz
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi, Pakistan
| | - Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
9
|
Alsakini KAMH, Çöven FO, Nalbantsoy A. Adjuvant effects of novel water/oil emulsion formulations on immune responses against infectious bronchitis (IB) vaccine in mice. Biologicals 2024; 85:101736. [PMID: 38101004 DOI: 10.1016/j.biologicals.2023.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Vaccines have long made use of adjuvants to boost the immune response of the body and reduce the amount of vaccine needed as well as the expense of producing the vaccine. Many vaccine adjuvants are in development, but their application in veterinary vaccinations is restricted due to their lack of efficacy or undesirable side effects. For this reason, it is essential to develop novel adjuvants. To address the issue that the currently available infectious bronchitis (IB) vaccine often fails to produce sufficient immune responses, Coral Biotechnology tested two of their newly developed water-in-oil (W/O) type emulsion adjuvants (Coralvac RZ 528 and Coralvac RZ 506) in the IB vaccine. These adjuvants were tested in a mouse model to determine whether it worked with an inactive IBV H120 vaccine. Vaccine formulations were prepared by combining a virus concentration of 1 × 106 EID50/0.1 ml with an emulsion of the W/O type in a specific ratio. Once the formulations were ready, it was injected intramuscularly as a single dosage, and the mice were monitored for 21 days afterwards. The results showed that anti-IB antibody titer (IgG and IgG1), CD3+ CD8+ T cell responses as well as IFN- γ cytokine production, and splenocyte proliferation were all considerably higher in the IBV H120 with Coralvac RZ 528 and IBV H120 with Coralvac RZ 506 formulation groups than in the viral control group. According to our findings, the humoral and cellular immune responses of mice were significantly enhanced by these novel vaccine adjuvants. Thus, our results provide evidence that the W/O type emulsion adjuvants developed by Coral Biotechnology may be a useful adjuvant in IBV vaccines.
Collapse
Affiliation(s)
| | - Furkan Ozan Çöven
- Department of Bioengineering, Natural and Applied Sciences Institute, Ege University, 35100, İzmir, Turkey.
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
10
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Huang M, Liu Y, Xia Y, Wang J, Zheng X, Cao Y. Infectious bronchitis virus nucleocapsid protein suppressed type I interferon production by interfering with the binding of MDA5-dsRNA and interacting with LGP2. Vet Microbiol 2023; 284:109798. [PMID: 37307767 DOI: 10.1016/j.vetmic.2023.109798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
The type I interferon (IFN-I) is a critical component of the innate immune responses, and Coronaviruses (CoVs) from both the Alphacoronavirus and Betacoronavirus genera interfere with the IFN-I signaling pathway in various ways. Of the gammacoronaviruses that mainly infect birds, little is known about how infectious bronchitis virus (IBV), evades or interferes with the innate immune responses in avian hosts since few IBV strains have been adapted to grow in avian passage cells. Previously, we reported that a highly pathogenic IBV strain GD17/04 has adaptability in an avian cell line, providing a material basis for further study on the interaction mechanism. In the present work, we describe the suppression of IBV to IFN-I and the potential role of IBV-encoded nucleocapsid (N) protein. We show that IBV significantly inhibits the poly I: C-induced IFN-I production, accordingly the nuclear translocation of STAT1, and the expression of IFN-stimulated genes (ISGs). A detailed analysis revealed that N protein, acting as an IFN-I antagonist, significantly impedes the activation of the IFN-β promoter stimulated by MDA5 and LGP2 but does not counteract its activation by MAVS, TBK1, and IRF7. Further results showed that IBV N protein, verified to be an RNA-binding protein, interferes with MDA5 recognizing double-stranded RNA (dsRNA). Moreover, we found that the N protein targets LGP2, which is required in the chicken IFN-I signaling pathway. Taken together, this study provides a comprehensive analysis of the mechanism by which IBV evades avian innate immune responses.
Collapse
Affiliation(s)
- Mengjiao Huang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbo Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuewei Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
13
|
Wu Y, Li Y, Zhao J, Wu Y, Lu D, Jia J, Chen T, He M, Lin J, Yang Q. IBV QX affects the antigen presentation function of BMDCs through nonstructural protein16. Poult Sci 2023; 102:102620. [PMID: 36972672 PMCID: PMC9981267 DOI: 10.1016/j.psj.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The gamma-coronavirus infectious bronchitis virus (IBV) has a high mutation rate and mainly invades the respiratory mucosa, making it difficult to prevent and causing great economic losses. Nonstructural protein 16 (NSP16) of IBV QX also not only plays an indispensable role in virus invading but also might hugely influence the antigen's recognition and presentation ability of host BMDCs. Hence, our study tries to illustrate the underline mechanism of how NSP16 influences the immune function of BMDCs. Initially, we found that NSP16 of the QX strain significantly inhibited the antigen presentation ability and immune response of mouse BMDCs, which was stimulated by Poly (I:C) or AIV RNA. Besides mouse BMDCs, we also found that NSP16 of the QX strain also significantly stimulated the chicken BMDCs to activate the interferon signaling pathway. Furthermore, we preliminarily demonstrated that IBV QX NSP16 inhibits the antiviral system by affecting the antigen-presenting function of BMDCs.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jinhao Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Danqing Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Junpeng Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianxin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingzhe He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
14
|
Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog 2022; 18:e1011041. [PMID: 36534661 PMCID: PMC9810206 DOI: 10.1371/journal.ppat.1011041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.
