1
|
Liang R, Tian J, Liu K, Ma L, Yang R, Sun L, Zhao J, Zhao Y, Zhang G. The cytoplasmic tail of IBV spike mediates intracellular retention via interaction with COPI-coated vesicles in retrograde trafficking. J Virol 2025; 99:e0216424. [PMID: 39840971 PMCID: PMC11852926 DOI: 10.1128/jvi.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025] Open
Abstract
Coronaviruses are characterized by their progeny assembly and budding in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Our previous studies demonstrated that truncation of 9 amino acids in the cytoplasmic tail (CT) of the infectious bronchitis virus (IBV) spike (S) protein impairs its localization to the ERGIC, resulting in increased expression at the plasma membrane. However, the precise mechanism underlying this phenomenon remained elusive. In this study, we provide evidence that the IBV S protein could utilize coatomer protein-I (COPI)-coated vesicles for retrograde transport from the Golgi to the endoplasmic reticulum (ER). We identified the KKSV motif as the critical binding site within the CT domain of IBV S protein for COPI interaction. Further analysis reveals that IBV infection does not modulate host COPI expression. However, when COPI expression is disrupted, a higher proportion of S protein escapes to the plasma membrane. Moreover, inhibition of COPI-mediated transport during viral infection severely impairs progeny virion production and leads to increased S protein accumulation at the plasma membrane, inducing cell-cell fusion and syncytia formation. Our findings contribute to a deeper understanding of S protein intracellular trafficking during coronavirus infection, and offer valuable insights into the molecular mechanisms of viral replication and host cell biology.IMPORTANCEViruses hijack or modify host cellular machinery and associated pathways to facilitate their own replication. Here, we demonstrate that the infectious bronchitis virus (IBV) S protein directly interacts with coatomer protein-I (COPI)-coated vesicles through the KKSV motif in its cytoplasmic tail. COPI-coated vesicles mediate the retrograde transport of S protein from the Golgi apparatus to the endoplasmic reticulum-Golgi intermediate compartment, where viral particle assembly occurs. Our findings not only advance our understanding of IBV S protein trafficking mechanisms but also provide valuable insights for developing more effective vaccine strategies.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liman Ma
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihua Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Ritter M, Canus L, Gautam A, Vallet T, Zhong L, Lalande A, Boson B, Gandhi A, Bodoirat S, Burlaud-Gaillard J, Freitas N, Roingeard P, Barr JN, Lotteau V, Legros V, Mathieu C, Cosset FL, Denolly S. The low-density lipoprotein receptor and apolipoprotein E associated with CCHFV particles mediate CCHFV entry into cells. Nat Commun 2024; 15:4542. [PMID: 38806525 PMCID: PMC11133370 DOI: 10.1038/s41467-024-48989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.
Collapse
Affiliation(s)
- Maureen Ritter
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lola Canus
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anupriya Gautam
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas Vallet
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Li Zhong
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alexandre Lalande
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Apoorv Gandhi
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Sergueï Bodoirat
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - John N Barr
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Vincent Legros
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, Marcy-l'Etoile, France
| | - Cyrille Mathieu
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
3
|
Byford O, Shaw AB, Tse HN, Todd EJAA, Álvarez-Rodríguez B, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus requires cellular COPI and AP-4 complexes for efficient virion production. J Virol 2024; 98:e0200623. [PMID: 38334330 PMCID: PMC10949467 DOI: 10.1128/jvi.