1
|
Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021; 12:716927. [PMID: 34394123 PMCID: PMC8358655 DOI: 10.3389/fimmu.2021.716927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Host restriction factors affect different phases of a viral life cycle, contributing to innate immunity as the first line of defense against viruses, including HIV-1. These restriction factors are constitutively expressed, but triggered upon infection by interferons. Both pre-integration and post-integration events of the HIV-1 life cycle appear to play distinct roles in the induction of interferon-stimulated genes (ISGs), many of which encode antiviral restriction factors. However, HIV-1 counteracts the mechanisms mediated by these restriction factors through its encoded components. Here, we review the recent findings of pathways that lead to the induction of ISGs, and the mechanisms employed by the restriction factors such as IFITMs, APOBEC3s, MX2, and ISG15 in preventing HIV-1 replication. We also reflect on the current understanding of the counter-mechanisms employed by HIV-1 to evade innate immune responses and overcome host restriction factors. Overall, this mini-review provides recent insights into the HIV-1-host cross talk bridging the understanding between intracellular immunity and research avenues in the field of therapeutic interventions against HIV-1.
Collapse
|
2
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance. Heliyon 2019; 5:e01498. [PMID: 31025011 PMCID: PMC6475876 DOI: 10.1016/j.heliyon.2019.e01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023] Open
Abstract
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
Collapse
|
3
|
Mohammadzadeh N, Follack TB, Love RP, Stewart K, Sanche S, Chelico L. Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology 2018; 527:21-31. [PMID: 30448640 DOI: 10.1016/j.virol.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Kris Stewart
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan Infectious Disease Care Network, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Stephen Sanche
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
4
|
Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 2018; 37:151-164. [PMID: 29211501 DOI: 10.1080/08830185.2017.1403596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.
Collapse
Affiliation(s)
- Faezeh Borzooee
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mahdi Asgharpour
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Emma Quinlan
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Michael D Grant
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mani Larijani
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| |
Collapse
|
5
|
Human-APOBEC3G-dependent restriction of porcine endogenous retrovirus replication is mediated by cytidine deamination and inhibition of DNA strand transfer during reverse transcription. Arch Virol 2018; 163:1907-1914. [PMID: 29610985 DOI: 10.1007/s00705-018-3822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Although human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hA3G)-mediated deamination is the major mechanism used to restrict the infectivity of a broad range of retroviruses, it is unclear whether porcine endogenous retrovirus (PERV) is affected by hA3G or porcine A3F (poA3F). To determine whether DNA deamination is required for hA3G- and poA3F-dependent inhibition of PERV transmission, we developed VSV-pseudotype PERV-B expressing hA3G, mutant hA3G-E67Q (encapsidation and RNA binding activity-deficient), mutant hA3G-E259Q (deaminase-deficient), or poA3F. hA3G-E67Q decreased virus infectivity by ~ 93% compared to the ~ 99% decrease of viral infectivity by wild-type hA3G, while hA3G-E259Q decreased the infectivity of PERV-B by ~ 35%. These data suggest that cytidine deamination activity is crucial for efficient restriction of PERV by hA3G, but cytidine deamination cannot fully explain the inactivation of PERV by hA3G. Furthermore, differential DNA denaturation PCR (3D-PCR) products from 293T cells infected with PERV-B expressing hA3G mutants were sequenced. G-to-A hypermutation was detected at a frequency of 4.1% for hA3G, 3.4% for hA3G-E67Q, and 4.7% for poA3F. These results also suggest that hA3G and poA3F inhibit PERV by a deamination-dependent mechanism. To examine the effect of hA3G on the production of PERV DNA, genomic DNA was extracted from 293T cells 12 h after infection with PERV expressing hA3G, and this DNA was used as template for real-time PCR. A 50% decrease in minus strand strong stop (-sss) DNA synthesis/transfer was observed in the presence of hA3G. Based on these results, we conclude that hA3G may restrict PERV by both deamination-dependent mechanisms and inhibition of DNA strand transfer during PERV reverse transcription.
