1
|
Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem Cell-Based Approaches in Parkinson's Disease Research. Int J Stem Cells 2025; 18:21-36. [PMID: 38449089 PMCID: PMC11867902 DOI: 10.15283/ijsc23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of midbrain dopaminergic neurons, leading to motor symptoms. While current treatments provide limited relief, they don't alter disease progression. Stem cell technology, involving patient-specific stem cell-derived neurons, offers a promising avenue for research and personalized regenerative therapies. This article reviews the potential of stem cell-based research in PD, summarizing ongoing efforts, their limitations, and introducing innovative research models. The integration of stem cell technology and advanced models promises to enhance our understanding and treatment strategies for PD.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Lee B, Choi HN, Che YH, Ko M, Seong HM, Jo MG, Kim SH, Song C, Yoon S, Choi J, Kim JH, Kim M, Lee MY, Park SW, Kim HJ, Kim SJ, Moon DS, Lee S, Park JH, Yeo SG, Everson RG, Kim YJ, Hong KW, Roh IS, Lyoo KS, Kim YJ, Yun SP. SARS-CoV-2 infection exacerbates the cellular pathology of Parkinson's disease in human dopaminergic neurons and a mouse model. Cell Rep Med 2024; 5:101570. [PMID: 38749422 PMCID: PMC11148862 DOI: 10.1016/j.xcrm.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.
Collapse
Affiliation(s)
- Bina Lee
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Hyun Che
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myungjun Ko
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hye Min Seong
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Gi Jo
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chieun Song
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, BK21 FOUR ERGID, Vessel-Organ Interaction Research Center (MRC), Kyungpook National University, Daegu 4156, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Do Sik Moon
- Department of Pulmonology and Critical Care Medicine, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Research Center, TissueIn, Inc., Seoul 06158, Republic of Korea
| | - Jae-Hoon Park
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Geun Yeo
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Young Jin Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyung-Wook Hong
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - In-Soon Roh
- Division of Foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Kwang-Soo Lyoo
- Department of Veterinary Nursing, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Research Center, TissueIn, Inc., Seoul 06158, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
3
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Liu T, Li Y, Wang L, Zhang X, Zhang Y, Gai X, Chen L, Liu L, Yang L, Wang B. Network pharmacology-based exploration identified the antiviral efficacy of Quercetin isolated from mulberry leaves against enterovirus 71 via the NF-κB signaling pathway. Front Pharmacol 2023; 14:1260288. [PMID: 37795035 PMCID: PMC10546324 DOI: 10.3389/fphar.2023.1260288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Mulberry leaf (ML) is known for its antibacterial and anti-inflammatory properties, historically documented in "Shen Nong's Materia Medica". This study aimed to investigate the effects of ML on enterovirus 71 (EV71) using network pharmacology, molecular docking, and in vitro experiments. Methods: We successfully pinpointed shared targets between mulberry leaves (ML) and the EV71 virus by leveraging online databases. Our investigation delved into the interaction among these identified targets, leading to the identification of pivotal components within ML that possess potent anti-EV71 properties. The ability of these components to bind to the targets was verified by molecular docking. Moreover, bioinformatics predictions were used to identify the signaling pathways involved. Finally, the mechanism behind its anti-EV71 action was confirmed through in vitro experiments. Results: Our investigation uncovered 25 active components in ML that targeted 231 specific genes. Of these genes, 29 correlated with the targets of EV71. Quercetin, a major ingredient in ML, was associated with 25 of these genes. According to the molecular docking results, Quercetin has a high binding affinity to the targets of ML and EV71. According to the KEGG pathway analysis, the antiviral effect of Quercetin against EV71 was found to be closely related to the NF-κB signaling pathway. The results of immunofluorescence and Western blotting showed that Quercetin significantly reduced the expression levels of VP1, TNF-α, and IL-1β in EV71-infected human rhabdomyosarcoma cells. The phosphorylation level of NF-κB p65 was reduced, and the activation of NF-κB signaling pathway was suppressed by Quercetin. Furthermore, our results showed that Quercetin downregulated the expression of JNK, ERK, and p38 and their phosphorylation levels due to EV71 infection. Conclusion: With these findings in mind, we can conclude that inhibiting the NF-κB signaling pathway is a critical mechanism through which Quercetin exerts its anti-EV71 effectiveness.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lumeng Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| | | | - Yuxuan Zhang
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Xuejie Gai
- The Affiliated First Hospital, Jiamusi University, Jiamusi, China
| | - Li Chen
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian, China
| | - Baixin Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
6
|
Marshall KL, Rajbhandari L, Venkatesan A, Maragakis NJ, Farah MH. Enhanced axonal regeneration of ALS patient iPSC-derived motor neurons harboring SOD1 A4V mutation. Sci Rep 2023; 13:5597. [PMID: 37020097 PMCID: PMC10076424 DOI: 10.1038/s41598-023-31720-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1A4V mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1+/A4V hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.