Collapse
Affiliation(s)
- Stacia M. Dolliver
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Mariel Kleer
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Maxwell P. Bui-Marinos
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Shan Ying
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Denys A. Khaperskyy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
15
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
16
|
Feng H, Zhang K, Zhang K, Guo Z, Liu Q, Wang L, Wang X, Qiu Z, Wang G, Zhang J, Li J. Antiviral activity and underlying mechanisms of Baicalin against avian infectious bronchitis virus in vitro. Avian Pathol 2022; 51:574-589. [PMID: 35917182 DOI: 10.1080/03079457.2022.2109453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Baicalin, a flavonoid compound extracted from the dry root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammation, anti-viral, anti-bacterial, and immunomodulatory activity. However, the effect of baicalin against avian infectious bronchitis virus (IBV) remains unknown. The purpose of this study was to investigate the anti-IBV activity and underlying mechanism of baicalin in vitro. The results showed that baicalin has a direct virucidal effect but no prophylactic effect on IBV infection. The mRNA and protein of IBV N were decreased obviously when IBV-infected cells were treated with baicalin during the multiple stages of the virus replication cycle, including viral adsorption, invasion, internalization, and release. Stress granule (SG) formation resulted from the increase of G3BP1 and the phosphorylation of the PKR/eIF2α due to the treatment of IBV-infected cells with baicalin. The inhibitory activity of baicalin on IBV replication was increased when G3BP1 expression was inhibited, and the down-regulation of G3BP1 expression occurred when the expression of PKR and eIF2α was inhibited. These findings revealed that baicalin activates phosphorylation of PKR/eIF2α pathway and induces SG formation by targeting G3BP1, initiating the antiviral response to suppress IBV replication on Vero cell. The results suggest that baicalin is a promising candidate drug to treat or prevent IBV infection.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Kai Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Zhiting Guo
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Qin Liu
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Xuezhi Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Zhengying Qiu
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Guibo Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730050, China (F.H.);(K.Z.);(K.Z.); (Z.G.);(Q.L.);(L.W.);(X.W.);(Z.Q.);;(W.G.)
| |
Collapse
|
17
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Role of Stress Granules in Suppressing Viral Replication by the Infectious Bronchitis Virus Endoribonuclease. J Virol 2022; 96:e0068622. [PMID: 35638780 DOI: 10.1128/jvi.00686-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.
Collapse
|
19
|
Eriani G, Martin F. Viral and cellular translation during SARS‐CoV‐2 infection. FEBS Open Bio 2022; 12:1584-1601. [PMID: 35429230 PMCID: PMC9110871 DOI: 10.1002/2211-5463.13413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
SARS‐CoV‐2 is a betacoronavirus that emerged in China in December 2019 and which is the causative agent of the Covid‐19 pandemic. This enveloped virus contains a large positive‐sense single‐stranded RNA genome. In this review, we summarize the current knowledge on the molecular mechanisms for the translation of both viral transcripts and cellular messenger RNAs. Non‐structural proteins are encoded by the genomic RNA and are produced in the early steps of infection. In contrast, the structural proteins are produced from subgenomic RNAs that are translated in the late phase of the infectious program. Non‐structural protein 1 (NSP1) is a key molecule that regulates both viral and cellular translation. In addition, NSP1 interferes with multiple steps of the interferon I pathway and thereby blocks host antiviral responses. Therefore, NSP1 is a drug target of choice for the development of antiviral therapies.
Collapse
Affiliation(s)
- Gilbert Eriani
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| | - Franck Martin
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| |
Collapse
|
20
|
Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. Int Immunopharmacol 2022; 108:108764. [PMID: 35421804 DOI: 10.1016/j.intimp.2022.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
Abstract
The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 μg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.
Collapse
|
21
|
Peng S, Wang Y, Zhang Y, Song X, Zou Y, Li L, Zhao X, Yin Z. Current Knowledge on Infectious Bronchitis Virus Non-structural Proteins: The Bearer for Achieving Immune Evasion Function. Front Vet Sci 2022; 9:820625. [PMID: 35464391 PMCID: PMC9024134 DOI: 10.3389/fvets.2022.820625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world, which is also the prototype of gamma-coronaviruses. Nowadays, IBV is widespread all over the world and has become one of the causative agent causing severe economic losses in poultry industry. Generally, it is believed that the viral replication and immune evasion functions of IBV were modulated by non-structural and accessory proteins, which were also considered as the causes for its pathogenicity. In this study, we summarized the current knowledge about the immune evasion functions of IBV non-structural and accessory proteins. Some non-structural proteins such as nsp2, nsp3, and nsp15 have been shown to antagonize the host innate immune response. Also, nsp7 and nsp16 can block the antigen presentation to inhibit the adapted immune response. In addition, nsp13, nsp14, and nsp16 are participating in the formation of viral mRNA cap to limit the recognition by innate immune system. In conclusion, it is of vital importance to understand the immune evasion functions of IBV non-structural and accessory proteins, which could help us to further explore the pathogenesis of IBV and provide new horizons for the prevention and treatment of IBV in the future.