Collapse
|
6
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
7
|
Miyagi E, Kao S, Fumitaka M, Buckler-White A, Plishka R, Strebel K. Long-term passage of Vif-null HIV-1 in CD4 + T cells expressing sub-lethal levels of APOBEC proteins fails to develop APOBEC resistance. Virology 2017; 504:1-11. [PMID: 28131088 DOI: 10.1016/j.virol.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
APOBEC3G (A3G) is a cytidine deaminase with potent antiviral activity that is antagonized by Vif. A3G is expressed in a cell type-specific manner and some semi-permissive cells, including A3.01, express A3G but fail to block replication of Vif-null HIV-1. Here we explored the semi-permissive nature of A3.01 cells and found it to be defined exclusively by the levels of A3G. Indeed, minor changes in A3G levels rendered A3.01 cells either fully permissive or non-permissive for Vif-null HIV-1. Our data indicate that A3.01 cells express sub-lethal levels of catalytically active A3G that affects Vif-null HIV-1 at the proviral level but does not completely block virus replication due to purifying selection. Attempts to use the selective pressure exerted by such sub-lethal levels of A3G to select for APOBEC-resistant Vif-null virus capable of replicating in H9 cells failed despite passaging virus for five months, demonstrating that Vif is a critical viral accessory protein.
Collapse
Affiliation(s)
- Eri Miyagi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Sandra Kao
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Miyoshi Fumitaka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Ron Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States.
| |
Collapse
|
8
|
Mullane SA, Werner L, Rosenberg J, Signoretti S, Callea M, Choueiri TK, Freeman GJ, Bellmunt J. Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma. Sci Rep 2016; 6:27702. [PMID: 27283319 PMCID: PMC4901342 DOI: 10.1038/srep27702] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/18/2016] [Indexed: 12/30/2022] Open
Abstract
Metastatic urothelial carcinoma (mUC) has a very high mutational rate and is associated with an APOBEC mutation signature. We examined the correlation of APOBEC expression with overall survival (OS) and PD-L1 expression in a cohort of 73 mUC patients. mRNA expression of APOBEC3 family of genes (A3A, A3B, A3C, A3F_a, A3F_b, A3G, A3H) was measured using Nanostring. PD-L1 expression, evaluated by immunohistochemistry, on tumor infiltrating mononuclear cells (TIMCs) and tumor cells was scored from 0 to 4, with 2-4 being positive. Wilcoxon's non-parametric tests assessed the association of APOBEC and PD-L1. The Cox regression model assessed the association of APOBEC with OS. All APOBEC genes were expressed in mUC. Increased A3A, A3D, and A3H expression associates with PD-L1 positive TIMCs (p = 0.0009, 0.009, 0.06). Decreased A3B expression was marginally associated with PD-L1 positive TIMCs expression (p = 0.05). Increased A3F_a and A3F_b expression was associated with increased expression of PD-L1 on tumor cells (p = 0.05). Increased expression of A3D and A3H was associated with longer OS (p = 0.0009). Specific APOBEC genes have different effects on mUC in terms of survival and PD-L1 expression. A3D and A3H may have the most important role in mUC as they are associated with OS and PD-L1 TIMC expression.
