1
|
Benham CJ. DNA superhelicity. Nucleic Acids Res 2024; 52:22-48. [PMID: 37994702 PMCID: PMC10783518 DOI: 10.1093/nar/gkad1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Closing each strand of a DNA duplex upon itself fixes its linking number L. This topological condition couples together the secondary and tertiary structures of the resulting ccDNA topoisomer, a constraint that is not present in otherwise identical nicked or linear DNAs. Fixing L has a range of structural, energetic and functional consequences. Here we consider how L having different integer values (that is, different superhelicities) affects ccDNA molecules. The approaches used are primarily theoretical, and are developed from a historical perspective. In brief, processes that either relax or increase superhelicity, or repartition what is there, may either release or require free energy. The energies involved can be substantial, sufficient to influence many events, directly or indirectly. Here two examples are developed. The changes of unconstrained superhelicity that occur during nucleosome attachment and release are examined. And a simple theoretical model of superhelically driven DNA structural transitions is described that calculates equilibrium distributions for populations of identical topoisomers. This model is used to examine how these distributions change with superhelicity and other factors, and applied to analyze several situations of biological interest.
Collapse
Affiliation(s)
- Craig J Benham
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
2
|
Specialized DNA Structures Act as Genomic Beacons for Integration by Evolutionarily Diverse Retroviruses. Viruses 2023; 15:v15020465. [PMID: 36851678 PMCID: PMC9962126 DOI: 10.3390/v15020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Retroviral integration site targeting is not random and plays a critical role in expression and long-term survival of the integrated provirus. To better understand the genomic environment surrounding retroviral integration sites, we performed a meta-analysis of previously published integration site data from evolutionarily diverse retroviruses, including new experimental data from HIV-1 subtypes A, B, C and D. We show here that evolutionarily divergent retroviruses exhibit distinct integration site profiles with strong preferences for integration near non-canonical B-form DNA (non-B DNA). We also show that in vivo-derived HIV-1 integration sites are significantly more enriched in transcriptionally silent regions and transcription-silencing non-B DNA features of the genome compared to in vitro-derived HIV-1 integration sites. Integration sites from individuals infected with HIV-1 subtype A, B, C or D viruses exhibited different preferences for common genomic and non-B DNA features. In addition, we identified several integration site hotspots shared between different HIV-1 subtypes, all of which were located in the non-B DNA feature slipped DNA. Together, these data show that although evolutionarily divergent retroviruses exhibit distinct integration site profiles, they all target non-B DNA for integration. These findings provide new insight into how retroviruses integrate into genomes for long-term survival.
Collapse
|
3
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
6
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Lopez MA, Mackler RM, Yoder KE. Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J Virol Methods 2016; 235:134-138. [PMID: 27269588 DOI: 10.1016/j.jviromet.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Retroviral infection requires integration of the viral genome into the host genome. Recombinant integrase proteins may be purified following bacterial expression. A bulk biochemical assay of integrase function relies on the conversion of supercoiled plasmids to linear or relaxed circles. Single molecule molecular tweezer assays of integrase also evaluate the conversion of supercoiled DNA to nicked and broken species. A bacterial nuclease that co-purifies with retroviral integrase may affect the quantitation of integration activity in bulk or single molecule assays. During purification of retroviral integrase from bacteria, fractions may be screened for contaminating nuclease activity. In order to efficiently separate the nuclease from integrase, the binding affinities of each protein must differ. We find that a co-purifying nuclease may be efficiently separated from integrase based on heparin affinity, but not ionic affinity.
Collapse
Affiliation(s)
- Miguel A Lopez
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Randi M Mackler
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Kristine E Yoder
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, United States.
| |
Collapse
|
8
|
Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016; 8:v8020031. [PMID: 26828513 PMCID: PMC4776186 DOI: 10.3390/v8020031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.
Collapse
|
9
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
10
|
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome. Viruses 2015; 7:3241-60. [PMID: 26102582 PMCID: PMC4488736 DOI: 10.3390/v7062769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.
Collapse
|
11
|
Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2012; 20:581-8. [PMID: 23171920 DOI: 10.1038/gt.2012.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.