Collapse
Affiliation(s)
- Katherine L Marshall
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Labchan Rajbhandari
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Arun Venkatesan
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Nicholas J Maragakis
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Zhou Y, Wang Q, Ying Q, Zhang X, Chen K, Ye T, Li G. Effects of Oncolytic Vaccinia Viruses Harboring Different Marine Lectins on Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24043823. [PMID: 36835232 PMCID: PMC9965933 DOI: 10.3390/ijms24043823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Oncolytic viruses are being developed as novel strategies for cancer therapy. Our previous studies have shown that vaccinia viruses armed with marine lectins improved the antitumor efficacy in diverse cancer types. The objective of this study was to assess the cytotoxic effects of oncoVV harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) on HCC. Our data revealed that the effects of recombinant viruses on Hep-3B cells were oncoVV-AVL > oncoVV-APL > oncoVV-TTL > oncoVV-WCL; oncoVV-AVL showed stronger cytotoxicity than oncoVV-APL, while oncoVV-TTL/WCL had no effect on cell killing in Huh7 cells, and PLC/PRF/5 cells exhibited sensitivity to oncoVV-AVL/TTL but not to oncoVV-APL/WCL. The cytotoxicity of oncoVV-lectins could be enhanced by apoptosis and replication in a cell-type-dependent manner. Further research revealed that AVL may mediate various pathways, including MAPK, Hippo, PI3K, lipid metabolism, and androgen pathways through AMPK crosstalk, to promote oncoVV replication in HCC in a cell-dependent manner. OncoVV-APL replication could be affected by AMPK/Hippo/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/PI3K/androgen pathways in Huh7 cells, and AMPK/Hippo pathways in PLC/PRF/5 cells. OncoVV-WCL replication was also multi-mechanistic, which could be affected by AMPK/JNK/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/androgen pathways in Huh7 cells, and AMPK/JNK/Hippo pathways in PLC/PRF/5 cells. In addition, AMPK and lipid metabolism pathways may play critical roles in oncoVV-TTL replication in Hep-3B cells, and oncoVV-TTL replication in Huh7 cells may depend on AMPK/PI3K/androgen pathways. This study provides evidence for the application of oncolytic vaccinia viruses in hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Ting Ye
- Correspondence: (T.Y.); (G.L.)
| | | |
Collapse
|
8
|
Lyoo KS, Kim HM, Lee B, Che YH, Kim SJ, Song D, Hwang W, Lee S, Park JH, Na W, Yun SP, Kim YJ. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerg Microbes Infect 2022; 11:406-411. [PMID: 34962444 PMCID: PMC8803065 DOI: 10.1080/22221751.2021.2024095] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/25/2021] [Indexed: 12/17/2022]
Abstract
Patients with recent pandemic coronavirus disease 19 (COVID-19) complain of neurological abnormalities in sensory functions such as smell and taste in the early stages of infection. Determining the cellular and molecular mechanism of sensory impairment is critical to understand the pathogenesis of clinical manifestations, as well as in setting therapeutic targets for sequelae and recurrence. The absence of studies utilizing proper models of human peripheral nerve hampers an understanding of COVID-19 pathogenesis. Here, we report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects human peripheral sensory neurons, leading to molecular pathogenesis for chemosensory impairments. An in vitro system utilizing human embryonic stem cell (hESC)-derived peripheral neurons was used to model the cellular and molecular pathologies responsible for symptoms that most COVID-19 patients experience early in infection or may develop as sequelae. Peripheral neurons differentiated from hESCs expressed viral entry factor ACE2, and were directly infected with SARS-CoV-2 via ACE2. Human peripheral neurons infected with SARS-CoV-2 exhibited impaired molecular features of chemosensory function associated with abnormalities in sensory neurons of the olfactory or gustatory organs. Our results provide new insights into the pathogenesis of chemosensory dysfunction in patients with COVID-19.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Korea
| | - Hyeon Myeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Young Hyun Che
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seong-Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Daesub Song
