1
|
Parchure A, Cesarec M, Braut A, Kolman R, Ivanišević V, Čunko M, Bursać S, de Reuver R, Begonja AJ, Rosani U, Volarević S, Maelfait J, Jurak I. ADAR1 p150 prevents HSV-1 from triggering PKR/eIF2α-mediated translational arrest and is required for efficient viral replication. PLoS Pathog 2025; 21:e1012452. [PMID: 40198737 PMCID: PMC12011305 DOI: 10.1371/journal.ppat.1012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/21/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Adenosine deaminase acting on dsRNA 1 (ADAR1) catalyzes the deamination of adenosines to inosines in double-stranded RNAs (dsRNA) and regulates innate immunity by preventing the hyperactivation of cytosolic dsRNA sensors such as MDA5, PKR or ZBP1. ADAR1 has been shown to exert pro- and antiviral, editing-dependent and editing-independent functions in viral infections, but little is known about its function in herpesvirus replication. We now demonstrate that herpes simplex virus 1 (HSV-1) hyperactivates PKR in the absence of ADAR1, resulting in eIF2α mediated translational arrest and reduced viral replication. Silencing of PKR or inhibition of its downstream effectors by viral (ICP34.5) or pharmacological (ISRIB) inhibitors rescues viral replication in ADAR1-deficient cells. Upon infection, ADAR1 p150 interacts with PKR and prevents its hyperactivation. Our findings demonstrate that ADAR1 is an important proviral factor that raises the activation threshold for sensors of innate immunity.
Collapse
Affiliation(s)
- Adwait Parchure
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Mia Cesarec
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Antonija Braut
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Robert Kolman
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Vlatka Ivanišević
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Marina Čunko
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Slađana Bursać
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine in Rijeka, University of Rijeka, Rijeka, Croatia
| | - Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Antonija J. Begonja
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine in Rijeka, University of Rijeka, Rijeka, Croatia
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Igor Jurak
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
2
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Walter RM, Majumder K, Kalejta RF. ATRX restricts Human Cytomegalovirus (HCMV) viral DNA replication through heterochromatinization and minimizes unpackaged viral genomes. PLoS Pathog 2024; 20:e1012516. [PMID: 39236084 PMCID: PMC11407672 DOI: 10.1371/journal.ppat.1012516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
ATRX limits the accumulation of human cytomegalovirus (HCMV) Immediate Early (IE) proteins at the start of productive, lytic infections, and thus is a part of the cell-intrinsic defenses against infecting viruses. ATRX is a chromatin remodeler and a component of a histone chaperone complex. Therefore, we hypothesized ATRX would inhibit the transcription of HCMV IE genes by increasing viral genome heterochromatinization and decreasing its accessibility. To test this hypothesis, we quantitated viral transcription and genome structure in cells replete with or depleted of ATRX. We found ATRX did indeed limit viral IE transcription, increase viral genome chromatinization, and decrease viral genome accessibility. The inhibitory effects of ATRX extended to Early (E) and Late (L) viral protein accumulation, viral DNA replication, and progeny virion output. However, we found the negative effects of ATRX on HCMV viral DNA replication were independent of its effects on viral IE and E protein accumulation but correlated with viral genome heterochromatinization. Interestingly, the increased number of viral genomes synthesized in ATRX-depleted cells were not efficiently packaged, indicating the ATRX-mediated restriction to HCMV viral DNA replication may benefit productive infection by increasing viral fitness. Our work mechanistically describes the antiviral function of ATRX and introduces a novel, pro-viral role for this protein, perhaps explaining why, unlike during infections with other herpesviruses, it is not directly targeted by a viral countermeasure in HCMV infected cells.
Collapse
Affiliation(s)
- Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Zubković A, Gomes C, Parchure A, Cesarec M, Ferenčić A, Rokić F, Jakovac H, Whitford AL, Dochnal SA, Cliffe AR, Cuculić D, Gallo A, Vugrek O, Hackenberg M, Jurak I. HSV-1 miRNAs are post-transcriptionally edited in latently infected human ganglia. J Virol 2023; 97:e0073023. [PMID: 37712701 PMCID: PMC10617394 DOI: 10.1128/jvi.00730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Herpes simplex virus 1 is an important human pathogen that has been intensively studied for many decades. Nevertheless, the molecular mechanisms regulating its establishment, maintenance, and reactivation from latency are poorly understood. Here, we show that HSV-1-encoded miR-H2 is post-transcriptionally edited in latently infected human tissues. Hyperediting of viral miRNAs increases the targeting potential of these miRNAs and may play an important role in regulating latency. We show that the edited miR-H2 can target ICP4, an essential viral protein. Interestingly, we found no evidence of hyperediting of its homolog, miR-H2, which is expressed by the closely related virus HSV-2. The discovery of post-translational modifications of viral miRNA in the latency phase suggests that these processes may also be important for other non-coding viral RNA in the latency phase, including the intron LAT, which in turn may be crucial for understanding the biology of this virus.
Collapse
Affiliation(s)
- Andreja Zubković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Cristina Gomes
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Adwait Parchure
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Mia Cesarec
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Antun Ferenčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Hrvoje Jakovac
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dražen Cuculić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Angela Gallo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Michael Hackenberg
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
5
|
Ivanišević V, Žilić L, Čunko M, Fadiga H, Munitić I, Jurak I. RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection-Hints on Another Layer of Complexity. Viruses 2023; 15:2007. [PMID: 37896783 PMCID: PMC10611208 DOI: 10.3390/v15102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia (L.Ž.)
| |
Collapse
|
6
|
Gonzalez CE, Ben Abdeljelil N, Pearson A. The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype. Viruses 2023; 15:1971. [PMID: 37766377 PMCID: PMC10535440 DOI: 10.3390/v15091971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication.
Collapse
Affiliation(s)
| | | | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| |
Collapse
|
7
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Duan Y, Sun L, Li Q. Herpes Simplex Virus 1 MicroRNAs: An Update. Intervirology 2023; 66:97-110. [PMID: 37285807 PMCID: PMC10389796 DOI: 10.1159/000531348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1), an important human pathogen, is capable of latent infection in neurons and productive (lytic) infection in other tissue cells. Once infected with HSV-1, the immune system of the organism cannot eliminate the virus and carries it lifelong. HSV-1 possesses approximately 150 kb of double-stranded linear genomic DNA and can encode at least 70 proteins and 37 mature microRNAs (miRNAs) derived from 18 precursor miRNAs (pre-miRNAs). SUMMARY These HSV-1-encoded miRNAs are widely involved in multiple processes in the life cycle of the virus and the host cell, including viral latent and lytic infection, as well as host cell immune signaling, proliferation, and apoptosis. KEY MESSAGE In this review, we focused primarily on recent advances in HSV-1-encoded miRNA expression, function, and mechanism, which may provide new research ideas and feasible research methods systemically and comprehensively.