Collapse
|
12
|
A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e50. [PMID: 23344650 PMCID: PMC3499692 DOI: 10.1038/mtna.2012.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonviral vector systems are used increasingly in gene targeting and gene transfer applications. The piggyBac transposon represents an alternative integrating vector for in vivo gene transfer. We hypothesized that this system could achieve persistent gene transfer to the liver when administered systemically. We report that a novel hyperactive transposase generated higher transposition efficiency than a codon-optimized transposase in a human liver cell line. Hyperactive transposase-mediated reporter gene expression persisted at levels twice that of codon-optimized transposase in the livers of mice for the 6-month study. Of note, expression persisted in mice following partial hepatectomy, consistent with expression from an integrated transgene. We also used the hyperactive transposase to deliver the human α1-antitrypsin gene and achieved stable expression in serum. To determine the integration pattern of insertions, we performed large-scale mapping in human cells and recovered 60,685 unique hyperactive transposase-mediated insertions. We found that a hyperactive piggyBac transposase conferred an altered pattern of integration from that of insect piggyBac transposase, with a decreased frequency of integration near transcription start sites than previously reported. Our results support that the piggyBac transposon combined with the hyperactive transposase is an efficient integrating vector system for in vitro and in vivo applications.
Collapse
|
13
|
Knyazhanskaya ES, Kondrashina OV, Gottikh MB. Approaches to site-directed DNA integration based on transposases and retroviral integrases. Mol Biol 2011. [DOI: 10.1134/s0026893311060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Abstract
The increasing level of understanding of the lentivirus biology has been instrumental in shaping the design strategy of creating therapeutic lentiviral delivery vectors. As a result, lentiviral vectors have become one of the most powerful gene transfer vehicles. They are widely used for therapeutic purposes as well as in studies of basic biology, due to their unique characteristics. Lentiviral vectors have been successfully employed to mediate durable and efficient antigen expression and presentation in dendritic cells both in vitro and in vivo, leading to the activation of cellular immunity and humoral responses. This capability makes the lentiviral vector an ideal choice for immunizations that target a wide range of cancers and infectious diseases. Further advances into optimizing the vector system and understanding the relationship between the immune system and diseases pathogenesis will only augment the potential benefits and utility of lentiviral vaccines for human health.
Collapse
Affiliation(s)
- Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
15
|
Kim S, Rusmevichientong A, Dong B, Remenyi R, Silverman RH, Chow SA. Fidelity of target site duplication and sequence preference during integration of xenotropic murine leukemia virus-related virus. PLoS One 2010; 5:e10255. [PMID: 20421928 PMCID: PMC2857682 DOI: 10.1371/journal.pone.0010255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 03/28/2010] [Indexed: 11/18/2022] Open
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a new human retrovirus associated with prostate cancer and chronic fatigue syndrome. The causal relationship of XMRV infection to human disease and the mechanism of pathogenicity have not been established. During retrovirus replication, integration of the cDNA copy of the viral RNA genome into the host cell chromosome is an essential step and involves coordinated joining of the two ends of the linear viral DNA into staggered sites on target DNA. Correct integration produces proviruses that are flanked by a short direct repeat, which varies from 4 to 6 bp among the retroviruses but is invariant for each particular retrovirus. Uncoordinated joining of the two viral DNA ends into target DNA can cause insertions, deletions, or other genomic alterations at the integration site. To determine the fidelity of XMRV integration, cells infected with XMRV were clonally expanded and DNA sequences at the viral-host DNA junctions were determined and analyzed. We found that a majority of the provirus ends were correctly processed and flanked by a 4-bp direct repeat of host DNA. A weak consensus sequence was also detected at the XMRV integration sites. We conclude that integration of XMRV DNA involves a coordinated joining of two viral DNA ends that are spaced 4 bp apart on the target DNA and proceeds with high fidelity.