- Department of Pharmacy, Korea University, Sejong, Korea
| | - Woochang Hwang
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Hanyang University, Seoul, Korea
| | - Sun Lee
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Hoon Park
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Woonsung Na
- Department of Veterinary Virology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
9
|
Zheng X, Xu W, Ying Q, Ni J, Jia X, Zhou Y, Ye T, Li G, Chen K. Oncolytic Vaccinia Virus Carrying Aphrocallistes vastus Lectin (oncoVV-AVL) Enhances Inflammatory Response in Hepatocellular Carcinoma Cells. Mar Drugs 2022; 20:667. [PMID: 36354990 PMCID: PMC9696330 DOI: 10.3390/md20110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/11/2024] Open
Abstract
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin derived from sponges. Our previous study demonstrated that oncolytic vaccinia virus carrying AVL (oncoVV-AVL) significantly enhanced the cytotoxicity of oncoVV in cervical cancer, colorectal cancer and hepatocellular carcinoma through the activation of Ras/ERK, MAPK/ERK and PI3K/Akt signaling pathways. In this study, the inflammatory response induced by oncoVV-AVL in a hepatocellular carcinoma cell (HCC) model was investigated. The results showed that oncoVV-AVL increased the levels of inflammatory cytokines including IL-6, IL-8 and TNF-α through activating the AP-1 signaling pathway in HCC. This study provides novel insights into the utilization of lectin AVL in the field of cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tch University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tch University, Hangzhou 310018, China
| |
Collapse
|
10
|
Wu L, Tian B, Wang M, Cheng A, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Huang J, Zhao X, Chen S, Zhang S, Ou X, Mao S, Gao Q, Sun D, Yu Y, Zhang L, Pan L. Duck Plague Virus Negatively Regulates IFN Signaling to Promote Virus Proliferation via JNK Signaling Pathway. Front Immunol 2022; 13:935454. [PMID: 35837399 PMCID: PMC9275408 DOI: 10.3389/fimmu.2022.935454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Duck plague virus (DPV), a member of the alphaherpesvirus subfamily, can cause severe damage and immunosuppression in ducks and geese in China. Since lacking an available cell model, the antiviral signal transduction pathways induction and regulation mechanisms related to DPV infection in duck cells are still enigmatic. Our previous study developed a monocyte/macrophages cell model, which has been applied to study innate immunity with DPV. In the present study, we compared and analyzed transcriptome associated with the DPV infection of CHv (virulent strain) and CHa (avirulent strain) at 48hpi based on the duck monocyte/macrophages cell model and RNA-seq technology. Differentially expressed genes (DEGs) analysis showed 2,909 and 2,438 genes altered in CHv and CHa infected cells compared with control cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in biological processes such as metabolic pathways, viral infectious diseases, immune system, and signal transduction. The CHv and CHa virus differentially regulated MAPK, NF-κB, and IFN signaling pathways based on transcriptome sequencing data and RT-qPCR results. The JNK inhibitor SP600125 enhanced the IFN signaling, but potentially reduced the VSV and DPV titers in the cell culture supernatant, indicating that JNK negatively regulates the IFN pathway and the inflammatory pathway to promote virus proliferation. The research results may provide promising information to understand the pathogenesis of DPV and provide a novel mechanism by which DPV modulates antiviral signaling and facilitate virus proliferation through hijacking the JNK pathway, which provides a new means for the prevention and control of DPV infection.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Mingshu Wang,
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - LeiCHang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
11
|