Collapse
|
22
|
Li N, Huang C, Chen W, Li Z, Hu G, Li G, Liu P, Hu R, Zhuang Y, Luo J, Gao X, Guo X. Nephropathogenic Infectious Bronchitis Virus Mediates Kidney Injury in Chickens via the TLR7/NF-κB Signaling Axis. Front Cell Infect Microbiol 2022; 12:865283. [PMID: 35402297 PMCID: PMC8983847 DOI: 10.3389/fcimb.2022.865283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) is one of the most important viral pathogens in the world poultry industry. Here, we used RT–qPCR, WB and immunofluorescence to explore the interaction between NIBV and the host innate immune system of the kidney. Multiple virions were found in the kidney tissues of the disease group under electron microscopy, and pathological changes such as structural damage of renal tubules and bleeding were observed by HE staining. In addition, we found that the mRNA levels of TLR7, TRAF6, and IKKβ were upregulated after NIBV infection. IRF7 mRNA levels decreased significantly at 5 dpi and increased significantly at 11 to 18 dpi. The NF-κB P65 mRNA level increased significantly at 5 to 18 dpi and decreased at 28 dpi. However, NIBV infection-induced NF-κB P65 protein levels were downregulated at multiple time points. Moreover, we demonstrated that the cytokine (IFN-γ, IL-8, and IL-6) mRNA and protein expression levels were increased significantly at multiple time points after NIBV infection. Furthermore, immunofluorescence analysis showed that NF-κB P65 and IFN-γ were mainly located in the nuclear or perinuclear region. The positive signal intensity of NF-κB P65 was significantly lower than that of the normal group at 1 to 5 dpi, and there was no significant change in the subsequent time period. The positive signal intensity of IFN-γ decreased significantly at 5 dpi, and increased significantly at 11 to 28 dpi. In conclusion, we found that NIBV promoted cytokine release through the TLR7/NF-κB signaling axis, thus causing kidney injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaona Gao
- *Correspondence: Xiaoquan Guo, ; Xiaona Gao,
| | | |
Collapse
|
23
|
Zhang Y, Li XY, Zhang BS, Ren LN, Lu YP, Tang JW, Lv D, Yong L, Lin LT, Lin ZX, Mo Q, Mo ML. In vivo antiviral effect of plant essential oils against avian infectious bronchitis virus. BMC Vet Res 2022; 18:90. [PMID: 35255906 PMCID: PMC8899001 DOI: 10.1186/s12917-022-03183-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Background Infectious bronchitis virus (IBV) leads to huge economic losses in the poultry industry worldwide. The high levels of mutations of IBV render vaccines partially protective. Therefore, it is urgent to explore an effective antiviral drug or agent. The present study aimed to investigate the in vivo anti-IBV activity of a mixture of plant essential oils (PEO) of cinnamaldehyde (CA) and glycerol monolaurate (GML), designated as Jin-Jing-Zi. Results The antiviral effects were evaluated by clinical signs, viral loads, immune organ indices, antibody levels, and cytokine levels. The infection rates in the PEO-M (middle dose) and PEO-H (high dose) groups were significantly lower than those in the prevention, positive drug, and PEO-L (low dose) groups. The cure rates in the PEO-M and PEO-H groups were significantly higher than those in the prevention, positive drug, and PEO-L groups, and the PEO-M group had the highest cure rate of 92.31%. The symptom scores and IBV mRNA expression levels were significantly reduced in the PEO-M group. PEO significantly improved the immune organ indices and IBV-specific antibody titers of infected chickens. The anti-inflammatory factor levels of IL-4 and IFN-γ in the PEO-M group maintained high concentrations for a long time. The IL-6 levels in the PEO-M group were lower than those in prevention, positive drug, and PEO-L groups. Conclusion The PEO had remarkable inhibition against IBV and the PEO acts by inhibiting virus multiplication and promoting immune function, suggesting that the PEO has great potential as a novel anti-IBV agent for inhibiting IBV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03183-x.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao-Yan Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing-Sha Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Na Ren
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan-Peng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jin-Wen Tang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Di Lv
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lu Yong
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Ting Lin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zi-Xue Lin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qin Mo
- Guangzhou Nasheng Biological Co., Ltd, Guangdong, 510650, China
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
24
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
25
|
Al-Rasheed M, Ball C, Manswr B, Leeming G, Ganapathy K. Infectious bronchitis virus infection in chicken: viral load and immune responses in Harderian gland, choanal cleft and turbinate tissues compared to trachea. Br Poult Sci 2022; 63:484-492. [PMID: 35179081 DOI: 10.1080/00071668.2022.2035675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The role of the Harderian gland (HG), choanal cleft (CC) and turbinate in terms of IBV M41 viral load compared to the trachea, and immune (innate, cellular and mucosal) responses were studied in 21-day-old commercial broiler chickens.2. After virulent IBV M41 challenge, the antigen concentration detected either by quantitative RT-PCR or immunohistochemistry peaked at 2-3 days post challenge (dpc) in all tissues. Significant increases of lachrymal IBV-specific IgA and IgY levels were found at 4-5 dpc.3. Gene transcription showed a significant up-regulation of TLR3, MDA5, IL-6, IFN-α and IFN-β, where patterns and magnitude fold-change of mRNA transcription were dependent on the gene and tissue type.4. The results demonstrated active IBV M41 replication in the HG, CC and turbinate, comparable to levels of replication found in the trachea. The data on immune related genes in head-associated tissues provides further understanding on the immunobiology of IBV and offers opportunities to identify their use as quantitative biomarkers in pathogenicity and vaccination-challenge studies.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,College of Veterinary Medicine, Avian Research Centre, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Basim Manswr