Collapse
Affiliation(s)
- Sanggu Kim
- Biomedical Engineering Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alice Rusmevichientong
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Samson A. Chow
- Biomedical Engineering Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Soto J, Peña Á, Salcedo M, Domínguez MC, Sánchez A, García-Vallejo F. Caracterización genómica de la integración in vitro del VIH-1 en células mononucleares de sangre periférica, macrófagos y células T de Jurkat. INFECTIO 2010. [DOI: 10.1016/s0123-9392(10)70089-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Retroviral integration site selection. Viruses 2010; 2:111-130. [PMID: 21994603 PMCID: PMC3185549 DOI: 10.3390/v2010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 02/07/2023] Open
Abstract
The stable insertion of a copy of their genome into the host cell genome is an essential step of the life cycle of retroviruses. The site of viral DNA integration, mediated by the viral-encoded integrase enzyme, has important consequences for both the virus and the host cell. The analysis of retroviral integration site distribution was facilitated by the availability of the human genome sequence, revealing the non-random feature of integration site selection and identifying different favored and disfavored genomic locations for individual retroviruses. This review will summarize the current knowledge about retroviral differences in their integration site preferences as well as the mechanisms involved in this process.
Collapse
|
18
|
The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Viruses 2009; 1:780-801. [PMID: 21994569 PMCID: PMC3185499 DOI: 10.3390/v1030780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 01/26/2023] Open
Abstract
Since its initial description as an HIV-1 integrase (IN) interactor seven years ago, LEDGF has become one of the best-characterized host factors involved in viral replication. Results of intensive studies in several laboratories indicated that the protein serves as a targeting factor for the lentiviral DNA integration machinery, and accounts for the characteristic preference of Lentivirus to integrate within active transcription units. The IN-LEDGF interaction has been put forward as a promising target for antiretroviral drug development and as a potential tool to improve safety of lentiviral vectors for use in gene therapy. Additionally, as a natural ligand of lentiviral IN proteins, LEDGF has been successfully used in structural biology studies of retroviral DNA integration. This review focuses on the structural aspects of the IN-LEDGF interaction and their functional consequences.
Collapse
|
19
|
Abstract
Lentiviral vectors (LVs) offer the advantages of a large packaging capacity, broad cell tropism or specific cell-type targeting through pseudotyping, and long-term expression from integrated gene cassettes. However, transgene integration carries a risk of disrupting gene expression through insertional mutagenesis and may not be required for all applications. A non-integrating LV may be beneficial in cases in which transient gene expression is desired. Several recent publications outline the development and initial biological characterization of such vectors. Here, we discuss the potential applications and new directions for the development of integration-defective LVs.
Collapse
|
20
|
Meehan AM, Poeschla EM. Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:182-91. [PMID: 19836475 DOI: 10.1016/j.bbagrm.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/02/2009] [Indexed: 12/23/2022]
Abstract
Permanent integration of the viral genome into a host chromosome is an essential step in the life cycles of lentiviruses and other retroviruses. By archiving the viral genetic information in the genome of the host target cell and its progeny, integrated proviruses prevent curative therapy of HIV-1 and make the development of antiretroviral drug resistance irreversible. Although the integration reaction is known to be catalyzed by the viral integrase (IN), the manner in which retroviruses engage and attach to the chromatin target is only now becoming clear. Lens epithelium-derived growth factor (LEDGF/p75) is a ubiquitously expressed nuclear protein that binds to lentiviral IN protein dimers at its carboxyl terminus and to host chromatin at its amino terminus. LEDGF/p75 thus tethers ectopically expressed IN to chromatin. It also protects IN from proteosomal degradation and can stimulate IN catalysis in vitro. HIV-1 infection is inhibited at the integration step in LEDGF/p75-deficient cells, and the characteristic lentiviral preference for integration into active genes is also reduced. A model in which LEDGF/p75 acts to tether the viral preintegration complex to chromatin has emerged. Intriguingly, similar chromatin tethering mechanisms have been described for other retroelements and for large DNA viruses. Here we review the evidence supporting the LEDGF/p75 tethering model and consider parallels with these other viruses.