Collapse
Affiliation(s)
- Stephanie A. Mullane
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston MA, USA
| | - Lillian Werner
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston MA, USA
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Sabina Signoretti
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcella Callea
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Toni K. Choueiri
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joaquim Bellmunt
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- University Hospital del Mar-IMIM, Barcelona, Spain
| |
Collapse
|
9
|
Shaban NM, Shi K, Li M, Aihara H, Harris RS. 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. J Mol Biol 2016; 428:2307-2316. [PMID: 27139641 PMCID: PMC5142242 DOI: 10.1016/j.jmb.2016.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023]
Abstract
The APOBEC3 family of DNA cytosine deaminases is capable of restricting the replication of HIV-1 and other pathogens. Here, we report a 1.92 Å resolution crystal structure of the Vif-binding and catalytic domain of APOBEC3F (A3F). This structure is distinct from the previously published APOBEC and phylogenetically related deaminase structures, as it is the first without zinc in the active site. We determined an additional structure containing zinc in the same crystal form that allows direct comparison with the zinc-free structure. In the absence of zinc, the conserved active site residues that normally participate in zinc coordination show unique conformations, including a 90 degree rotation of His249 and disulfide bond formation between Cys280 and Cys283. We found that zinc coordination is influenced by pH, and treating the protein at low pH in crystallization buffer is sufficient to remove zinc. Zinc coordination and catalytic activity are reconstituted with the addition of zinc only in a reduced environment likely due to the two active site cysteines readily forming a disulfide bond when not coordinating zinc. We show that the enzyme is active in the presence of zinc and cobalt but not with other divalent metals. These results unexpectedly demonstrate that zinc is not required for the structural integrity of A3F and suggest that metal coordination may be a strategy for regulating the activity of A3F and related deaminases.
Collapse
Affiliation(s)
- Nadine M. Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455,Correspondence: ;
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455,Correspondence: ;
| |
Collapse
|
10
|
An P, Penugonda S, Thorball CW, Bartha I, Goedert JJ, Donfield S, Buchbinder S, Binns-Roemer E, Kirk GD, Zhang W, Fellay J, Yu XF, Winkler CA. Role of APOBEC3F Gene Variation in HIV-1 Disease Progression and Pneumocystis Pneumonia. PLoS Genet 2016; 12:e1005921. [PMID: 26942578 PMCID: PMC4778847 DOI: 10.1371/journal.pgen.1005921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Human APOBEC3 cytidine deaminases are intrinsic resistance factors to HIV-1. However, HIV-1 encodes a viral infectivity factor (Vif) that degrades APOBEC3 proteins. In vitro APOBEC3F (A3F) anti-HIV-1 activity is weaker than A3G but is partially resistant to Vif degradation unlike A3G. It is unknown whether A3F protein affects HIV-1 disease in vivo. To assess the effect of A3F gene on host susceptibility to HIV- acquisition and disease progression, we performed a genetic association study in six well-characterized HIV-1 natural cohorts. A common six-Single Nucleotide Polymorphism (SNP) haplotype of A3F tagged by a codon-changing variant (p. I231V, with allele (V) frequency of 48% in European Americans) was associated with significantly lower set-point viral load and slower rate of progression to AIDS (Relative Hazards (RH) = 0.71, 95% CI: 0.56, 0.91) and delayed development of pneumocystis pneumonia (PCP) (RH = 0.53, 95% CI: 0.37-0.76). A validation study in the International Collaboration for the Genomics of HIV (ICGH) showed a consistent association with lower set-point viral load. An in vitro assay revealed that the A3F I231V variant may influence Vif mediated A3F degradation. Our results provide genetic epidemiological evidence that A3F modulates HIV-1/AIDS disease progression.