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,Faculty of Veterinary Medicine, Diyala University, Iraq
| | - Gail Leeming
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| |
Collapse
|
26
|
Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. ANIMAL DISEASES 2021; 1:5. [PMID: 34778878 PMCID: PMC8062217 DOI: 10.1186/s44149-021-00005-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Collapse
Affiliation(s)
- Zhijian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| |
Collapse
|
27
|
Zhang Y, Xu Z, Cao Y. Host Antiviral Responses against Avian Infectious Bronchitis Virus (IBV): Focus on Innate Immunity. Viruses 2021; 13:1698. [PMID: 34578280 PMCID: PMC8473314 DOI: 10.3390/v13091698] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.
Collapse
Affiliation(s)
| | | | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.Z.); (Z.X.)
| |
Collapse
|
28
|
Interplay of the ubiquitin proteasome system and the innate immune response is essential for the replication of infectious bronchitis virus. Arch Virol 2021; 166:2173-2185. [PMID: 34037855 PMCID: PMC8150628 DOI: 10.1007/s00705-021-05073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022]
Abstract
Infectious bronchitis virus (IBV) is the only coronavirus known to infect poultry. The replication and pathogenesis of IBV are poorly understood, mainly because of the unavailability of a robust cell culture system. Here, we report that an active ubiquitin proteasome system (UPS) is necessary for efficient replication of IBV in Vero cells. Synthesis of IBV-specific RNA as well as viral protein is hampered in the presence of chemical inhibitors specific for the UPS. Like other coronaviruses, IBV encodes a papain-like protease (PLpro) that exhibits in vitro deubiquitinase activity in addition to proteolytically processing the replicase polyprotein. Our results show that the IBV PLpro enzyme inhibits the synthesis of interferon beta (IFNβ) in infected chicken embryonic fibroblast (DF-1) cells and that this activity is enhanced in the presence of melanoma differentiation-associated protein 5 (MDA5) and TANK binding kinase 1 (TBK1). IBV PLpro, when overexpressed in DF-1 cells, deubiquitinates MDA5 and TBK1. Both of these proteins, along with other adapter molecules such as MAVS, IKKε, and IRF3, form a signaling cascade for the synthesis of IFNβ. Ubiquitination of MDA5 and TBK1 is essential for their activation, and their deubiquitination by IBV PLpro renders them unable to participate in antiviral signaling. This study shows for the first time that there is cross-talk between the UPS and the innate immune response during IBV infection and that the deubiquitinase activity of IBV PLpro is involved in its activity as an IFN antagonist. This insight will be useful for designing better antivirals targeting the catalytic activity of the IBV PLpro enzyme.
Collapse
|
29
|
Abaidullah M, Peng S, Song X, Zou Y, Li L, Jia R, Yin Z. Chlorogenic acid is a positive regulator of MDA5, TLR7 and NF-κB signaling pathways mediated antiviral responses against Gammacoronavirus infection. Int Immunopharmacol 2021; 96:107671. [PMID: 33971495 DOI: 10.1016/j.intimp.2021.107671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a phenolic compound that has been well studied for its antiviral, anti-inflammatory and immune stimulating properties. This research was aimed to focus on the antiviral properties of CGA on infectious bronchitis virus (IBV) in vivo and in vitro for the very first time. The outcome of in vitro experiments validated that, out of five previously reported antiviral components, CGA significantly reduced the relative mRNA expression of IBV-N in CEK cells. At high concentration (400 mg/kg), CGA supplementation reduced IBV-N mRNA expression levels and ameliorated the injury in trachea and lungs. The mRNA expression levels of IL-6, IL-1β, IL-12, and NF-κB were considerably turned down, but IL-22 and IL-10 were enhanced in trachea. However, CGA-H treatment had considerably increased the expression levels of MDA5, MAVS, TLR7, MyD88, IRF7, IFN-β and IFN-α both in trachea and lungs. Moreover, CGA-H notably induced the CD3+, CD3+ CD4+ and CD4+/CD8+ proliferation and significantly increased the IgA, IgG, and IgM levels in the serum. In conclusion, these results showed that at high concentration CGA is a strong anti-IBV compound that can effectively regulate the innate immunity through MDA5, TLR7 and NF-κB signaling pathways and have the potential to induce the cell mediated and humoral immune response in IBV infected chickens.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuwei Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Pattnaik B, S Patil S, S C, G. Amachawadi R, Dash AP, Yadav MP, Prasad KS, P S, Jain AS, Shivamallu C. COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:117-130. [DOI: 10.18006/2021.9(2).117.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses.