Collapse
Affiliation(s)
- Anne M Meehan
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
21
|
QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis. Gene Ther 2009; 16:885-93. [PMID: 19387483 DOI: 10.1038/gt.2009.37] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several events of insertional mutagenesis in pre-clinical and clinical gene therapy studies have created intense interest in assessing the genomic insertion profiles of gene therapy vectors. For the construction of such profiles, vector-flanking sequences detected by inverse PCR, linear amplification-mediated-PCR or ligation-mediated-PCR need to be mapped to the host cell's genome and compared to a reference set. Although remarkable progress has been achieved in mapping gene therapy vector insertion sites, public reference sets are lacking, as are the possibilities to quickly detect non-random patterns in experimental data. We developed a tool termed QuickMap, which uniformly maps and analyzes human and murine vector-flanking sequences within seconds (available at www.gtsg.org). Besides information about hits in chromosomes and fragile sites, QuickMap automatically determines insertion frequencies in +/- 250 kb adjacency to genes, cancer genes, pseudogenes, transcription factor and (post-transcriptional) miRNA binding sites, CpG islands and repetitive elements (short interspersed nuclear elements (SINE), long interspersed nuclear elements (LINE), Type II elements and LTR elements). Additionally, all experimental frequencies are compared with the data obtained from a reference set, containing 1 000 000 random integrations ('random set'). Thus, for the first time a tool allowing high-throughput profiling of gene therapy vector insertion sites is available. It provides a basis for large-scale insertion site analyses, which is now urgently needed to discover novel gene therapy vectors with 'safe' insertion profiles.
Collapse
|
22
|
Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AWS. Lentiviral integration preferences in transgenic mice. Genesis 2009; 46:711-8. [PMID: 18821598 DOI: 10.1002/dvg.20435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lentiviral gene transfer has a significant impact on the development of biomedical research. One of the most important features of lentiviruses is the capability to infect both dividing and nondividing cells. However, little is known whether integration preference exists, specifically in early embryos. An in-depth genome analysis on 112 independent lentiviral integration sites from 43 transgenic founder mice was performed to determine if there are preferable sites for lentiviral integration in early embryonic genome. Our results demonstrated that lentiviruses were biased in integrating within intragenic regions, especially in the introns. However, no integration preference was found associated with specific chromosomes, repetitive elements, or CpG islands, nor was there any preference for integrating at close proximity to transcription start sites. Our findings suggested that lentiviruses were biased to integrate into the intragenic regions of early embryonic genome of mouse.
Collapse
Affiliation(s)
- Shang-Hsun Yang
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
23
|
Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 2009; 37:243-55. [PMID: 19036793 PMCID: PMC2615609 DOI: 10.1093/nar/gkn938] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/02/2023] Open
Abstract
Establishment of the stable provirus is an essential step in retroviral replication, orchestrated by integrase (IN), a virus-derived enzyme. Until now, available structural information was limited to the INs of human immunodeficiency virus type 1 (HIV-1), avian sarcoma virus (ASV) and their close orthologs from the Lentivirus and Alpharetrovirus genera. Here, we characterized the in vitro activity of the prototype foamy virus (PFV) IN from the Spumavirus genus and determined the three-dimensional structure of its catalytic core domain (CCD). Recombinant PFV IN displayed robust and almost exclusively concerted integration activity in vitro utilizing donor DNA substrates as short as 16 bp, underscoring its significance as a model for detailed structural studies. Comparison of the HIV-1, ASV and PFV CCD structures highlighted both conserved as well as unique structural features such as organization of the active site and the putative host factor binding face. Despite possessing very limited sequence identity to its HIV counterpart, PFV IN was sensitive to HIV IN strand transfer inhibitors, suggesting that this class of inhibitors target the most conserved features of retroviral IN-DNA complexes.
Collapse
Affiliation(s)
- Eugene Valkov
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Saumya Shree Gupta
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Stephen Hare
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Helander
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Pietro Roversi
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Myra McClure
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Peter Cherepanov
- Division of Medicine, St. Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
24
|
Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer. J Virol 2008; 82:9964-77. [PMID: 18684813 DOI: 10.1128/jvi.01299-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a new human gammaretrovirus identified in prostate cancer tissue from patients homozygous for a reduced-activity variant of the antiviral enzyme RNase L. Neither a casual relationship between XMRV infection and prostate cancer nor a mechanism of tumorigenesis has been established. To determine the integration site preferences of XMRV and the potential risk of proviral insertional mutagenesis, we carried out a genome-wide analysis of viral integration sites in the prostate cell line DU145 after an acute XMRV infection and compared the integration site pattern of XMRV with those found for murine leukemia virus and two human retroviruses, human immunodeficiency virus type 1 and human T-cell leukemia virus type 1. Among all retroviruses analyzed, XMRV has the strongest preference for transcription start sites, CpG islands, DNase-hypersensitive sites, and gene-dense regions; all are features frequently associated with structurally open transcription regulatory regions of a chromosome. Analyses of XMRV integration sites in tissues from prostate cancer patients found a similar preference for the aforementioned chromosomal features. Additionally, XMRV integration sites in cancer tissues were associated with cancer breakpoints, common fragile sites, microRNA, and cancer-related genes, suggesting a selection process that favors certain chromosomal integration sites. In both acutely infected cells and cancer tissues, no common integration site was detected within or near proto-oncogenes or tumor suppressor genes. These results are consistent with a model in which XMRV may contribute to tumorigenicity via a paracrine mechanism.