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Zhang J, Li P, Lu R, Ouyang S, Chang MX. Structural and functional analysis of the small GTPase ARF1 reveals a pivotal role of its GTP-binding domain in controlling of the generation of viral inclusion bodies and replication of grass carp reovirus. Front Immunol 2022; 13:956587. [PMID: 36091067 PMCID: PMC9459132 DOI: 10.3389/fimmu.2022.956587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is the most pathogenic double-stranded (ds) RNA virus among the isolated aquareoviruses. The molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection are poorly understood. Here, we discovered that the grass carp ADP ribosylation factor 1 (gcARF1) was required for GCRV replication since the knockdown of gcARF1 by siRNA or inhibiting its GTPase activity by treatment with brefeldin A (BFA) significantly impaired the yield of infectious viral progeny. GCRV infection recruited gcARF1 into viral inclusion bodies (VIBs) by its nonstructural proteins NS80 and NS38. The small_GTP domain of gcARF1 was confirmed to be crucial for promoting GCRV replication and infection, and the number of VIBs reduced significantly by the inhibition of gcARF1 GTPase activity. The analysis of gcARF1-GDP complex crystal structure revealed that the 27AAGKTT32 motif and eight amino acid residues (A27, G29, K30, T31, T32, N126, D129 and A160), which were located mainly within the GTP-binding domain of gcARF1, were crucial for the binding of gcARF1 with GDP. Furthermore, the 27AAGKTT32 motif and the amino acid residue T31 of gcARF1 were indispensable for the function of gcARF1 in promoting GCRV replication and infection. Taken together, it is demonstrated that the GTPase activity of gcARF1 is required for efficient replication of GCRV and that host GTPase ARF1 is closely related with the generation of VIBs.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Riye Lu
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Songying Ouyang
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| |
Collapse
|
5
|
Zhang X, Li HY, Shao JW, Pei MC, Cao C, Huang FQ, Sun MF. Genomic characterization and phylogenetic analysis of a novel Nairobi sheep disease genogroup Orthonairovirus from ticks, Southeastern China. Front Microbiol 2022; 13:977405. [PMID: 36090082 PMCID: PMC9453679 DOI: 10.3389/fmicb.2022.977405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing prevalence and transmission of tick-borne diseases, especially those emerging ones, have posed a significant threat to public health. Thus, the discovery of neglected pathogenic agents carried and transmitted by ticks is urgently needed. Using unbiased high-throughput sequencing, a novel Orthonairovirus designated as Meihua Mountain virus (MHMV), was identified in bloodsucking ticks collected from cattle and wild boars in Fujian province, Southeastern China. The full-length genome was determined by RT-PCR and RACE. Genomic architecture of MHMV shares typical features with orthonairoviruses. Phylogenetic analyses suggested that MHMV is clustered into the Nairobi sheep disease (NSD) genogroup of the genus Orthonairovirus and is closely related to the Hazara virus. The RdRp, GPC, and N protein of MHMV shares 62.3%–83.5%, 37.1%–66.1%, and 53.4%–77.3% amino acid identity with other NSD genogroup viruses, respectively, representing a novel species. The overall pooled prevalence of MHMV in ticks was 2.53% (95% CI: 1.62%–3.73%, 22 positives of 134 tick pools), with 7.38% (95% CI: 3.84%–12.59%, 11 positives of 18 pools) in Haemaphysalis hystricis, 6.02% (95% CI: 1.85%–14.22%, four positives of eight pools) in H. formosensis, 25.03% (95% CI: 9.23%–54.59%, six positive of eight pools) in Dermacentor taiwanensis, and 0.16% (95% CI: 0.01%–0.72%, one positive of 100 pools) in Rhipicephalus microplus. This study presented the first report of tick-carried Orthonairovirus in Fujian province and highlighted the broad geographic distribution and high genetic diversity of orthonairoviruses in China.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang-Yuan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ming-Chao Pei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chong Cao
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, China
| | - Fu-Qiang Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Fu-Qiang Huang,
| | - Ming-Fei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Ming-Fei Sun,
| |
Collapse
|
6
|
ARF1 with Sec7 domain-dependent GBF1 activates coatomer protein I to support classical swine fever virus entry. J Virol 2022; 96:e0219321. [PMID: 35044210 PMCID: PMC8941923 DOI: 10.1128/jvi.02193-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A-resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA (brefeldin A)- and GCA (Golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1, which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane, and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. Importance Classical swine fever (CSF), a highly contact infectious disease, caused by the classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I, and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection is still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.
Collapse
|