Collapse
|
31
|
Gao B, Gong X, Fang S, Weng W, Wang H, Chu H, Sun Y, Meng C, Tan L, Song C, Qiu X, Liu W, Forlenza M, Ding C, Liao Y. Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathog 2021; 17:e1008690. [PMID: 33635931 PMCID: PMC7946191 DOI: 10.1371/journal.ppat.1008690] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/10/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-β which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication. Coronavirus encodes the conserved endoribonuclease nsp15, which has been reported to antagonize IFN responses by mediating evasion of recognition by dsRNA sensors. SGs are part of the host cell anti-viral response; not surprisingly, viruses in turn produce an array of antagonists to counteract such host response. Here, we show that IBV prevents the formation of SGs via nsp15, by reducing the accumulation of viral dsRNA, thereby evading the activation of PKR, phosphorylation of eIF2α, and formation of SGs. Depletion of SG scaffold proteins G3BP1/2 decreases IRF3-IFN response and increases the production of IBV. When overexpressed alone, nsp15s from different coronaviruses (IBV, PEDV, TGEV, SARS-CoV, and SARS-CoV-2) interferes with chemically- and physically-induced SGs, probably by targeting essential SGs assembly factors. In this way, coronaviruses antagonize the formation of SGs by nsp15, via reducing the viral dsRNA accumulation and sequestering/depleting critical component of SGs. To our knowledge, this is the first report describing the role of coronavirus nsp15 in the suppression of integral stress response, in crosstalk with anti-innate immune response.
Collapse
Affiliation(s)
- Bo Gao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Xiaoqian Gong
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Shouguo Fang
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, P. R. China
| | - Wenlian Weng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Hongyan Chu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
32
|
Nakagawa K, Makino S. Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells 2021; 10:cells10020300. [PMID: 33540583 PMCID: PMC7912902 DOI: 10.3390/cells10020300] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus–host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Correspondence: ; Tel.: +1-409-772-2323
| |
Collapse
|
33
|
Abstract
In less than two decades, three deadly zoonotic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have emerged in humans, causing SARS, MERS, and coronavirus disease 2019 (COVID-19), respectively. The current COVID-19 pandemic poses an unprecedented crisis in health care and social and economic development. It reinforces the cruel fact that CoVs are constantly evolving, possessing the genetic malleability to become highly pathogenic in humans. In this review, we start with an overview of CoV diseases and the molecular virology of CoVs, focusing on similarities and differences between SARS-CoV-2 and its highly pathogenic as well as low-pathogenic counterparts. We then discuss mechanisms underlying pathogenesis and virus-host interactions of SARS-CoV-2 and other CoVs, emphasizing the host immune response. Finally, we summarize strategies adopted for the prevention and treatment of CoV diseases and discuss approaches to develop effective antivirals and vaccines. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
34
|
Li H, Cui P, Fu X, Zhang L, Yan W, Zhai Y, Lei C, Wang H, Yang X. Identification and analysis of long non-coding RNAs and mRNAs in chicken macrophages infected with avian infectious bronchitis coronavirus. BMC Genomics 2021; 22:67. [PMID: 33472590 PMCID: PMC7816148 DOI: 10.1186/s12864-020-07359-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV) is a gamma coronavirus that severely affects the poultry industry worldwide. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs with a length of more than 200 nucleotides, have been recently recognized as pivotal factors in the pathogenesis of viral infections. However, little is known about the function of lncRNAs in host cultured cells in response to IBV infection. RESULTS We used next-generation high throughput sequencing to reveal the expression profiles of mRNAs and lncRNAs in IBV-infected HD11 cells. Compared with the uninfected cells, we identified 153 differentially expressed (DE) mRNAs (106 up-regulated mRNAs, 47 down-regulated mRNAs) and 181 DE lncRNAs (59 up-regulated lncRNAs, 122 down-regulated lncRNAs) in IBV-infected HD11 cells. Moreover, gene ontology (GO) and pathway enrichment analyses indicated that DE mRNAs and lncRNAs were mainly involved in cellular innate immunity, amino acid metabolism, and nucleic acid metabolism. In addition, 2640 novel chicken lncRNAs were identified, and a competing endogenous RNA (ceRNAs) network centered on gga-miR-30d and miR-146a-5p was established. CONCLUSIONS We identified expression profiles of mRNAs and lncRNAs during IBV infection that provided new insights into the pathogenesis of IBV.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Pengfei Cui
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Xue Fu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Lan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Yaru Zhai
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China.
| |
Collapse
|
35
|
Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Vet Res 2021; 52:7. [PMID: 33431056 PMCID: PMC7798014 DOI: 10.1186/s13567-020-00866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.