Collapse
Affiliation(s)
- Yongzhong Duan
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China,
| | - Le Sun
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Qihan Li
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
9
|
Jurak I, Cokarić Brdovčak M, Djaković L, Bertović I, Knežević K, Lončarić M, Jurak Begonja A, Malatesti N. Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain. Pharmaceutics 2023; 15:pharmaceutics15030956. [PMID: 36986817 PMCID: PMC10058617 DOI: 10.3390/pharmaceutics15030956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Photodynamic therapy (PDT) is broadly used to treat different tumors, and it is a rapidly developing approach to inactivating or inhibiting the replication of fungi, bacteria, and viruses. Herpes simplex virus 1 (HSV-1) is an important human pathogen and a frequently used model to study the effects of PDT on enveloped viruses. Although many photosensitizers (PSs) have been tested for their antiviral properties, analyses are usually limited to assessing the reduction in viral yield, and thus the molecular mechanisms of photodynamic inactivation (PDI) remain poorly understood. In this study, we investigated the antiviral properties of TMPyP3-C17H35, a tricationic amphiphilic porphyrin-based PS with a long alkyl chain. We show that light-activated TMPyP3-C17H35 can efficiently block virus replication at certain nM concentrations without exerting obvious cytotoxicity. Moreover, we show that the levels of viral proteins (immediate-early, early, and late genes) were greatly reduced in cells treated with subtoxic concentrations of TMPyP3-C17H35, resulting in markedly decreased viral replication. Interestingly, we observed a strong inhibitory effect of TMPyP3-C17H35 on the virus yield only when cells were treated before or shortly after infection. In addition to the antiviral activity of the internalized compound, we show that the compound dramatically reduces the infectivity of free virus in the supernatant. Overall, our results demonstrate that activated TMPyP3-C17H35 effectively inhibits HSV-1 replication and that it can be further developed as a potential novel treatment and used as a model to study photodynamic antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Correspondence:
| | - Maja Cokarić Brdovčak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Lara Djaković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Ivana Bertović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Klaudia Knežević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| |
Collapse
|
10
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
11
|
Hou F, Sun Z, Deng Y, Chen S, Yang X, Ji F, Zhou M, Ren K, Pan D. Interactome and Ubiquitinome Analyses Identify Functional Targets of Herpes Simplex Virus 1 Infected Cell Protein 0. Front Microbiol 2022; 13:856471. [PMID: 35516420 PMCID: PMC9062659 DOI: 10.3389/fmicb.2022.856471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can productively infect multiple cell types and establish latent infection in neurons. Infected cell protein 0 (ICP0) is an HSV-1 E3 ubiquitin ligase crucial for productive infection and reactivation from latency. However, our knowledge about its targets especially in neuronal cells is limited. We confirmed that, like in non-neuronal cells, ICP0-null virus exhibited major replication defects in primary mouse neurons and Neuro-2a cells. We identified many ICP0-interacting proteins in Neuro-2a cells, 293T cells, and human foreskin fibroblasts by mass spectrometry-based interactome analysis. Co-immunoprecipitation assays validated ICP0 interactions with acyl-coenzyme A thioesterase 8 (ACOT8), complement C1q binding protein (C1QBP), ovarian tumour domain-containing protein 4 (OTUD4), sorting nexin 9 (SNX9), and vimentin (VIM) in both Neuro-2a and 293T cells. Overexpression and knockdown experiments showed that SNX9 restricted replication of an ICP0-null but not wild-type virus in Neuro-2a cells. Ubiquitinome analysis by immunoprecipitating the trypsin-digested ubiquitin reminant followed by mass spectrometry identified numerous candidate ubiquitination substrates of ICP0 in infected Neuro-2a cells, among which OTUD4 and VIM were novel substrates confirmed to be ubiquitinated by transfected ICP0 in Neuro-2a cells despite no evidence of their degradation by ICP0. Expression of OTUD4 was induced independently of ICP0 during HSV-1 infection. Overexpressed OTUD4 enhanced type I interferon expression during infection with the ICP0-null but not wild-type virus. In summary, by combining two proteomic approaches followed by confirmatory and functional experiments, we identified and validated multiple novel targets of ICP0 and revealed potential restrictive activities of SNX9 and OTUD4 in neuronal cells.
Collapse
Affiliation(s)
- Fujun Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yue Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiyuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
13
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
16
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
17
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
18
|
Cabral JM, Cushman CH, Sodroski CN, Knipe DM. ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection. PLoS Pathog 2021; 17:e1009567. [PMID: 33909709 PMCID: PMC8109836 DOI: 10.1371/journal.ppat.1009567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.
Collapse
Affiliation(s)
- Joseph M. Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille H. Cushman
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Catherine N. Sodroski
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Abstract
Cells activate their DNA damage response (DDR) in response to DNA virus infection, including adenoviruses, papillomaviruses, polyomaviruses, and herpesviruses. In this study, we found that the DDR kinase pathways activated in normal human fibroblasts by herpes simplex virus 1 (HSV-1) input genomic DNA, HSV-1 replicating DNA, and progeny DNA and in uninfected cells treated with etoposide are different. We also found using clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 technology that different host gene products are required for the DDR in uninfected versus infected cells. Individual DDR components can be proviral or antiviral in that ataxia-telangiectasia mutated (ATM) and p53 promote and Mre11 restricts replication of ICP0-null HSV-1, but ICP0 expression eliminates these DDR effects. Thus, in total, these results argue that HSV-1 manipulates the host cell DDR to utilize specific components for its optimal replication while inactivating the antiviral aspects of the DDR.IMPORTANCE We investigated the relationship between the DNA damage response, a collection of vital cellular pathways that repair potentially lethal damage to the genome, and the DNA virus herpes simplex virus 1. We found that infection by the virus triggers the DNA damage response, and key proteins that mediate this response have opposing effects on the replication and production of progeny viruses. Our work provides novel insights into the relationship between DNA virus infection and the cellular response to the viral genome. We speculate that viral gene products modulate this response, providing potentially novel targets for therapeutic intervention against the virus.