Collapse
|
25
|
Daniel R, Smith JA. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 2008; 19:557-68. [PMID: 18533894 DOI: 10.1089/hum.2007.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retroviral DNA integration into the host cell genome is an essential feature of the retroviral life cycle. The ability to integrate their DNA into the DNA of infected cells also makes retroviruses attractive vectors for delivery of therapeutic genes into the genome of cells carrying adverse mutations in their cellular DNA. Sequencing of the entire human genome has enabled identification of integration site preferences of both replication-competent retroviruses and retroviral vectors. These results, together with the unfortunate outcome of a gene therapy trial, in which integration of a retroviral vector in the vicinity of a protooncogene was associated with the development of leukemia, have stimulated efforts to elucidate the molecular mechanism underlying integration site selection by retroviral vectors, as well as the development of methods to direct integration to specific DNA sequences and chromosomal regions. This review outlines our current knowledge of the mechanism of integration site selection by retroviruses in vitro, in cultured cells, and in vivo; the outcome of several of the more recent gene therapy trials, which employed these vectors; and the efforts of several laboratories to develop vectors that integrate at predetermined sites in the human genome.
Collapse
Affiliation(s)
- René Daniel
- Division of Infectious Diseases, Center for Human Virology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
26
|
Albanese A, Arosio D, Terreni M, Cereseto A. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS One 2008; 3:e2413. [PMID: 18545681 PMCID: PMC2398779 DOI: 10.1371/journal.pone.0002413] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/15/2008] [Indexed: 12/18/2022] Open
Abstract
Integration of the double-stranded DNA copy of the HIV-1 genome into host chromosomal DNA is a requirement for efficient viral replication. Integration preferentially occurs within active transcription units, however chromosomal site specificity does not correlate with any strong primary sequence. To investigate whether the nuclear architecture may affect viral integration we have developed an experimental system where HIV-1 viral particles can be visualized within the nuclear compartment. Fluorescently labeled HIV-1 virions were engineered by fusing integrase, the viral protein that catalyzes the integration reaction, to fluorescent proteins. Viral tests demonstrate that the infectivity of fluorescent virions, including the integration step, is not altered as compared to wild-type virus. 3-D confocal microscopy allowed a detailed analysis of the spatial and temporal distribution of the pre-integration complexes (PICs) within the nucleus at different moments following infection; the fluorescently labeled PICs preferentially distribute in decondensed areas of the chromatin with a striking positioning in the nuclear periphery, while heterochromatin regions are largely disfavored. These observations provide a first indication of how the nuclear architecture may initially orient the selection of retroviral integration sites.
Collapse
Affiliation(s)
- Alberto Albanese
- Laboratory of Molecular Biology Scuola Normale Superiore, Pisa, Italy
- NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy
| | - Daniele Arosio
- NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy
- * E-mail: (AC); (DA)
| | - Mariaelena Terreni
- Laboratory of Molecular Biology Scuola Normale Superiore, Pisa, Italy
- NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy
| | - Anna Cereseto
- Laboratory of Molecular Biology Scuola Normale Superiore, Pisa, Italy
- NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy
- * E-mail: (AC); (DA)
| |
Collapse
|
27
|
Abstract
Lentiviral vectors are useful for gene transfer to dividing and nondividing cells. Feline immunodeficiency virus (FIV) vectors transduce most human cell types with good efficiency and may have advantages for clinical gene therapy applications. This article reviews significant progress in the development and refinement of FIV vector systems.