Collapse
|
36
|
de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res 2020; 48:12502-12522. [PMID: 33264393 PMCID: PMC7736815 DOI: 10.1093/nar/gkaa1116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.
Collapse
Affiliation(s)
- Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lionel Condé
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
37
|
Drechsler Y, Vasconcelos EJR, Griggs LM, Diniz PPPV. CRFK and Primary Macrophages Transcriptomes in Response to Feline Coronavirus Infection Differ Significantly. Front Genet 2020; 11:584744. [PMID: 33343631 PMCID: PMC7745755 DOI: 10.3389/fgene.2020.584744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Coronaviruses are highly infectious and common in many species, including in humans, and agricultural and domestic animals. Host responses play an important role in viral entry, replication, assembly, and pathogenesis, although much is still to be understood, particularly host-virus interactions. Feline coronavirus is highly contagious, and ubiquitous in virtually all cat populations. Host-pathogen interactions have not been studied extensively due to the complex pathogenesis and development of clinical disease. Few studies have investigated cellular host responses to feline coronavirus infection, particularly at early time points. Transcriptome studies based on next-generation sequencing have the potential to elucidate the early responses of cells after viral infection and, consequently, give further insight into the pathogenesis of viruses. The current study aims to characterize and compare the viral- and immune-related differentially expressed genes in response to the coronavirus FIPV across different time points in a cell line which is permissive for productive replication versus primary cells implicated in pathogenesis. When comparing host responses in Crandell-Rees Feline Kidney (CRFK) cells to primary macrophages, many differences were observed with regards to expressed genes and their enrichments for both KEGG pathways and GO terms. CRFK cells which are permissive for productive replication of feline infectious peritonitis virus, showed induction of a large network of immunological and virally induced pathways. In contrast, Macrophages did not show similar host responses, with stronger pathway enrichment in downregulated transcripts. This study provides insights to better understand gene transcription in immune cells compared to epithelial cells discerning pathways relevant to pathogenesis in the early stages of infection.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | | | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pedro P P V Diniz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
38
|
Abdollahi H, Rezaei-Tavirani M, Ghalyanchilangeroudi A, Maghsoudloo H, Hashemzadeh M, Hosseini H, Barin A. Coronavirus: proteomics analysis of chicken kidney tissue infected with variant 2 (IS-1494)-like avian infectious bronchitis virus. Arch Virol 2020; 166:101-113. [PMID: 33083914 PMCID: PMC7574675 DOI: 10.1007/s00705-020-04845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Avian infectious bronchitis virus is one of the most important gammacoronaviruses, which causes a highly contagious disease. In this study, we investigated changes in the proteome of kidney tissue of specific-pathogen-free (SPF) chickens that were infected with an isolate of the nephrotropic variant 2 genotype (IS/1494/06) of avian coronavirus. Twenty 1-day-old SPF White Leghorn chickens were randomly divided into two groups, each comprising 10 chickens, which were kept in separate positive-pressure isolators. Chickens in group A served as a virus-free control group up to the end of the experiment, whereas chickens in group B were inoculated with 0.1 ml of 104.5 EID50 of the IBV/chicken/Iran/UTIVO-C/2014 isolate of IBV, and kidney tissue samples were collected at 2 and 7 days post-inoculation (dpi) from both groups. Sequencing of five protein spots at 2 dpi and 22 spots at 7 dpi that showed differential expression by two-dimensional electrophoresis (2DE) along with fold change greater than 2 was done by MS-MALDI/TOF/TOF. Furthermore, the corresponding protein-protein interaction (PPI) networks at 2 and 7 dpi were identified to develop a detailed understanding of the mechanism of molecular pathogenesis. Topological graph analysis of this undirected PPI network revealed the effect of 10 genes in the 2 dpi PPI network and nine genes in the 7 dpi PPI network during virus pathogenesis. Proteins that were found by 2DE analysis and MS/TOF-TOF mass spectrometry to be down- or upregulated were subjected to PPI network analysis to identify interactions with other cellular components. The results show that cellular metabolism was altered due to viral infection. Additionally, multifunctional heat shock proteins with a significant role in host cell survival may be employed circuitously by the virus to reach its target. The data from this study suggest that the process of pathogenesis that occurs during avian coronavirus infection involves the regulation of vital cellular processes and the gradual disruption of critical cellular functions.
Collapse
Affiliation(s)
- Hamed Abdollahi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,National Reference Laboratory, Diagnosis & Applied Studies Center, Iran Veterinary Organization, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hossein Maghsoudloo
- National Reference Laboratory, Diagnosis & Applied Studies Center, Iran Veterinary Organization, Tehran, Iran
| | | | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Islamic Azad University, Alborz, Iran
| | - Abbas Barin
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
M. Najimudeen S, H. Hassan MS, C. Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens 2020; 9:pathogens9100779. [PMID: 32987684 PMCID: PMC7598688 DOI: 10.3390/pathogens9100779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.
