1
|
Martínez del Río J, Menéndez-Arias L. Next-Generation Sequencing Methods to Determine the Accuracy of Retroviral Reverse Transcriptases: Advantages and Limitations. Viruses 2025; 17:173. [PMID: 40006928 PMCID: PMC11861041 DOI: 10.3390/v17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Retroviruses, like other RNA viruses, mutate at very high rates and exist as genetically heterogeneous populations. The error-prone activity of viral reverse transcriptase (RT) is largely responsible for the observed variability, most notably in HIV-1. In addition, RTs are widely used in biotechnology to detect RNAs and to clone expressed genes, among many other applications. The fidelity of retroviral RTs has been traditionally analyzed using enzymatic (gel-based) or reporter-based assays. However, these methods are laborious and have important limitations. The development of next-generation sequencing (NGS) technologies opened the possibility of obtaining reverse transcription error rates from a large number of sequences, although appropriate protocols had to be developed. In this review, we summarize the developments in this field that allowed the determination of RNA-dependent DNA synthesis error rates for different RTs (viral and non-viral), including methods such as PRIMER IDs, REP-SEQ, ARC-SEQ, CIR-SEQ, SMRT-SEQ and ROLL-SEQ. Their advantages and limitations are discussed. Complementary DNA (cDNA) synthesis error rates obtained in different studies, using RTs and RNAs of diverse origins, are presented and compared. Future improvements in methodological pipelines will be needed for the precise identification of mutations in the RNA template, including modified bases.
Collapse
Affiliation(s)
- Javier Martínez del Río
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
2
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Harrison JJEK, Passos DO, Bruhn JF, Bauman JD, Tuberty L, DeStefano JJ, Ruiz FX, Lyumkis D, Arnold E. Cryo-EM structure of the HIV-1 Pol polyprotein provides insights into virion maturation. SCIENCE ADVANCES 2022; 8:eabn9874. [PMID: 35857464 PMCID: PMC9258950 DOI: 10.1126/sciadv.abn9874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Key proteins of retroviruses and other RNA viruses are translated and subsequently processed from polyprotein precursors by the viral protease (PR). Processing of the HIV Gag-Pol polyprotein yields the HIV structural proteins and enzymes. Structures of the mature enzymes PR, reverse transcriptase (RT), and integrase (IN) aided understanding of catalysis and design of antiretrovirals, but knowledge of the Pol precursor architecture and function before PR cleavage is limited. We developed a system to produce stable HIV-1 Pol and determined its cryo-electron microscopy structure. RT in Pol has a similar arrangement to the mature RT heterodimer, and its dimerization may draw together two PR monomers to activate proteolytic processing. HIV-1 thus may leverage the dimerization interfaces in Pol to regulate assembly and maturation of polyprotein precursors.
Collapse
Affiliation(s)
- Jerry Joe E. K. Harrison
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Department of Chemistry, University of Ghana, Legon, Ghana
| | | | - Jessica F. Bruhn
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- NanoImaging Services, San Diego, CA, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Lynda Tuberty
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|