Collapse
Affiliation(s)
- Román A Barraza
- Molecular Medicine Program, Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, United States.
| | | |
Collapse
|
28
|
Abstract
Lentivector-mediated transgenesis is increasingly used, whether for basic studies as an alternative to pronuclear injection of naked DNA or to test candidate gene therapy vectors. In an effort to characterize the genetic features of this approach, we first measured the frequency of germ line transmission of individual proviruses established by infection of fertilized mouse oocytes. Seventy integrants from 11 founder (G0) mice were passed to 111 first generation (G1) pups, for a total of 255 events corresponding to an average rate of transmission of 44%. This implies that integration had most often occurred at the one- or two-cell stage and that the degree of genotypic mosaicism in G0 mice obtained through this approach is generally minimal. Transmission analysis of eight individual proviruses in 13 G2 mice obtained by a G0-G1 cross revealed only 8% of proviral homozygosity, significantly below the 25% expected from purely Mendelian transmission, suggesting counter-selection due to interference with the functions of targeted loci. Mapping of 239 proviral integration sites in 49 founder animals revealed that about 60% resided within annotated genes, with a marked tendency for clustering in the middle of the transcribed region, and that integration was not influenced by the transcriptional orientation. Transcript levels of a set of arbitrarily chosen target genes were significantly higher in two-cell embryos than in embryonic stem cells or adult somatic cells, suggesting that, as previously noted in other settings, lentiviral vectors integrate preferentially into regions of the genome that are transcriptionally active or poised for activation.
Collapse
|
29
|
Abstract
HIV integrates a DNA copy of its genome into a host cell chromosome in each replication cycle. The essential DNA cleaving and joining chemistry of integration is known, but there is less understanding of the process as it occurs in a cell, where two complex and dynamic macromolecular entities are joined: the viral pre-integration complex and chromatin. Among implicated cellular factors, much recent attention has coalesced around LEDGF/p75, a nuclear protein that may act as a chromatin docking factor or receptor for lentiviral pre-integration complexes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells and/or over-expressing its integrase-binding domain blocks viral replication. Current goals are to establish the underlying mechanisms and to determine whether this knowledge can be exploited for antiviral therapy or for targeting lentiviral vector integration in human gene therapy.
Collapse
Affiliation(s)
- E M Poeschla
- Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA.
| |
Collapse
|
30
|
Engelman A, Cherepanov P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 2008; 4:e1000046. [PMID: 18369482 PMCID: PMC2275779 DOI: 10.1371/journal.ppat.1000046] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2007] [Indexed: 01/10/2023] Open
Abstract
Retroviral replication proceeds through a stable proviral DNA intermediate, and numerous host cell factors have been implicated in its formation. In particular, recent results have highlighted an important role for the integrase-interactor lens epithelium-derived growth factor (LEDGF)/p75 in lentiviral integration. Cells engineered to over-express fragments of LEDGF/p75 containing its integrase-binding domain but lacking determinants essential for chromatin association are refractory to HIV-1 infection. Furthermore, both the levels of HIV-1 integration and the genomic distribution of the resultant proviruses are significantly perturbed in cells devoid of endogenous LEDGF/p75 protein. A strong bias towards integration along transcription units is a characteristic feature of lentiviruses. In the absence of LEDGF/p75, HIV-1 in large part loses that preference, displaying concomitant integration surges in the vicinities of CpG islands and gene promoter regions, elements naturally targeted by other types of retroviruses. Together, these findings highlight that LEDGF/p75 is an important albeit not strictly essential cofactor of lentiviral DNA integration, and solidify a role for chromatin-associated LEDGF/p75 as a receptor for lentiviral preintegration complexes. By now one of the best characterized virus-host interactions, the integrase-LEDGF/p75 interface opens a range of opportunities for lentiviral vector targeting for gene therapy applications as well as for the development of novel classes of antiretroviral drugs.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Cherepanov