Collapse
|
40
|
The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes (Basel) 2020; 11:genes11080918. [PMID: 32785186 PMCID: PMC7464837 DOI: 10.3390/genes11080918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.
Collapse
|
41
|
Zhu P, Lv C, Fang C, Peng X, Sheng H, Xiao P, Kumar Ojha N, Yan Y, Liao M, Zhou J. Heat Shock Protein Member 8 Is an Attachment Factor for Infectious Bronchitis Virus. Front Microbiol 2020; 11:1630. [PMID: 32765462 PMCID: PMC7381282 DOI: 10.3389/fmicb.2020.01630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19–272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chenfei Lv
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chengxiu Fang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Xing Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Hao Sheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Peng Xiao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Nishant Kumar Ojha
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Abstract
Since the end of 2019, the global COVID-19 outbreak has once again made coronaviruses a hot topic. Vaccines are hoped to be an effective way to stop the spread of the virus. However, there are no clinically approved vaccines available for coronavirus infections. Reverse genetics technology can realize the operation of RNA virus genomes at the DNA level and provide new ideas and strategies for the development of new vaccines. In this review, we systematically describe the role of reverse genetics technology in studying the effects of coronavirus proteins on viral virulence and innate immunity, cell and tissue tropism and antiviral drug screening. An efficient reverse genetics platform is useful for obtaining the ideal attenuated strain to prepare an attenuated live vaccine.
Collapse
|
43
|
Anjum FR, Anam S, Rahman SU, Ali S, Aslam MA, Rizvi F, Asif M, Abdullah RM, Abaidullah M, Shakir MZ, Goraya MU. Anti-chicken type I IFN countermeasures by major avian RNA viruses. Virus Res 2020; 286:198061. [PMID: 32561378 DOI: 10.1016/j.virusres.2020.198061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken innate immune system and are considered potent antiviral agents against avian viral pathogens. Chicken type I IFNs are divided into three subtypes namely, chIFN-α, chIFN-β, and chIFN-κ. Viral pathogen-associated molecular patterns (PAMPs) recognized by their corresponding specific PRRs (pattern recognition receptors) induce the expression of chicken type I IFNs. Interaction of chicken type I IFNs with their subsequent IFN receptors results in the activation of the JAK-STAT pathway, which in turn activates hundreds of chicken interferon-stimulated genes (chISGs). These chISGs establish an antiviral state in neighboring cells and prevent the replication and dissemination of viruses within chicken cells. Chicken type I IFNs activate different pathways that constitute major antiviral innate defense mechanisms in chickens. However, evolutionary mechanisms in viruses have made them resistant to these antiviral players by manipulating host innate immune pathways. This review focuses on the underlying molecular mechanisms employed by avian RNA viruses to counteract chicken type I IFNs and chISGs through different viral proteins. This may help to understand host-pathogen interactions and the development of novel therapeutic strategies to control viral infections in poultry.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Farzana Rizvi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | |
Collapse
|
44
|
Regulation of Immunity-Related Genes by Infectious Bronchitis Virus Challenge in Spleen of Laying Chickens. Viral Immunol 2020; 33:413-420. [DOI: 10.1089/vim.2019.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Porcine Epidemic Diarrhea Virus nsp15 Antagonizes Interferon Signaling by RNA Degradation of TBK1 and IRF3. Viruses 2020; 12:v12060599. [PMID: 32486349 PMCID: PMC7354440 DOI: 10.3390/v12060599] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. The type I interferon (IFN-I or IFN α/β) is a key mediator of innate antiviral response during virus infection. Different antagonistic strategies have been identified and determined as to how PEDV infection inhibits the host's IFN responses to escape the host innate immune pathway, but the pathogenic mechanisms of PEDV infection are not fully elucidated. Our preliminary results revealed that endogenous TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), the key components in the IFN signaling pathway were downregulated in PEDV infected IPEC-J2 cells by iTRAQ analysis. In this study, we screened nsp15 as the most important viral encoded protein involved in TBK1 and IRF3 reduction. Endoribonuclease (EndoU) activity has been well determined for coronavirus nsp15. Three residues (H226, H241, and K282) of PEDV nsp15 were identified as critical amino acids for PEDV EndoU but not D265, which was not well correlated with published results of other coronaviruses, such as severe acute respiratory syndrome virus (SARS-CoV). Moreover, PEDV nsp15 can directly degrade the RNA levels of TBK1 and IRF3 dependent on its EndoU activity to suppress IFN production and constrain the induction of IFN stimulated genes (ISGs), by which PEDV antagonizes the host innate response to facilitate its replication. Collectively, these results have confirmed that PEDV nsp15 was capable of subverting the IFN response by the RNA degradation of TBK1 and IRF3.
Collapse
|
46
|
Infectious Bronchitis Virus Regulates Cellular Stress Granule Signaling. Viruses 2020; 12:v12050536. [PMID: 32422883 PMCID: PMC7291021 DOI: 10.3390/v12050536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.