Collapse
|
20
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|
21
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
22
|
Barrozo ER, Nakayama S, Singh P, Vanni EAH, Arvin AM, Neumann DM, Bloom DC. Deletion of Herpes Simplex Virus 1 MicroRNAs miR-H1 and miR-H6 Impairs Reactivation. J Virol 2020; 94:e00639-20. [PMID: 32295910 PMCID: PMC7375377 DOI: 10.1128/jvi.00639-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
During all stages of infection, herpes simplex virus 1 (HSV-1) expresses viral microRNAs (miRNAs). There are at least 20 confirmed HSV-1 miRNAs, yet the roles of individual miRNAs in the context of viral infection remain largely uncharacterized. We constructed a recombinant virus lacking the sequences for miR-H1-5p and miR-H6-3p (17dmiR-H1/H6). The seed sequences for these miRNAs are antisense to each other and are transcribed from divergent noncoding RNAs in the latency-associated transcript (LAT) promoter region. Comparing phenotypes exhibited by the recombinant virus lacking these miRNAs to the wild type (17syn+), we found that during acute infection in cell culture, 17dmiR-H1/H6 exhibited a modest increase in viral yields. Analysis of pathogenesis in the mouse following footpad infection revealed a slight increase in virulence for 17dmiR-H1/H6 but no significant difference in the establishment or maintenance of latency. Strikingly, explant of latently infected dorsal root ganglia revealed a decreased and delayed reactivation phenotype. Further, 17dmiR-H1/H6 was severely impaired in epinephrine-induced reactivation in the rabbit ocular model. Finally, we demonstrated that deletion of miR-H1/H6 increased the accumulation of the LAT as well as several of the LAT region miRNAs. These results suggest that miR-H1/H6 plays an important role in facilitating efficient reactivation from latency.IMPORTANCE While HSV antivirals reduce the severity and duration of clinical disease in some individuals, there is no vaccine or cure. Therefore, understanding the mechanisms regulating latency and reactivation as a potential to elucidate targets for better therapeutics is important. There are at least 20 confirmed HSV-1 miRNAs, yet the roles of individual miRNAs in the context of viral infection remain largely uncharacterized. The present study focuses on two of the miRNAs (miR-H1/H6) that are encoded within the latency-associated transcript (LAT) region, a portion of the genome that has been associated with efficient reactivation. Here, we demonstrate that the deletion of the seed sequences of these miRNAs results in a severe reduction in reactivation of HSV-1 in the mouse and rabbit models. These results suggest a linkage between these miRNAs and reactivation.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
- UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Sanae Nakayama
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emilia A H Vanni
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Ann M Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Donna M Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
- UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Hodge K, Makjaroen J, Robinson J, Khoomrung S, Pisitkun T. Deep Proteomic Deconvolution of Interferons and HBV Transfection Effects on a Hepatoblastoma Cell Line. ACS OMEGA 2020; 5:16796-16810. [PMID: 32685848 PMCID: PMC7364717 DOI: 10.1021/acsomega.0c01865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 05/13/2023]
Abstract
Interferons are commonly utilized in the treatment of chronic hepatitis B virus (HBV) infection but are not effective for all patients. A deep understanding of the limitations of interferon treatment requires delineation of its activity at multiple "omic" levels. While myriad studies have characterized the transcriptomic effects of interferon treatment, surprisingly, few have examined interferon-induced effects at the proteomic level. To remedy this paucity, we stimulated HepG2 cells with both IFN-α and IFN-λ and performed proteomic analysis versus unstimulated cells. Alongside, we examined the effects of HBV transfection in the same cell line, reasoning that parallel IFN and HBV analysis might allow determination of cases where HBV transfection counters the effects of interferons. More than 6000 proteins were identified, with multiple replicates allowing for differential expression analysis at high confidence. Drawing on a compendium of transcriptomic data, as well as proteomic half-life data, we suggest means by which transcriptomic results diverge from our proteomic results. We also invoke a recent multiomic study of HBV-related hepatocarcinoma (HCC), showing that despite HBV's role in initiating HCC, the regulated proteomic landscapes of HBV transfection and HCC do not strongly align. Special focus is applied to the proteasome, with numerous components divergently altered under IFN and HBV-transfection conditions. We also examine alterations of other protein groups relevant to HLA complex peptide display, unveiling intriguing alterations in a number of ubiquitin ligases. Finally, we invoke genome-scale metabolic modeling to predict relevant alterations to the metabolic landscape under experimental conditions. Our data should be useful as a resource for interferon and HBV researchers.
Collapse
Affiliation(s)
- Kenneth Hodge
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jonathan Robinson
- Department
of Biology and Biological Engineering, National Bioinformatics Infrastructure
Sweden, Science for Life Laboratory, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Kemivägen
10, Gothenburg 412 96, Sweden
| | - Sakda Khoomrung
- Metabolomics
and Systems Biology, Department of Biochemistry, and Siriraj Metabolomics
and Phenomics Center Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Trairak Pisitkun
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
- . Phone: +6692-537-0549
| |
Collapse
|
24
|
He T, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Sun D, Mao S, Ou X, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virol J 2020; 17:68. [PMID: 32430029 PMCID: PMC7235440 DOI: 10.1186/s12985-020-01336-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Host shutoff refers to the widespread downregulation of host gene expression and has emerged as a key process that facilitates the reallocation of cellular resources for viral replication and evasion of host antiviral immune responses. MAIN BODY The Herpesviridae family uses a number of proteins that are responsible for host shutoff by directly targeting messenger RNA (mRNA), including virion host shutoff (VHS) protein and the immediate-early regulatory protein ICP27 of herpes simplex virus types 1 (HSV-1) and the SOX (shutoff and exonuclease) protein and its homologs in Gammaherpesvirinae subfamilies, although these proteins are not homologous. In this review, we highlight evidence that host shutoff is promoted by the VHS, ICP27 and SOX-like proteins and that they also contribute to immune evasion. CONCLUSIONS Further studies regarding the host shutoff proteins will not only contribute to provide new insights into the viral replication, expression and host immune evasion process, but also provide new molecular targets for the development of antiviral drugs and therapies.