Collapse
Affiliation(s)
- Ping An
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (PA); (CAW)
| | - Sudhir Penugonda
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Christian W. Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Istvan Bartha
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sharyne Donfield
- Rho, Inc., Chapel Hill, North Carolina, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (PA); (CAW)
| |
Collapse
|
11
|
Differential sensitivity of porcine endogenous retrovirus to APOBEC3-mediated inhibition. Arch Virol 2015; 160:1901-8. [DOI: 10.1007/s00705-015-2450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/07/2015] [Indexed: 01/30/2023]
|
12
|
Yang Z, Lu Y, Xu Q, Zhuang L, Tang B, Chen X. Correlation of APOBEC3 in tumor tissues with clinico-pathological features and survival from hepatocellular carcinoma after curative hepatectomy. Int J Clin Exp Med 2015; 8:7762-7769. [PMID: 26221327 DOI: pmid/26221327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/23/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate the relationships between members of APOBEC3 in tumor tissues and hepatocellular carcinoma (HCC) aggressiveness and prognosis. METHODS Using the expression profile GSE36376 from Gene Expression Omnibus (GEO), we compared APOBEC3 expression between tumor and non-tumor tissues, and correlated this with clinico-pathological features and outcomes of HCC patients. RESULTS A3B, A3D, A3F and A3H were overexpressed in HCC tumor tissues compared to non-tumor tissues (all P≤0.001). Cox regression shown that A3G was negatively associated with overall survival of HCC patients (HR=2.277, 95% CI=1.324-3.915, P=0.033), in contrast, A3C level in tumor tissues might play a positive role in HCC overall survival (HR=0.364, 95% CI=0.182-0.727, P=0.004). Interestingly, A3F contributed to a poor disease-free survival of HCC (HR=3.383, 95% CI=1.249-9.715, P=0.017), while A3H may be a positive factor associated with HCC disease-free survival (HR=0.25, 95% CI=0.098-0.636, P=0.004). Cirrhosis, tumor size and intrahepatic metastasis were associated with HCC poor disease-free survival (HR=1.838, 95% CI=1.308-2.583, P<0.001; HR= 1.095, 95% CI=1.042-1.15, P<0.001 and HR=3.669, 95% CI=2.447-5.5, P<0.001; respectively). Logistic regression analysis indicated that up-regulation of A3F in tumor tissues promoted HCC vascular invasion, intrahepatic metastasis and AFP elevation (all P<0.05). In contrast, A3H might decrease these risks (all P<0.05). CONCLUSIONS APOBEC3G and APOBEC3F might be risk factors for HCC development and survival, while APOBEC3C and APOBEC3H should play positive roles in HCC aggressiveness and prognosis. Further investigation for APOBEC3 mechanisms are needed in the future.
Collapse
Affiliation(s)
- Zongguo Yang
- Shanghai Public Health Clinical Center, Fudan University Shanghai, 201508, China
| | - Yunfei Lu
- Shanghai Public Health Clinical Center, Fudan University Shanghai, 201508, China
| | - Qingnian Xu
- Shanghai Public Health Clinical Center, Fudan University Shanghai, 201508, China
| | - Liping Zhuang
- Fudan University Shanghai Cancer Center Shanghai, 200032, China ; Shanghai Medical College, Fudan University Shanghai, 200032, China
| | - Bozong Tang
- Shanghai Public Health Clinical Center, Fudan University Shanghai, 201508, China
| | - Xiaorong Chen
- Shanghai Public Health Clinical Center, Fudan University Shanghai, 201508, China
| |
Collapse
|
13
|
Kim DY. The assembly of Vif ubiquitin E3 ligase for APOBEC3 degradation. Arch Pharm Res 2015; 38:435-45. [PMID: 25408426 DOI: 10.1007/s12272-014-0519-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 11/26/2022]
Abstract
APOBEC3G is a cellular antiviral protein that restricts retroviral infection. In non-permissive cells infected by Vif-deficient HIV-1, the protein mediates the hypermutation of viral DNA through the enzymatic activity of cytidine deaminase. To counteract the antiviral activity of APOBEC3G, an accessory protein of HIV-1, Vif, forms ubiquitin E3 ligase through assembly with CUL5-RBX2, ELOB-ELOC and CBFβ. Subsequently, Vif recruits APOBEC3G to the complex as a substrate adaptor of ubiquitin E3 ligase and induces poly-ubiquitination of APOBEC3G for its proteasomal degradation (Fig. 1). This review briefly summarizes current understanding of protein-protein interaction between Vif and host factors required for APOBEC3 degradation, based on high resolution structures of APOBEC3 proteins and Vif-CUL5NTD-ELOBC-CBFβ complex.