Whitford AL, Clinton CA, Kennedy EBL, Dochnal SA, Suzich JB, Cliffe AR. Ex Vivo Herpes Simplex Virus Reactivation Involves a Dual Leucine Zipper Kinase-Dependent Wave of Lytic Gene Expression That Is Independent of Histone Demethylase Activity and Viral Genome Synthesis. J Virol 2022; 96:e0047522. [PMID: 35604215 PMCID: PMC9215252 DOI: 10.1128/jvi.00475-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) maintains a lifelong latent infection in neurons and periodically reactivates, resulting in the production of infectious virus. The exact cellular pathways that induce reactivation are not understood. In primary neuronal models of HSV latency, the cellular protein dual leucine zipper kinase (DLK) has been found to initiate a wave of viral gene expression known as phase I. Phase I occurs independently of both viral DNA replication and the activities of histone demethylase enzymes required to remove repressive heterochromatin modifications associated with the viral genome. In this study, we investigated whether phase I-like gene expression occurs in ganglia reactivated from infected mice. Using the combined trigger of explant-induced axotomy and inhibition of phosphatidylinositide 3-kinase (PI3K) signaling, we found that HSV lytic gene expression was induced rapidly from both sensory and sympathetic neurons. Ex vivo reactivation involved a wave of viral late gene expression that occurred independently of viral genome synthesis and histone demethylase activity and preceded the detection of infectious virus. Importantly, we found that DLK was required for the initial induction of lytic gene expression. These data confirm the essential role of DLK in inducing HSV-1 gene expression from the heterochromatin-associated genome and further demonstrate that HSV-1 gene expression during reactivation occurs via mechanisms that are distinct from lytic replication. IMPORTANCE Reactivation of herpes simplex virus from a latent infection is associated with clinical disease. To develop new therapeutics that prevent reactivation, it is important to understand how viral gene expression initiates following a reactivation stimulus. Dual leucine zipper kinase (DLK) is a cellular protein that has previously been found to be required for HSV reactivation from sympathetic neurons in vitro. Here, we show that DLK is essential for reactivation from sensory ganglia isolated from infected mice. Furthermore, we show that DLK-dependent gene expression ex vivo occurs via mechanisms that are distinct from production replication, namely, lytic gene expression that is independent of viral DNA replication and histone demethylase activity. The identification of a DLK-dependent wave of lytic gene expression from sensory ganglia will ultimately permit the development of novel therapeutics that target lytic gene expression and prevent the earliest stage of reactivation.
Collapse
Affiliation(s)
- Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Corinne A. Clinton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - E. B. Lane Kennedy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jon B. Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Hepatocellular Carcinoma Cells. Mar Drugs 2022; 20:md20060378. [PMID: 35736181 PMCID: PMC9230886 DOI: 10.3390/md20060378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Oncolytic vaccinia virus has been developed as a novel cancer therapeutic drug in recent years. Our previous studies demonstrated that the antitumor effect of oncolytic vaccina virus harboring Aphrocallistes vastus lectin (oncoVV-AVL) was significantly enhanced in several cancer cells. In the present study, we investigated the underlying mechanisms of AVL that affect virus replication and promote the antitumor efficacy of oncolytic virus in hepatocellular carcinoma (HCC). Our results showed that oncoVV-AVL markedly exhibited antitumor effects in both hepatocellular carcinoma cell lines and a xenograft mouse model. Further investigation illustrated that oncoVV-AVL could activate tumor immunity by upregulating the expression of type I interferons and enhance virus replication by inhibiting ISRE mediated viral defense response. In addition, we inferred that AVL promoted the ability of virus replication by regulating the PI3K/Akt, MAPK/ERK, and Hippo/MST pathways through cross-talk Raf-1, as well as metabolism-related pathways. These findings provide a novel perspective for the exploitation of marine lectins in oncolytic therapy.
Collapse
|
13
|
Goldstein RS, Kinchington PR. Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol 2021; 438:103-134. [PMID: 34904194 DOI: 10.1007/82_2021_244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.
Collapse
Affiliation(s)
| | - Paul R Kinchington
- Department of Ophthalmology, and Department of Molecular Microbiology and Genetics, University of Pittsburgh, EEI 1020, 203 Lothrop Street, Pittsburgh, PA, 156213, USA.