Collapse
Affiliation(s)
- Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Lin Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
25
|
The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. Virus Res 2020; 285:198015. [PMID: 32416261 PMCID: PMC7303953 DOI: 10.1016/j.virusres.2020.198015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
ICP0 is a viral E3 ubiquitin ligase that promotes HSV-1 infection. ICP0 interacts with multiple component proteins of the ubiquitin pathway. ICP0 disrupts multiple cellular processes activated in response to infection ICP0 remodels the SUMO proteome to counteract host immune defences to infection. ICP0 is an attractive drug target for the development of antiviral HSV-1 therapeutics.
Herpes simplex virus 1 (HSV-1) hijacks ubiquitination machinery to modify the cellular proteome to create an environment permissive for virus replication. HSV-1 encodes its own RING-finger E3 ubiquitin (Ub) ligase, Infected Cell Protein 0 (ICP0), that directly interfaces with component proteins of the Ub pathway to inactivate host immune defences and cellular processes that restrict the progression of HSV-1 infection. Consequently, ICP0 plays a critical role in the infectious cycle of HSV-1 that is required to promote the efficient onset of lytic infection and productive reactivation of viral genomes from latency. This review will describe the current knowledge regarding the biochemical properties and known substrates of ICP0 during HSV-1 infection. We will highlight the gaps in the characterization of ICP0 function and propose future areas of research required to understand fully the biological properties of this important HSV-1 regulatory protein.
Collapse
|
26
|
Lin Y, Zheng C. A Tug of War: DNA-Sensing Antiviral Innate Immunity and Herpes Simplex Virus Type I Infection. Front Microbiol 2019; 10:2627. [PMID: 31849849 PMCID: PMC6901958 DOI: 10.3389/fmicb.2019.02627] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cytosolic DNA sensors are the most recently described class of pattern recognition receptors (PRRs), which induce the production of type I interferons (IFN-I) and trigger the induction of a rapid and efficient innate immune response. Herpes simplex virus type I (HSV-1), a typical DNA virus, has displayed the ability to manipulate and evade host antiviral innate immune responses. Therefore, with an aim to highlight IFN-I-mediated innate immune response in a battle against viral infection, we have summarized the current understandings of DNA-sensing signal pathways and the most recent findings on the molecular mechanisms utilized by HSV-1 to counteract antiviral immune responses. A comprehensive understanding of the interplay between HSV-1 and host early antiviral immune responses will contribute to the development of novel therapies and vaccines in the future.
Collapse
Affiliation(s)
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Herpes Simplex Virus Type 1-Encoded miR-H2-3p Manipulates Cytosolic DNA-Stimulated Antiviral Innate Immune Response by Targeting DDX41. Viruses 2019; 11:v11080756. [PMID: 31443275 PMCID: PMC6723821 DOI: 10.3390/v11080756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), one of the human pathogens widely epidemic and transmitted among various groups of people in the world, often causes symptoms known as oral herpes or lifelong asymptomatic infection. HSV-1 employs many sophisticated strategies to escape host antiviral immune response based on its multiple coding proteins. However, the functions involved in the immune evasion of miRNAs encoded by HSV-1 during lytic (productive) infection remain poorly studied. Dual-luciferase reporter gene assay and bioinformatics revealed that Asp-Glu-Ala-Asp (DEAD)-box helicase 41 (DDX41), a cytosolic DNA sensor of the DNA-sensing pathway, was a putative direct target gene of HSV-1-encoded miR-H2-3p. The transfection of miR-H2-3p mimics inhibited the expression of DDX41 at the level of mRNA and protein, as well as the expression of interferon beta (IFN-β) and myxoma resistance protein I (MxI) induced by HSV-1 infection in THP-1 cells, and promoted the viral replication and its gene transcription. However, the transfection of miR-H2-3p inhibitor showed opposite effects. This finding indicated that HSV-1-encoded miR-H2-3p attenuated cytosolic DNA-stimulated antiviral immune response by manipulating host DNA sensor molecular DDX41 to enhance virus replication in cultured cells.
Collapse
|
28
|
Han M, Napier CE, Frölich S, Teber E, Wong T, Noble JR, Choi EHY, Everett RD, Cesare AJ, Reddel RR. Synthetic lethality of cytolytic HSV-1 in cancer cells with ATRX and PML deficiency. J Cell Sci 2019; 132:jcs.222349. [PMID: 30745338 PMCID: PMC6432714 DOI: 10.1242/jcs.222349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Cancers that utilize the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance are often difficult to treat and have a poor prognosis. They are also commonly deficient for expression of ATRX protein, a repressor of ALT activity, and a component of promyelocytic leukemia nuclear bodies (PML NBs) that are required for intrinsic immunity to various viruses. Here, we asked whether ATRX deficiency creates a vulnerability in ALT cancer cells that could be exploited for therapeutic purposes. We showed in a range of cell types that a mutant herpes simplex virus type 1 (HSV-1) lacking ICP0, a protein that degrades PML NB components including ATRX, was ten- to one thousand-fold more effective in infecting ATRX-deficient cells than wild-type ATRX-expressing cells. Infection of co-cultured primary and ATRX-deficient cancer cells revealed that mutant HSV-1 selectively killed ATRX-deficient cells. Sensitivity to mutant HSV-1 infection also correlated inversely with PML protein levels, and we showed that ATRX upregulates PML expression at both the transcriptional and post-transcriptional levels. These data provide a basis for predicting, based on ATRX or PML levels, which tumors will respond to a selective oncolytic herpesvirus. Summary: ATRX deficiency in cancer cells induces downregulation of PML, rendering the cells highly sensitive to lysis with ICP0-null mutant herpes simplex virus-1, with potential therapeutic applications.