Collapse
Affiliation(s)
- Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea,
| |
Collapse
|
14
|
Anti-APOBEC3G activity of HIV-1 Vif protein is attenuated in elite controllers. J Virol 2015; 89:4992-5001. [PMID: 25717111 DOI: 10.1128/jvi.03464-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED HIV-1-infected individuals who control viremia to below the limit of detection without antiviral therapy have been termed elite controllers (EC). Functional attenuation of some HIV-1 proteins has been reported in EC. The HIV-1 accessory protein Vif (virion infectivity factor) enhances viral infectivity through anti-retroviral factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G) degradation; however, little is known regarding Vif function in EC. Here, the anti-APOBEC3G activities of clonal, plasma HIV RNA-derived Vif sequences from 46 EC, 46 noncontrollers (NC), and 44 individuals with acute infection (AI) were compared. Vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped viruses were generated by cotransfecting 293T cells with expression plasmids encoding patient-derived Vif, human APOBEC3G, VSV-G, and a vif/env-deficient luciferase-reporter HIV-1 proviral DNA clone. Viral stocks were used to infect 293T cells, and Vif anti-APOBEC3G activity was quantified in terms of luciferase signal. On average, the anti-APOBEC3G activities of EC-derived Vif sequences (median log10 relative light units [RLU], 4.54 [interquartile range {IQR}, 4.30 to 4.66]) were significantly lower than those of sequences derived from NC (4.75 [4.60 to 4.92], P < 0.0001) and AI (4.74 [4.62 to 4.94], P < 0.0001). Reduced Vif activities were not associated with particular HLA class I alleles expressed by the host. Vif functional motifs were highly conserved in all patient groups. No single viral polymorphism could explain the reduced anti-APOBEC3G activity of EC-derived Vif, suggesting that various combinations of minor polymorphisms may underlie these effects. These results further support the idea of relative attenuation of viral protein function in EC-derived HIV sequences. IMPORTANCE HIV-1 elite controllers (EC) are rare individuals who are able to control plasma viremia to undetectable levels without antiretroviral therapy. Understanding the pathogenesis and mechanisms underpinning this rare phenotype may provide important insights for HIV vaccine design. The EC phenotype is associated with beneficial host immunogenetic factors (such as HLA-B*57) as well as with functions of attenuated viral proteins (e.g., Gag, Pol, and Nef). In this study, we demonstrated that HIV-1 Vif sequences isolated from EC display relative impairments in their ability to counteract the APOBEC3G host restriction factor compared to Vif sequences from normal progressors and acutely infected individuals. This result extends the growing body of evidence demonstrating attenuated HIV-1 protein function in EC and, in particular, supports the idea of the relevance of viral factors in contributing to this rare HIV-1 phenotype.
Collapse
|
15
|
Armitage AE, Deforche K, Welch JJ, Van Laethem K, Camacho R, Rambaut A, Iversen AKN. Possible footprints of APOBEC3F and/or other APOBEC3 deaminases, but not APOBEC3G, on HIV-1 from patients with acute/early and chronic infections. J Virol 2014; 88:12882-94. [PMID: 25165112 PMCID: PMC4248940 DOI: 10.1128/jvi.01460-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Members of the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sublethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3 activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies, since a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined "footprints" of APOBEC3G and APOBEC3F activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. In contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sublethal mutations that might facilitate viral diversification. Therefore, Vif-specific cytotoxic T lymphocyte (CTL) responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3 family.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kristel Van Laethem
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ricardo Camacho
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrew Rambaut
- Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom
| | - Astrid K N Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
16
|
Sato K, Takeuchi JS, Misawa N, Izumi T, Kobayashi T, Kimura Y, Iwami S, Takaori-Kondo A, Hu WS, Aihara K, Ito M, An DS, Pathak VK, Koyanagi Y. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog 2014; 10:e1004453. [PMID: 25330146 PMCID: PMC4199767 DOI: 10.1371/journal.ppat.1004453] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/05/2014] [Indexed: 12/02/2022] Open
Abstract
Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo. Mutation can produce three outcomes in viruses: detrimental, neutral, or beneficial. The first one leads to abrogation of virus replication because of error catastrophe, while the last one lets the virus escape from anti-viral immune system or adapt to the host. Human APOBEC3D, APOBEC3F, and APOBEC3G are cellular cytidine deaminases which cause G-to-A mutations in HIV-1 genome. Here we use a humanized mouse model and demonstrate that endogenous APOBEC3F and APOBEC3G induce G-to-A hypermutation in viral genomes and exert strong anti-HIV-1 activity in vivo. We also reveal that endogenous APOBEC3D and/or APOBEC3F induce viral diversification, which can lead to the emergence of a mutated virus that converts its coreceptor usage. Our results suggest that APOBEC3D and APOBEC3F are capable of promoting viral diversification and functional evolution in vivo.