| |
Collapse
|
14
|
Abstract
Varicella-zoster virus (VZV) maintains lifelong latency in neurons following initial infection and can subsequently be reactivated to result in herpes zoster or severe neurological manifestations such as encephalitis. Mechanisms of VZV neuropathogenesis have been challenging to study due to the strict human tropism of the virus. Although neuronal entry mediators of other herpesviruses, including herpes simplex virus, have been identified, little is known regarding how VZV enters neurons. Here, we utilize a human stem cell-based neuronal model to characterize cellular factors that mediate entry. Through transcriptional profiling of infected cells, we identify the cell adhesion molecule nectin-1 as a candidate mediator of VZV entry. Nectin-1 is highly expressed in the cell bodies and axons of neurons. Either knockdown of endogenous nectin-1 or incubation with soluble forms of nectin-1 produced in mammalian cells results in a marked decrease in infectivity of neurons. Notably, while addition of soluble nectin-1 during viral infection inhibits infectivity, addition after infection has no effect on infectivity. Ectopic expression of human nectin-1 in a cell line resistant to productive VZV infection confers susceptibility to infection. In summary, we have identified nectin-1 as a neuronal entry mediator of VZV. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox, gains access to neurons during primary infection where it resides lifelong, and can later be reactivated. Reactivation is associated with shingles and postherpetic neuralgia, as well as with severe neurologic complications, including vasculitis and encephalitis. Although the varicella vaccine substantially decreases morbidity and mortality associated with primary infection, the vaccine cannot prevent the development of neuronal latency, and vaccinated populations are still at risk for reactivation. Furthermore, immunocompromised individuals are at higher risk for VZV reactivation and associated complications. Little is known regarding how VZV enters neurons. Here, we identify nectin-1 as an entry mediator of VZV in human neurons. Identification of nectin-1 as a neuronal VZV entry mediator could lead to improved treatments and preventative measures to reduce VZV related morbidity and mortality.
Collapse
|
15
|
The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci 2021; 22:ijms22179640. [PMID: 34502556 PMCID: PMC8431791 DOI: 10.3390/ijms22179640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are among the most crucial mitogen-activated protein kinases (MAPKs) and regulate various cellular processes, including cell proliferation, apoptosis, autophagy, and inflammation. Microbes heavily rely on cellular signaling pathways for their effective replication; hence, JNKs may play important roles in infectious diseases. In this review, we describe the basic signaling properties of MAPKs and JNKs in apoptosis, autophagy, and inflammasome activation. Furthermore, we discuss the roles of JNKs in various infectious diseases induced by viruses, bacteria, fungi, and parasites, as well as their potential to serve as targets for the development of therapeutic agents for infectious diseases. We expect this review to expand our understanding of the JNK signaling pathway’s role in infectious diseases and provide important clues for the prevention and treatment of infectious diseases.
Collapse
|
16
|
Harschnitz O, Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 2021; 21:441-453. [PMID: 33398129 PMCID: PMC9653304 DOI: 10.1038/s41577-020-00474-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Oliver Harschnitz
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA,
| | - Lorenz Studer
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA
| |
Collapse
|
17
|
Abstract
Varicella-zoster virus (VZV) causes varicella (chickenpox) as primary infection, and latently infects neuronal cells in the dorsal root ganglia (DRG). Reactivation of VZV from DRG results in herpes zoster, often decades later. VZV is the only airborne human herpesvirus and the only herpesvirus whose symptoms (both varicella and herpes zoster) can be prevented by vaccination. Herpes zoster is significantly more common in patients with bone marrow transplants, hematological malignancies, oral Jak inhibitors, SLE, and the elderly. The brand new subunit vaccine, ShingrixⓇ, for preventing herpes zoster is a mixture of adjuvant and recombinant VZV glycoprotein gE, which is highly effective in preventing zoster even in elderly people. In this review, the author discuss the onset mechanism of zoster from the clinical findings and summarize the result of clinical trials of the subunit vaccine.
Collapse
|
18
|
Ouwendijk WJD, Depledge DP, Rajbhandari L, Lenac Rovis T, Jonjic S, Breuer J, Venkatesan A, Verjans GMGM, Sadaoka T. Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency. Nat Commun 2020; 11:6324. [PMID: 33303747 PMCID: PMC7730162 DOI: 10.1038/s41467-020-20031-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Varicella-zoster virus (VZV) establishes lifelong neuronal latency in most humans world-wide, reactivating in one-third to cause herpes zoster and occasionally chronic pain. How VZV establishes, maintains and reactivates from latency is largely unknown. VZV transcription during latency is restricted to the latency-associated transcript (VLT) and RNA 63 (encoding ORF63) in naturally VZV-infected human trigeminal ganglia (TG). While significantly more abundant, VLT levels positively correlated with RNA 63 suggesting co-regulated transcription during latency. Here, we identify VLT-ORF63 fusion transcripts and confirm VLT-ORF63, but not RNA 63, expression in human TG neurons. During in vitro latency, VLT is transcribed, whereas VLT-ORF63 expression is induced by reactivation stimuli. One isoform of VLT-ORF63, encoding a fusion protein combining VLT and ORF63 proteins, induces broad viral gene transcription. Collectively, our findings show that VZV expresses a unique set of VLT-ORF63 transcripts, potentially involved in the transition from latency to lytic VZV infection.