Collapse
Affiliation(s)
- Mingqi Han
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sonja Frölich
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erdahl Teber
- Bioinformatics Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Ted Wong
- Bioinformatics Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jane R Noble
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Eugene H Y Choi
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow G61 1QH, Scotland, UK
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
29
|
Herpes Simplex Virus 1 Lytic Infection Blocks MicroRNA (miRNA) Biogenesis at the Stage of Nuclear Export of Pre-miRNAs. mBio 2019; 10:mBio.02856-18. [PMID: 30755517 PMCID: PMC6372804 DOI: 10.1128/mbio.02856-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Various mechanisms have been identified by which viruses target host small RNA biogenesis pathways to achieve optimal infection outcomes. Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen whose successful persistence in the host entails both productive (“lytic”) and latent infection. Although many HSV-1 miRNAs have been discovered and some are thought to help control the lytic/latent switch, little is known about regulation of their biogenesis. By characterizing expression of both pre-miRNAs and mature miRNAs under various conditions, this study revealed striking differences in miRNA biogenesis between lytic and latent infection and uncovered a regulatory mechanism that blocks pre-miRNA nuclear export and is dependent on viral protein ICP27 and viral DNA synthesis. This mechanism represents a new virus-host interaction that could limit the repressive effects of HSV-1 miRNAs hypothesized to promote latency and may shed light on the regulation of miRNA nuclear export, which has been relatively unexplored. Herpes simplex virus 1 (HSV-1) switches between two infection programs, productive (“lytic”) and latent infection. Some HSV-1 microRNAs (miRNAs) have been hypothesized to help control this switch, and yet little is known about regulation of their expression. Using Northern blot analyses, we found that, despite inherent differences in biogenesis efficiency among six HSV-1 miRNAs, all six exhibited high pre-miRNA/miRNA ratios during lytic infection of different cell lines and, when detectable, in acutely infected mouse trigeminal ganglia. In contrast, considerably lower ratios were observed in latently infected ganglia and in cells transduced with lentiviral vectors expressing the miRNAs, suggesting that HSV-1 lytic infection blocks miRNA biogenesis. This phenomenon is not specific to viral miRNAs, as a host miRNA expressed from recombinant HSV-1 also exhibited high pre-miRNA/miRNA ratios late during lytic infection. The levels of most of the mature miRNAs remained stable during infection in the presence of actinomycin D, indicating that the high ratios are due to inefficient pre-miRNA conversion to miRNA. Cellular fractionation experiments showed that late (but not early) during infection, pre-miRNAs were enriched in the nucleus and depleted in the cytoplasm, indicating that nuclear export was blocked. A mutation eliminating ICP27 expression or addition of acyclovir reduced pre-miRNA/miRNA ratios, but mutations drastically reducing Us11 expression did not. Thus, HSV-1 lytic infection inhibits miRNA biogenesis at the step of nuclear export and does so in an ICP27- and viral DNA synthesis-dependent manner. This mechanism may benefit the virus by reducing expression of repressive miRNAs during lytic infection while permitting elevated expression during latency.
Collapse
|
30
|
Role for a Filamentous Nuclear Assembly of IFI16, DNA, and Host Factors in Restriction of Herpesviral Infection. mBio 2019; 10:mBio.02621-18. [PMID: 30670617 PMCID: PMC6343039 DOI: 10.1128/mbio.02621-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammalian cells exhibit numerous strategies to recognize and contain viral infections. The best-characterized antiviral responses are those that are induced within the cytosol by receptors that activate interferon responses or shut down translation. Antiviral responses also occur in the nucleus, yet these intranuclear innate immune responses are poorly defined at the receptor-proximal level. In this study, we explored the ability of cells to restrict infection by assembling viral DNA into transcriptionally silent heterochromatin within the nucleus. We found that the IFI16 restriction factor forms filaments on DNA within infected cells. These filaments recruit antiviral restriction factors to prevent viral replication in various cell types. Mechanistically, IFI16 filaments inhibit the recruitment of RNA polymerase II to viral genes. We propose that IFI16 filaments with associated restriction factors constitute a “restrictosome” structure that can signal to other parts of the nucleus where foreign DNA is located that it should be silenced. Several host cell nuclear factors are known to restrict herpes simplex virus 1 (HSV-1) replication, but their mechanisms of action remain to be defined. Interferon-inducible protein 16 (IFI16) and the nuclear domain 10-associated proteins, such as promyelocytic leukemia (PML) protein, localize to input viral genomes, but they are also capable of restricting progeny viral transcription. In this study, we used structured illumination microscopy to show that after HSV DNA replication, IFI16 forms nuclear filamentous structures on DNA within a subset of nuclear replication compartments in HSV-1 ICP0-null mutant virus-infected human cells. The ability to form filaments in different cell types correlates with the efficiency of restriction, and the kinetics of filament formation and epigenetic changes are similar. Thus, both are consistent with the filamentous structures being involved in epigenetic silencing of viral progeny DNA. IFI16 filaments recruit other restriction factors, including PML, Sp100, and ATRX, to aid in the restriction. Although the filaments are only in a subset of the replication compartments, IFI16 reduces the levels of elongation-competent RNA polymerase II (Pol II) in all replication compartments. Therefore, we propose that IFI16 filaments with associated restriction factors that form in replication compartments constitute a “restrictosome” structure that signals in cis and trans to silence the progeny viral DNA throughout the infected cell nucleus. The IFI16 filamentous structure may constitute the first known nuclear supramolecular organizing center for signaling in the cell nucleus.
Collapse
|
31
|
Cokarić Brdovčak M, Zubković A, Jurak I. Herpes Simplex Virus 1 Deregulation of Host MicroRNAs. Noncoding RNA 2018; 4:ncrna4040036. [PMID: 30477082 PMCID: PMC6316616 DOI: 10.3390/ncrna4040036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Viruses utilize microRNAs (miRNAs) in a vast variety of possible interactions and mechanisms, apparently far beyond the classical understanding of gene repression in humans. Likewise, herpes simplex virus 1 (HSV-1) expresses numerous miRNAs and deregulates the expression of host miRNAs. Several HSV-1 miRNAs are abundantly expressed in latency, some of which are encoded antisense to transcripts of important productive infection genes, indicating their roles in repressing the productive cycle and/or in maintenance/reactivation from latency. In addition, HSV-1 also exploits host miRNAs to advance its replication or repress its genes to facilitate latency. Here, we discuss what is known about the functional interplay between HSV-1 and the host miRNA machinery, potential targets, and the molecular mechanisms leading to an efficient virus replication and spread.