Collapse
|
47
|
Silva APD, Hauck R, Kern C, Wang Y, Zhou H, Gallardo RA. Effects of Chicken MHC Haplotype on Resistance to Distantly Related Infectious Bronchitis Viruses. Avian Dis 2020; 63:310-317. [PMID: 31251532 DOI: 10.1637/11989-103118-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 11/05/2022]
Abstract
The major histocompatibility complex (MHC) B locus of chickens has been associated with resistance to different viral diseases. We previously provided evidence that chicken lines expressing MHC haplotypes B2 and B19 exhibit different resistance to a challenge with infectious bronchitis virus (IBV) Massachusetts 41 (M41). In the current study, we attempted to determine if those differences were true for genetically diverse IB viruses, i.e., IBV M41 and Arkansas-Delmarva poultry industry (ArkDPI). Clinical, pathologic, molecular, and immunologic outcomes were compared. Our results showed subtle clinical and pathologic differences between the two MHC chicken lines tested. Clinical differences were observed in respiratory signs at 2 days postinfection (dpi) in M41-infected birds. Pathologic differences were detected in viral load at 2 dpi in M41-infected birds and in tracheal epithelial thickness at 6 dpi in ArkDPI-infected birds. Substantial differences were observed in antibody responses at 14 dpi. The transcriptome analysis showed that B19 chickens highly expressed genes related to inflammatory and innate immune responses. This increased immune gene expression detected in B19 birds at 6 dpi did not lead to enhanced antibody production at 14 dpi. On the other hand, B2-haplotype chickens highly expressed genes related to cell responses, suggesting that B2 is able to diligently control the infection. Although not identical, genes triggered by M41 and ArkDPI are part of communal pathways and suggest similar immune and cell responses to both IBV genotypes. This work provides modest evidence for differential resistance to IBV by chickens displaying different MHC haplotypes as well as insights into the expression of a variety of genes after IBV replication in the host.
Collapse
Affiliation(s)
- Ana P da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, 4009 VM3B, University of California-Davis, Davis, CA 95616
| | - Rüdiger Hauck
- Department of Pathobiology and Department of Poultry Science, Auburn University. Auburn AL 36849
| | - Colin Kern
- Department of Animal Science, School of Agriculture, University of California-Davis, Davis, CA 95616
| | - Ying Wang
- Department of Animal Science, School of Agriculture, University of California-Davis, Davis, CA 95616
| | - Huaijun Zhou
- Department of Animal Science, School of Agriculture, University of California-Davis, Davis, CA 95616
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, 4009 VM3B, University of California-Davis, Davis, CA 95616,
| |
Collapse
|
48
|
Zhao X, Jiang Y, Cheng X, Yu Y, Gao M, Zhou S. Pathogenicity of a QX-like strain of infectious bronchitis virus and effects of accessory proteins 3a and 3b in chickens. Vet Microbiol 2019; 239:108464. [PMID: 31767070 DOI: 10.1016/j.vetmic.2019.108464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
QX-like genotype infectious bronchitis virus (IBV) has become prevalent in recent years. Few studies have reported the effects of accessory proteins 3a and 3b on pathogenicity in vivo. We developed a reverse genetics system to manipulate the genome of a QX-like IBV strain IBYZ. Recombinant viruses rIBYZ-ScAUG3a, rIBYZ-ScAUG3b and rIBYZ-ScAUG3ab were generated. These viruses do not express the accessory proteins 3a, 3b, or 3ab due to a mutation in the AUG start codons. In SPF embryonated eggs, the recombinant viruses grew to the same viral load as parental strain rIBYZ. The pathogenicity of rIBYZ and recombinant viruses was examined in 1-day-old SPF chickens. In SPF chickens, rIBYZ-ScAUG3a had a lower mortality than rIBYZ. The clinical signs, gross lesions and histopathological changes of rIBYZ-ScAUG3a group were comparable to those of rIBYZ group. However, viral distribution and viral shedding showed that the viral loads of rIBYZ-ScAUG3a were lower than those of rIBYZ in tissue samples and swab specimens. The rIBYZ-ScAUG3b and rIBYZ-ScAUG3ab strains showed attenuated pathogenicity compared to rIBYZ, as no chickens died and all the parameters tested were considerably low. This study indicates that the absence of accessory proteins 3a and 3b in IBV lead to attenuated pathogenicity in chickens. Protein 3b has a greater effect on pathogenicity than protein 3a. These findings may be used in vaccination trials for the development of a new live-attenuated vaccine.
Collapse
Affiliation(s)
- Xiumei Zhao
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Yi Jiang
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Xu Cheng
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Sheng Zhou
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China.
| |
Collapse
|
49
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
50
|
Genome Organization of Canada Goose Coronavirus, A Novel Species Identified in a Mass Die-off of Canada Geese. Sci Rep 2019; 9:5954. [PMID: 30976080 PMCID: PMC6459860 DOI: 10.1038/s41598-019-42355-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/25/2019] [Indexed: 11/08/2022] Open
Abstract
The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-off of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab.
Collapse
|