Collapse
Affiliation(s)
- Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
19
|
Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. PLoS One 2020; 15:e0232635. [PMID: 32369499 PMCID: PMC7199950 DOI: 10.1371/journal.pone.0232635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
c-Jun is a major component of the AP-1 transactivator complex. In this report, we demonstrated that AP-1 was activated by the expression of UL42, a human cytomegalovirus-encoded membrane protein that has two PPXY (PY) motifs and a C-terminal transmembrane domain (TMD). Although UL42 interacts with Itch, an ubiquitin E3 ligase, through the PY motifs, UL42 phosphorylated c-Jun and c-Jun N-terminal kinase (JNK) in the absence of any interaction with Itch. Experiments using mutated versions of UL42 suggest the importance of the carboxyl half (a.a. 52–124) of UL42 for the activation of the JNK signaling, while C-terminal TMD alone is not sufficient. Thus, we hypothesize that UL42 plays a role in the activation of JNK signaling in HCMV-infected cells. (118 words).
Collapse
|
20
|
Knysh SV, Markelova EV, Simakova AI, Karaulov AV. Neuropeptide system parameters in acute herpes zoster. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-tfo-1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuropeptides comprise an important part in the nervous system interacting with endocrine and immune systems. Peptide regulators are responsible for the continuity of communicating elements, which support homeostasis, however, despite abundant research examining neuropeptides, not all specific mechanisms and features of interacting proteins with cells and immune components have been uncovered. Objective: to perform a comprehensive assessment of neuropeptide system in patients with herpes zoster. Materials and methods: 106 in-hospital patients were examined diagnosed with herpes zoster within 2016–2019 period. Control group consisted of 30 healthy age- and sex-matched volunteers. Blood serum was collected after verifying diagnosis on day 1. After discharge, patients were monitored for signs of pain syndrome and overall state within 3 months. It allowed to divide patients into 3 groups retrospectively. Group 1 — patients with herpes zoster, accompanied by mild or moderate pain syndrome; group 2 — patients with herpes zoster, accompanied by severe pain; group 3 — patients with herpes zoster, complicated by postherpetic neuralgia. Level of serum protein s100B, myelin basic protein, nerve growth factor, brain-derived neurotrophic factor, neuron specific enolase was measured by using specific reagents purchased from “RD Diagnostics Inc.” (США). Results. it was found that level of serum protein S100B in all groups was significantly increased compared to control group, showing no inter-group differences. Amount of myelin basic protein in all study groups vs. control was significantly higher. Moreover, level of these parameters in group 2 vs. group 1 and 3 was significantly elevated. In addition, level of nerve growth factor was significantly increased in group 1 vs. groups 2 and 3, whereas in group 3 it was significantly lower than in control and group 2. Brain-derived neurotrophic factor was significantly decreased in all the study groups compared to control, showing no significant intergroup differences. Level of neuron-specific enolase was significantly increased in group 3 vs. control as well as group 1 and 2. The data obtained allowed to identify two parameters for assessing a risk of postherpetic neuralgia in acute herpes zoster, as well as provided deeper insights into the pathogenesis of neuroimmune disorders accompanying herpes zoster.