Collapse
Affiliation(s)
- Maja Cokarić Brdovčak
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Andreja Zubković
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Igor Jurak
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| |
Collapse
|
32
|
Cabral JM, Oh HS, Knipe DM. ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress. eLife 2018; 7:40228. [PMID: 30465651 PMCID: PMC6307862 DOI: 10.7554/elife.40228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which mammalian cells recognize and epigenetically restrict viral DNA are not well defined. We used herpes simplex virus with bioorthogonally labeled genomes to detect host factors recruited to viral DNA shortly after its nuclear entry and found that the cellular IFI16, PML, and ATRX proteins colocalized with viral DNA by 15 min post infection. HSV-1 infection of ATRX-depleted fibroblasts resulted in elevated viral mRNA and accelerated viral DNA accumulation. Despite the early association of ATRX with vDNA, we found that initial viral heterochromatin formation is ATRX-independent. However, viral heterochromatin stability required ATRX from 4 to 8 hr post infection. Inhibition of transcription blocked viral chromatin loss in ATRX-knockout cells; thus, ATRX is uniquely required for heterochromatin maintenance during chromatin stress. These results argue that the initial formation and the subsequent maintenance of viral heterochromatin are separable mechanisms, a concept that likely extrapolates to host cell chromatin and viral latency. Cells carefully package their DNA, tightly wrapping the long, stringy molecule around spool-like groups of proteins called histones. However, the genes that are draped around histones are effectively silenced, because they are ‘hidden’ from the molecular actors that read the genetic information to create proteins. A cell can control which of its genes are active by using proteins to move histones on or off specific portions of DNA. For example, a protein known as ATRX associates with a partner to load histones onto precise DNA regions and switch them off. Wrapping DNA around histones can also be a defense mechanism against viruses, which are tiny cellular parasites that hijack the molecular machinery of a cell to create more of themselves. For instance, the herpes simplex virus, which causes cold sores and genital herpes, injects its DNA into a cell where it is used as a template to create new viral particles. By packaging the DNA of the virus around histones, the cell ensures that this foreign genetic information cannot be used to make more invaders. However, the details of this process remain unknown. In particular, it is still unclear what happens immediately after the virus penetrates the nucleus, the compartment that shelters the DNA of the cell. Here, Cabral et al. explored this question by dissecting the role of ATRX in silencing the genetic information of the herpes simplex virus. The viral DNA was labeled while inside the virus itself, and then tracked using microscopy imaging techniques as it made its way into the cell and inside the nucleus. This revealed that, almost immediately after the viral DNA had entered the nucleus, ATRX came in contact with the foreign molecule. One possibility was that ATRX would be responsible for loading certain forms of histones onto the viral DNA. However, after Cabral et al. deleted ATRX from the cell, histones were still present on the genetic information of the virus, but this association was less stable. This indicated that ATRX was only required to keep histones latched onto the viral DNA, but not to load the proteins in the first place. Overall, these results show that using histones to silence viral DNA in done in several steps: first, the foreign genetic material needs to be recognized, then histones have to be attached, and finally molecular actors should be recruited to keep histones onto the DNA. Knowing how cells ward off the herpes simplex virus could help us find ways to ‘boost’ this defense mechanism. Armed with this knowledge, we could also begin to understand why certain people are more likely to be infected by this virus.
Collapse
Affiliation(s)
- Joseph M Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| |
Collapse
|
33
|
Herpes simplex virus 1 miRNA sequence variations in latently infected human trigeminal ganglia. Virus Res 2018; 256:90-95. [PMID: 30077725 DOI: 10.1016/j.virusres.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/01/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022]
Abstract
Human herpes simplex virus 1 (HSV-1) expresses numerous miRNAs, the function of which is not well understood. Several qualitative and quantitative analyses of HSV-1 miRNAs have been performed on infected cells in culture and animal models, however, there is very limited knowledge of their expression in human samples. We sequenced small-RNA libraries of RNA derived from human trigeminal ganglia latently infected with HSV-1 and Varicella zoster virus (VZV) and detected only a small subset of HSV-1 miRNA. The most abundantly expressed miRNAs are miR-H2, miRNA that regulates the expression of immediate early gene ICP0, and miR-H3 and -H4, both miRNAs expressed antisense to the transcript encoding the major neurovirulence factor ICP34.5. The sequence of many HSV-1 miRNAs detected in human samples was different from the sequences deposited in miRBase, which might significantly affect targeted functional analyses.
Collapse
|
34
|
Mechanisms of Host IFI16, PML, and Daxx Protein Restriction of Herpes Simplex Virus 1 Replication. J Virol 2018; 92:JVI.00057-18. [PMID: 29491153 DOI: 10.1128/jvi.00057-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The initial events after DNA virus infection involve a race between epigenetic silencing of the incoming viral DNA by host cell factors and expression of viral genes. Several host gene products, including the nuclear domain 10 (ND10) components PML (promyelocytic leukemia) and Daxx (death domain-associated protein 6), as well as IFI16 (interferon-inducible protein 16), have been shown to restrict herpes simplex virus 1 (HSV-1) replication. Whether IFI16 and ND10 components work together or separately to restrict HSV-1 replication is not known. To determine the combinatorial effects of IFI16 and ND10 proteins on viral infection, we depleted Daxx or PML in primary human foreskin fibroblasts (HFFs) in the presence or absence of IFI16. Daxx or IFI16 depletion resulted in higher ICP0 mutant viral yields, and the effects were additive. Surprisingly, small interfering RNA (siRNA) depletion of PML in the HFF cells led to decreased ICP0-null virus replication, while short hairpin RNA (shRNA) depletion led to increased ICP0-null virus replication, arguing that different PML isoforms or PML-related proteins may have restrictive or proviral functions. In normal human cells, viral DNA replication increases expression of all classes of HSV-1 genes. We observed that IFI16 repressed transcription from both parental and progeny DNA genomes. Taken together, our results show that the mechanisms of action of IFI16 and ND10 proteins are independent, at least in part, and that IFI16 exerts restrictive effects on both input and replicated viral genomes. These results raise the potential for distinct mechanisms of action of IFI16 on parental and progeny viral DNA molecules.IMPORTANCE Many human DNA viruses transcribe their genomes and replicate in the nucleus of a host cell, where they exploit the host cell nuclear machinery for their own replication. Host factors attempt to restrict viral replication by blocking such events, and viruses have evolved mechanisms to neutralize the host restriction factors. In this study, we provide information about the mechanisms of action of three host cell factors that restrict replication of herpes simplex virus (HSV). We found that these factors function independently and that one acts to restrict viral transcription from parental and progeny viral DNA genomes. These results provide new information about how cells counter DNA virus replication in the nucleus and provide possible approaches to enhance the ability of human cells to resist HSV infection.
Collapse
|
35
|
Abdi K, Lai CH, Paez-Gonzalez P, Lay M, Pyun J, Kuo CT. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun 2018; 9:1655. [PMID: 29695808 PMCID: PMC5916891 DOI: 10.1038/s41467-018-03812-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC’s neurogenic potential. Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.