- Division of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| |
Collapse
|
31
|
Sinn PL, Goreham-Voss JD, Arias AC, Hickey MA, Maury W, Chikkanna-Gowda CP, McCray PB. Enhanced gene expression conferred by stepwise modification of a nonprimate lentiviral vector. Hum Gene Ther 2008; 18:1244-52. [PMID: 18052720 DOI: 10.1089/hum.2006.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The practical application of gene transfer as a treatment for genetic diseases such as cystic fibrosis or hemophilia has been hindered, in part, by low efficiencies of vector delivery and transgene expression. We demonstrated that a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the envelope glycoprotein from the baculovirus Autographa californica (GP64) efficiently transduces and persistently expresses a reporter gene in respiratory epithelium in the absence of agents that disrupt cellular tight junction integrity. GP64-pseudotyped FIV also efficiently transduced murine hepatocytes after tail vein delivery. To improve the FIV-based vector, we tested the contribution of a series of modifications to luciferase expression in vitro and in vivo. These modifications included the addition of spleen necrosis virus U5 (SNV U5) and mutation of the major splice donor and gag start codon located in the packaging region of the FIV transgene plasmid. After vector modification, we observed significantly enhanced expression of luciferase in respiratory epithelia after nasal application and in the liver after tail vein delivery. In addition, we observed significantly enhanced human factor VIII production after tail vein delivery. These sequential modifications provide an improved FIV lentivirus platform for gene therapy applications and may be applied to other retroviral vectors.
Collapse
Affiliation(s)
- Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, Poeschla E, Bushman FD. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2007; 2:e1340. [PMID: 18092005 PMCID: PMC2129110 DOI: 10.1371/journal.pone.0001340] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 11/26/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To replicate, lentiviruses such as HIV must integrate DNA copies of their RNA genomes into host cell chromosomes. Lentiviral integration is favored in active transcription units, which allows efficient viral gene expression after integration, but the mechanisms directing integration targeting are incompletely understood. A cellular protein, PSIP1/LEDGF/p75, binds tightly to the lentiviral-encoded integrase protein (IN), and has been reported to be important for HIV infectivity and integration targeting. METHODOLOGY Here we report studies of lentiviral integration targeting in 1) human cells with intensified RNAi knockdowns of PSIP1/LEDGF/p75, and 2) murine cells with homozygous gene trap mutations in the PSIP1/LEDGF/p75 locus. Infections with vectors derived from equine infections anemia virus (EIAV) and HIV were compared. Integration acceptor sites were analyzed by DNA bar coding and pyrosequencing. CONCLUSIONS/SIGNIFICANCE In both PSIP1/LEDGF/p75-depleted cell lines, reductions were seen in lentiviral infectivity compared to controls. For the human cells, integration was reduced in transcription units in the knockdowns, and this reduction was greater than in our previous studies of human cells less completely depleted for PSIP1/LEDGF/p75. For the homozygous mutant mouse cells, similar reductions in integration in transcription units were seen, paralleling a previous study of a different mutant mouse line. Integration did not become random, however-integration in transcription units in both cell types was still favored, though to a reduced degree. New trends also appeared, including favored integration near CpG islands. In addition, we carried out a bioinformatic study of 15 HIV integration site data sets in different cell types, which showed that the frequency of integration in transcription units was correlated with the cell-type specific levels of PSIP1/LEDGF/p75 expression.