Collapse
|
21
|
Wang S, Li H, Weng S, Li C, He J. White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication. iScience 2019; 23:100752. [PMID: 31884168 PMCID: PMC6941876 DOI: 10.1016/j.isci.2019.100752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jianguo He
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
22
|
Laemmle L, Goldstein RS, Kinchington PR. Modeling Varicella Zoster Virus Persistence and Reactivation - Closer to Resolving a Perplexing Persistent State. Front Microbiol 2019; 10:1634. [PMID: 31396173 PMCID: PMC6667558 DOI: 10.3389/fmicb.2019.01634] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
The latent state of the human herpesvirus varicella zoster virus (VZV) has remained enigmatic and controversial. While it is well substantiated that VZV persistence is established in neurons after the primary infection (varicella or chickenpox), we know little of the types of neurons harboring latent virus genomes, if all can potentially reactivate, what exactly drives the reactivation process, and the role of immunity in the control of latency. Viral gene expression during latency has been particularly difficult to resolve, although very recent advances indicate that it is more restrictive than was once thought. We do not yet understand how genes expressed in latency function in the maintenance and reactivation processes. Model systems of latency are needed to pursue these questions. This has been especially challenging for VZV because the development of in vivo models of VZV infection has proven difficult. Given that up to one third of the population will clinically reactivate VZV to develop herpes zoster (shingles) and suffer from its common long term problematic sequelae, there is still a need for both in vivo and in vitro model systems. This review will summarize the evolution of models of VZV persistence and address insights that have arisen from the establishment of new in vitro human neuron culture systems that not only harbor a latent state, but permit experimental reactivation and renewed virus production. These models will be discussed in light of the recent data gleaned from the study of VZV latency in human cadaver ganglia.
Collapse
Affiliation(s)
- Lillian Laemmle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A. Current In Vitro Models to Study Varicella Zoster Virus Latency and Reactivation. Viruses 2019; 11:v11020103. [PMID: 30691086 PMCID: PMC6409813 DOI: 10.3390/v11020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Varicella zoster virus (VZV) is a highly prevalent human pathogen that causes varicella (chicken pox) during primary infection and establishes latency in peripheral neurons. Symptomatic reactivation often presents as zoster (shingles), but it has also been linked to life-threatening diseases such as encephalitis, vasculopathy and meningitis. Zoster may be followed by postherpetic neuralgia, neuropathic pain lasting after resolution of the rash. The mechanisms of varicella zoster virus (VZV) latency and reactivation are not well characterized. This is in part due to the human-specific nature of VZV that precludes the use of most animal and animal-derived neuronal models. Recently, in vitro models of VZV latency and reactivation using human neurons derived from stem cells have been established facilitating an understanding of the mechanisms leading to VZV latency and reactivation. From the models, c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase (PI3K) and nerve growth factor (NGF) have all been implicated as potential modulators of VZV latency/reactivation. Additionally, it was shown that the vaccine-strain of VZV is impaired for reactivation. These models may also aid in the generation of prophylactic and therapeutic strategies to treat VZV-associated pathologies. This review summarizes and analyzes the current human neuronal models used to study VZV latency and reactivation, and provides some strategies for their improvement.
Collapse
Affiliation(s)
- Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Shuyong Zhu
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany.
| | - Catherine M Pearce
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
24
|
Wei W, Kong W. Identification of key genes and signaling pathways during Sendai virus infection in vitro. Braz J Microbiol 2019; 50:13-22. [PMID: 30637656 DOI: 10.1007/s42770-018-0021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Sendai virus (SeV) has been used as a model strain to reveal molecular features of paramyxovirus biology. In this study, we comprehensively analyzed the gene profiling of murine macrophages and airway epithelial cells in response to SeV using gene expression data. The significantly differentially expressed genes (DEGs) were screened by GEO2R. Gene ontology (GO) and pathway enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) map of DEGs was constructed by STRING. The modules of PPI network are produced by molecular complex detection (MCODE) plug-in of Cytoscape. In total, 241 up- and 83 downregulated DEGs were identified in airway epithelial cells while 130 up- and 148 downregulated in macrophage. Particularly, Tmem119 and Colla2 are significantly downregulated in airway epithelial cells and macrophages, respectively. Functional enrichment analysis showed that upregulated DEGs are clustered in innate immunity and inflammatory response in both cell types, whereas downregulated DEGs are involved in host metabolic pathway in airway epithelial cells. PI3K-AKT signaling pathway is downregulated in macrophages. PPI network analysis indicated that some high degree of nodes exist in both cell types, such as Stat1, Tnf, and Cxcl10. In conclusion, SeV infection can induce different host cell responses in airway epithelial cells and macrophages.