Collapse
Affiliation(s)
- Khadar Abdi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chun-Hsiang Lai
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Mark Lay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joon Pyun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, 27710, USA. .,Brumley Neonatal/Perinatal Research Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Zheng K, Liu Q, Wang S, Ren Z, Kitazato K, Yang D, Wang Y. HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein. Virus Genes 2018. [DOI: 10.1007/s11262-018-1551-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection. mBio 2018; 9:mBio.02372-17. [PMID: 29437926 PMCID: PMC5801469 DOI: 10.1128/mbio.02372-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for the lifetime of the host as a result of its ability to establish latent infection within sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent infection program is largely unknown; however, HSV-1 is able to coopt cellular silencing mechanisms to facilitate the suppression of lytic gene expression. Here, we demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the latency associated transcript (LAT) region is critical for the maintenance of a specific local chromatin structure. Additionally, loss of CTCF binding has detrimental effects on the ability to reactivate from latent infection. These results argue that CTCF plays a critical role in epigenetic regulation of viral gene expression to establish and/or maintain a form of latent infection that can reactivate efficiently.
Collapse
|
38
|
Herpesvirus microRNAs for use in gene therapy immune-evasion strategies. Gene Ther 2017; 24:385-391. [PMID: 28485720 DOI: 10.1038/gt.2017.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Transplantation of allogeneic cells as well as of genetically corrected autologous cells are potent approaches to restore cellular functions in patients suffering from genetic diseases. The recipient's immune responses against non-self-antigens may compromise the survival of the grafted cells. Recipients of the graft may therefore require lifelong treatment with immunosuppressive drugs. An alternative approach to reduce graft rejection could involve the use of immune-evasion molecules. Expression of such molecules in cells of the graft may subvert recognition by the host's immune system. Viruses in particular are masters of exploitation and modulation of their hosts immune response. The Herpesviridae family provides a proof of concept for this as these viruses are capable to establish latency and a lifelong persistence in the infected hosts. While several viral proteins involved in immune evasion have been characterized, the Herpesviridae also encode a multitude of viral microRNA (miRNAs). Several of these miRNAs have been demonstrated to reduce the sensitivity of the infected cells to the destructive action of the host's immune cells. In this review, the miRNAs of some common herpesviruses that are associated with immune modulation will be discussed with a focus on their potential use in strategies aiming at generating non-immunogenic cells for transplantation.
Collapse
|
39
|
Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus. J Virol 2017; 91:JVI.00006-17. [PMID: 28179534 DOI: 10.1128/jvi.00006-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/06/2017] [Indexed: 01/30/2023] Open
Abstract
Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway.IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1.
Collapse
|
40
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
41
|
Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia. J Virol 2017; 91:JVI.02001-16. [PMID: 27847363 DOI: 10.1128/jvi.02001-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. IMPORTANCE Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation.
Collapse
|
42
|
Sadek J, Read GS. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections. J Virol 2016; 90:10844-10856. [PMID: 27681125 PMCID: PMC5110170 DOI: 10.1128/jvi.01302-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5' or 3' end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections.
Collapse
Affiliation(s)
- Jouliana Sadek
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - G Sullivan Read
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
43
|
Sanabria-Solano C, Gonzalez CE, Richerioux N, Bertrand L, Dridi S, Griffiths A, Langelier Y, Pearson A. Regulation of viral gene expression by the herpes simplex virus 1UL24 protein (HSV-1UL24 inhibits accumulation of viral transcripts). Virology 2016; 495:148-60. [PMID: 27214229 DOI: 10.1016/j.virol.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
UL24 is conserved among all Herpesviridae. In herpes simplex virus 1 (HSV-1), UL24 mutations lead to reduced viral titers both in cell culture and in vivo, and reduced pathogenicity. The human cytomegalovirus ortholog of UL24 has a gene regulatory function; however, it is not known whether other UL24 orthologs also affect gene expression. We discovered that in co-transfection experiments, expression of UL24 correlated with a reduction in the expression of several viral proteins and transcripts. Substitution mutations targeting conserved residues in UL24 impaired this function. Reduced transcript levels did not appear attributable to changes in mRNA stability. The UL24 ortholog of Herpes B virus exhibited a similar activity. An HSV-1 mutant that does not express UL24 produced more viral R1 and R2 transcripts than the wild type or rescue virus relative to the amount of viral DNA. These results reveal a new role for HSV-1UL24 in regulating viral mRNA accumulation.
Collapse
Affiliation(s)
| | - Carmen Elena Gonzalez
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Nicolas Richerioux
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Luc Bertrand
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Slimane Dridi
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Anthony Griffiths
- Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227-5301, United States
| | - Yves Langelier
- CRCHUM (Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Pavillon R, 900 Saint-Denis, Montréal, Canada H2X 0A9
| | - Angela Pearson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7.
| |
Collapse
|
44
|
Abstract
UNLABELLED Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. IMPORTANCE Latent infection by viruses usually involves minimizing viral protein synthesis so that the host immune system cannot recognize the infected cells and eliminate them. Herpes simplex virus has been thought to express only noncoding RNAs as abundant gene products during latency. In this study, we found genetic evidence that an HSV lytic protein is functional during latent infection, and this protein may provide a new target for antivirals that target both lytic and latent infections.
Collapse
|
45
|
Kennedy PGE, Rovnak J, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J Gen Virol 2015; 96:1581-602. [PMID: 25794504 DOI: 10.1099/vir.0.000128] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.
Collapse
Affiliation(s)
- Peter G E Kennedy
- 1Institute of Infection, Immunity and Inflammation, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK
| | - Joel Rovnak
- 2Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Hussain Badani
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Randall J Cohrs
- 3Department of Neurology, University of Colorado Medical School, Aurora, CO 80045, USA 4Department of Microbiology, University of Colorado Medical School, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Pan D, Flores O, Umbach JL, Pesola JM, Bentley P, Rosato PC, Leib DA, Cullen BR, Coen DM. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2015; 15:446-56. [PMID: 24721573 DOI: 10.1016/j.chom.2014.03.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.