Collapse
Affiliation(s)
- Heather M. Marshall
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles Berry
- Department of Family, Preventive Medicine, San Diego School of Medicine, University of California at San Diego, San Diego, California, United States of America
| | - Manuel Llano
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Heidi Sutherland
- Medical Research Council (MRC) Human Genetics Unit, Edinburgh, United Kingdom
| | - Dyana Saenz
- Department of Family, Preventive Medicine, San Diego School of Medicine, University of California at San Diego, San Diego, California, United States of America
| | - Wendy Bickmore
- Medical Research Council (MRC) Human Genetics Unit, Edinburgh, United Kingdom
| | - Eric Poeschla
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Pistello M, Vannucci L, Ravani A, Bonci F, Chiuppesi F, Del Santo B, Freer G, Bendinelli M. Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes. GENETIC VACCINES AND THERAPY 2007; 5:8. [PMID: 17880683 PMCID: PMC2075492 DOI: 10.1186/1479-0556-5-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/19/2007] [Indexed: 11/24/2022]
Abstract
Background Safe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised. Methods The pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (ψ), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line. Results To broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer ψ, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas ψ elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation. Conclusion In contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Laura Vannucci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Alessia Ravani
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Francesca Bonci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Flavia Chiuppesi
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Barbara Del Santo
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Mauro Bendinelli
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17:1186-94. [PMID: 17545577 PMCID: PMC1933515 DOI: 10.1101/gr.6286907] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integration of retroviral DNA into host cell DNA is a defining feature of retroviral replication. HIV integration is known to be favored in active transcription units, which promotes efficient transcription of the viral genes, but the molecular mechanisms responsible for targeting are not fully clarified. Here we used pyrosequencing to map 40,569 unique sites of HIV integration. Computational prediction of nucleosome positions in target DNA indicated that integration sites are periodically distributed on the nucleosome surface, consistent with favored integration into outward-facing DNA major grooves in chromatin. Analysis of integration site positions in the densely annotated ENCODE regions revealed a wealth of new associations between integration frequency and genomic features. Integration was particularly favored near transcription-associated histone modifications, including H3 acetylation, H4 acetylation, and H3 K4 methylation, but was disfavored in regions rich in transcription-inhibiting modifications, which include H3 K27 trimethylation and DNA CpG methylation. Statistical modeling indicated that effects of histone modification on HIV integration were partially independent of other genomic features influencing integration. The pyrosequencing and bioinformatic methods described here should be useful for investigating many aspects of retroviral DNA integration.
Collapse
Affiliation(s)
- Gary P. Wang
- University of Pennsylvania, School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania 19104-6076, USA
| | - Angela Ciuffi
- University of Pennsylvania, School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania 19104-6076, USA
| | - Jeremy Leipzig
- University of Pennsylvania, School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania 19104-6076, USA
| | - Charles C. Berry
- Department of Family/Preventive Medicine, University of California, San Diego School of Medicine, San Diego, California 92093, USA
| | - Frederic D. Bushman
- University of Pennsylvania, School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania 19104-6076, USA
- Corresponding author.E-mail ; fax (215) 573-4856
| |
Collapse
|
35
|
Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, McGrath CF, Hughes SH, Munroe DJ, Wu X. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 2007; 81:6731-41. [PMID: 17409138 PMCID: PMC1900082 DOI: 10.1128/jvi.02752-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 03/29/2007] [Indexed: 12/23/2022] Open
Abstract
Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles.
Collapse
Affiliation(s)
- David Derse
- HIV Drug Resistance Program, Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, 915 Toll House Avenue, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cherepanov P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res 2006; 35:113-24. [PMID: 17158150 PMCID: PMC1802576 DOI: 10.1093/nar/gkl885] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 12/15/2022] Open
Abstract
Transcriptional co-activator LEDGF/p75 is the major cellular interactor of HIV-1 integrase (IN), critical to efficient viral replication. In this work, a series of INs from the Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Spumavirus and Lentivirus retroviral genera were tested for interaction with the host factor. None of the non-lentiviral INs possessed detectable affinity for LEDGF in either pull-down or yeast two-hybrid assays. In contrast, all lentiviral INs examined, including those from bovine immunodeficiency virus (BIV), maedi-visna virus (MVV) and equine infectious anemia virus (EIAV) readily interacted with LEDGF. Mutation of Asp-366 to Asn in LEDGF ablated the interaction, suggesting a common mechanism of the host factor recognition by the INs. LEDGF potently stimulated strand transfer activity of divergent lentiviral INs in vitro. Unprecedentedly, in the presence of the host factor, EIAV IN almost exclusively catalyzed concerted integration, whereas HIV-1 IN promoted predominantly half-site integration, and BIV IN was equally active in both types of strand transfer. Concerted BIV and EIAV integration resulted in 5 bp duplications of the target DNA sequences. These results confirm that the interaction with LEDGF is conserved within and limited to Lentivirus and strongly argue that the host factor is intimately involved in the catalysis of lentiviral DNA integration.
Collapse
Affiliation(s)
- Peter Cherepanov
- Section of Infectious Diseases, Division of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, W2 1PG, London, UK.
| |
Collapse
|