Collapse
Affiliation(s)
- Wenqiang Wei
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. .,Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| | - Wanting Kong
- Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
25
|
|
26
|
Wang L, Verschuuren EAM, van Leer-Buter CC, Bakker SJL, de Joode AAE, Westra J, Bos NA. Herpes Zoster and Immunogenicity and Safety of Zoster Vaccines in Transplant Patients: A Narrative Review of the Literature. Front Immunol 2018; 9:1632. [PMID: 30079064 PMCID: PMC6062765 DOI: 10.3389/fimmu.2018.01632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
This narrative review focuses on the herpes zoster (HZ) and its prevention in transplant patients. Varicella zoster virus (VZV) is highly contagious and distributed worldwide in humans. Primary VZV infection usually causes varicella and then establishes a lifelong latency in dorsal root ganglia. Reactivation of VZV leads to HZ and related complications such as postherpetic neuralgia. Age and decreased immunity against VZV are important risk factors for developing HZ. Transplant patients are at increased risk for developing HZ and related complications due to their immunocompromised status and the need for lifetime immunosuppression. Diagnosis of HZ in transplant patients is often clinically difficult, and VZV-specific antibodies should be determined by serologic testing to document prior exposure to VZV during their pre-transplant evaluation process. Although antiviral agents are available, vaccination should be recommended for preventing HZ in transplant patients considering their complicated condition and weak organ function. Currently, there are two licensed HZ vaccines, of which one is a live-attenuated vaccine and the other is a HZ subunit vaccine. Both vaccines have shown promising safety and efficacy in transplants patients and especially the subunit vaccine could be administered post-transplant since this vaccine does not contain any live virus. Larger studies are needed about safety and immunogenicity of HZ vaccines in transplant populations, and extra efforts are needed to increase vaccine usage according to guidelines.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A M Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Coretta C van Leer-Buter
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anoek A E de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-Zoster Virus Latency. Viruses 2018; 10:v10070349. [PMID: 29958408 PMCID: PMC6070824 DOI: 10.3390/v10070349] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Wollina U. [Herpes zoster]. MMW Fortschr Med 2018; 160:35-42. [PMID: 29582274 DOI: 10.1007/s15006-018-0006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Uwe Wollina
- Städtisches Klinikum Dresden/Friedrichstadt, Klinik für Dermatologie und Allergologie, Friedrichstrasse 41, D-01067, Dresden, Deutschland.
| |
Collapse
|
29
|
Abstract
The use of human organotypic models for biomedical research is experiencing a significant increase due to their biological relevance, the possibility to perform high-throughput analyses, and their cost efficiency. In the field of anti-infective research, comprising the search for novel antipathogenic treatments including vaccines, efforts have been made to reduce the use of animal models. That is due to two main reasons: unreliability of data obtained with animal models and the increasing willingness to reduce the use of animals in research for ethical reasons. Human three-dimensional (3-D) models may substitute and/or complement in vivo studies, to increase the translational value of preclinical data. Here, we provide an overview of recent studies utilizing human organotypic models, resembling features of the cervix, intestine, lungs, brain, and skin in the context of anti-infective research. Furthermore, we focus on the future applications of human skin models and present methodological protocols to culture human skin equivalents and human skin explants.
Collapse
|
30
|
Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection. J Virol 2017; 92:JVI.01108-17. [PMID: 29046461 DOI: 10.1128/jvi.01108-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 12/31/2022] Open
Abstract
Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens.IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human neurons than in other cell types in vitro and that the number of total virus genomes relative to the number of viral particles that can form plaques in culture is much lower in human neurons than other cultured cells. These findings indicate that human neurons may be useful for studying VZV in vitro, for growing preparations of virus with high titers, and for isolating the virus from human samples.
Collapse
|
31
|
Liu L, Zhou Q, Xie Y, Zuo L, Zhu F, Lu J. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol Sin 2017; 32:349-356. [PMID: 29116589 PMCID: PMC6704204 DOI: 10.1007/s12250-017-4073-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses.
Collapse
Affiliation(s)
- Lingzhi Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Quan Zhou
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Xie
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Fanxiu Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Department of Biological Science, Florida State University, Tallahassee, 32306, USA
| | - Jianhong Lu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China.
- Cancer Research Institute, Central South University, Changsha, 410078, China.
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| |
Collapse
|