Collapse
Affiliation(s)
- Dongli Pan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Flores
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer L Umbach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peris Bentley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Zhang BC, Zhang J, Sun L. In-depth profiling and analysis of host and viral microRNAs in Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus reveal involvement of microRNAs in host-virus interaction in teleost fish. BMC Genomics 2014; 15:878. [PMID: 25297525 PMCID: PMC4200114 DOI: 10.1186/1471-2164-15-878] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs (miRNAs) regulate gene expression by binding to mRNA transcripts in various biological processes. In mammals and birds, miRNAs are known to play vital parts in both host immune defense and viral infection. However, in lower vertebrates such as teleost, systematic investigations on host and viral miRNAs are lacking. Results In this study, we applied high-throughput sequencing technology to identify and analyze both host and viral miRNAs in Japanese flounder (Paralichthys olivaceus), an economically important teleost fish farmed widely in the world, infected with megalocytivirus at a timescale of 14 days divided into five different time points. The results showed that a total of 381 host miRNAs and 9 viral miRNAs were identified, the latter being all novel miRNAs that have no homologues in the currently available databases. Of the host miRNAs, 251 have been reported previously in flounder and other species, and 130 were discovered for the first time. The expression levels of 121 host miRNAs were significantly altered at 2 d to 14 d post-viral infection (pi), and these miRNAs were therefore classified as differentially expressed host miRNAs. The expression levels of all 9 viral miRNAs increased from 0 d pi to 10 d pi and then dropped from 10 d pi to 14 d pi. For the 121 differentially expressed host miRNAs and the 9 viral miRNAs, 243 and 48 putative target genes, respectively, were predicted in flounder. GO and KEGG enrichment analysis revealed that the putative target genes of both host and viral miRNAs were grouped mainly into the categories of immune response, signal transduction, and apoptotic process. Conclusions The results of our study provide the first evidences that indicate existence in teleost fish (i) infection-responsive host and viral miRNAs that exhibit dynamic changes in expression profiles during the course of viral infection, and (ii) potential involvement of miRNAs in host-viral interaction. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-878) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
48
|
Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 2014; 10:e1004237. [PMID: 25058429 PMCID: PMC4110040 DOI: 10.1371/journal.ppat.1004237] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. Primary herpes simplex virus (HSV) infections are characterized by acute disease that resolves rapidly, but the virus persists in a latent form in sensory neurons that can be a source of renewed disease. Analyzing gene expression in single mouse neurons harboring latent HSV, we show directly that HSV latency is dynamic and heterogeneous. HSV lytic gene transcripts were frequently detected in latently infected neurons and often in combinations. Expression of selected cellular anti-viral and survival genes showed that transcriptional profiles differed between latently infected and uninfected neurons from the same ganglia. The pattern of host gene expression also differed between latently infected neurons that were and were not experiencing HSV lytic gene expression. Our study suggests that HSV latency is characterized by very frequent switching on of lytic genes and a rapid response by the host, presumably to halt progression to reactivation.
Collapse
Affiliation(s)
- Joel Z. Ma
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - Tiffany A. Russell
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tim Spelman
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne, Victoria, Australia
- Centre of Population Health, Burnet Institute, Melbourne, Victoria, Australia
| | - Francis R. Carbone
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (JZM); (FRC); (DCT)
| |
Collapse
|
49
|
Maturation and vesicle-mediated egress of primate gammaherpesvirus rhesus monkey rhadinovirus require inner tegument protein ORF52. J Virol 2014; 88:9111-28. [PMID: 24899183 DOI: 10.1128/jvi.01502-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The tegument layer of herpesviruses comprises a collection of proteins that is unique to each viral species. In rhesus monkey rhadinovirus (RRV), a close relative of the human oncogenic pathogen Kaposi's sarcoma-associated herpesvirus, ORF52 is a highly abundant tegument protein tightly associated with the capsid. We now report that ORF52 knockdown during RRV infection of rhesus fibroblasts led to a greater than 300-fold reduction in the viral titer by 48 h but had little effect on the number of released particles and caused only modest reductions in the levels of intracellular viral genomic DNA and no appreciable change in viral DNA packaging into capsids. These data suggested that the lack of ORF52 resulted in the production and release of defective particles. In support of this interpretation, transmission electron microscopy (TEM) revealed that without ORF52, capsid-like particles accumulated in the cytoplasm and were unable to enter egress vesicles, where final tegumentation and envelopment normally occur. TEM also demonstrated defective particles in the medium that closely resembled the accumulating intracellular particles, having neither a full tegument nor an envelope. The disruption in tegument formation from ORF52 suppression, therefore, prevented the incorporation of ORF45, restricting its subcellular localization to the nucleus and appearing, by confocal microscopy, to inhibit particle transport toward the periphery. Ectopic expression of small interfering RNA (siRNA)-resistant ORF52 was able to partially rescue all of these phenotypic changes. In sum, our results indicate that efficient egress of maturing virions and, in agreement with studies on murine gammaherpesvirus 68 (MHV-68), complete tegumentation and secondary envelopment are dependent on intact ORF52. IMPORTANCE The tegument, or middle layer, of herpesviruses comprises both viral and cellular proteins that play key roles in the viral life cycle. A subset of these proteins is present only within members of one of the three subfamilies (alphaherpesviruses, betaherpesviruses, or gammaherpesviruses) of Herpesviridae. In this report, we show that the gammaherpesvirus-specific tegument protein ORF52 is critical for maturation of RRV, the closest relative of Kaposi's sarcoma-associated herpesvirus (KSHV) (a human cancer-causing pathogen) that has undergone this type of analysis. Without ORF52, the nascent subviral particles are essentially stuck in maturation limbo, unable to acquire the tegument or outer (envelope) layers. This greatly attenuates infectivity. Our data, together with earlier work on a murine homolog, as well as a more distantly related human homolog, provide a more complete understanding of how early protein interactions involving virus-encoded tegument proteins are critical for virus assembly and are also, therefore, potentially attractive therapeutic targets.
Collapse
|
50
|
Steiner I, Benninger F. Update on herpes virus infections of the nervous system. Curr Neurol Neurosci Rep 2014; 13:414. [PMID: 24142852 DOI: 10.1007/s11910-013-0414-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) are human neurotropic viruses that establish latent infection in dorsal root ganglia (DRG) for the entire life of the host. From the DRG they can reactivate to cause human morbidity and mortality. Although they vary, in part, in the clinical disorders they cause, and in their molecular structure, they share several features that govern the biology of their infection of the human nervous system. HSV-1 is the causative agent of encephalitis, corneal blindness, and several peripheral nervous system disorders; HSV-2 is responsible for meningoencephalitis in neonates and meningitis in adults. The biology of their ability to establish latency, maintain it for the entire life of the host, reactivate, and cause primary and recurrent disease is being studied in animal models and in humans. This review covers recent advances in understanding the biology and pathogenesis of HSV-related disease.
Collapse
Affiliation(s)
- Israel Steiner
- Department of Neurology, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel,
| | | |
Collapse
|