Collapse
Affiliation(s)
- Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail:
| | - Junko S. Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Tomoko Kobayashi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuichi Kimura
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Dong Sung An
- Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, California, United States of America
- School of Nursing, University of California, Los Angeles, Los Angeles, California, United States of America
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
17
|
Smith JL, Izumi T, Borbet TC, Hagedorn AN, Pathak VK. HIV-1 and HIV-2 Vif interact with human APOBEC3 proteins using completely different determinants. J Virol 2014; 88:9893-908. [PMID: 24942576 PMCID: PMC4136346 DOI: 10.1128/jvi.01318-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human APOBEC3 (A3) restriction factors provide intrinsic immunity against zoonotic transmission of pathogenic viruses. A3D, A3F, A3G, and A3H haplotype II (A3H-hapII) can be packaged into virion infectivity factor (Vif)-deficient HIVs to inhibit viral replication. To overcome these restriction factors, Vif binds to the A3 proteins in viral producer cells to target them for ubiquitination and proteasomal degradation, thus preventing their packaging into assembling virions. Therefore, the Vif-A3 interactions are attractive targets for novel drug development. HIV-1 and HIV-2 arose via distinct zoonotic transmission events of simian immunodeficiency viruses from chimpanzees and sooty mangabeys, respectively, and Vifs from these viruses have limited homology. To gain insights into the evolution of virus-host interactions that led to successful cross-species transmission of lentiviruses, we characterized the determinants of the interaction between HIV-2 Vif (Vif2) with human A3 proteins and compared them to the previously identified HIV-1 Vif (Vif1) interactions with the A3 proteins. We found that A3G, A3F, and A3H-hapII, but not A3D, were susceptible to Vif2-induced degradation. Alanine-scanning mutational analysis of the first 62 amino acids of Vif2 indicated that Vif2 determinants important for degradation of A3G and A3F are completely distinct from these regions in Vif1, as are the determinants in A3G and A3F that are critical for Vif2-induced degradation. These observations suggest that distinct Vif-A3 interactions evolved independently in different SIVs and their nonhuman primate hosts and conservation of the A3 determinants targeted by the SIV Vif proteins resulted in successful zoonotic transmission into humans. IMPORTANCE Primate APOBEC3 proteins provide innate immunity against invading pathogens, and Vif proteins of primate lentiviruses have evolved to overcome these host defenses by interacting with them and inducing their proteasomal degradation. HIV-1 and HIV-2 are two human pathogens that induce AIDS, and elucidating interactions between their Vif proteins and human A3 proteins could facilitate the development of novel antiviral drugs. Furthermore, understanding Vif-A3 interactions can provide novel insights into the cross-species transmission events that led to the HIV-1 and HIV-2 pandemics and evolution of host-virus interactions. We carried out mutational analysis of the N-terminal 62 amino acids of HIV-2 Vif (Vif2) and analyzed A3G/A3F chimeras that retained antiviral activity to identify the determinants of the Vif2 and A3 interaction. Our results show that the Vif2-A3 interactions are completely different from the Vif1-A3 interactions, suggesting that these interactions evolved independently and that conservation of the A3 determinants resulted in successful zoonotic transmission into humans.
Collapse
Affiliation(s)
- Jessica L Smith
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Timothy C Borbet
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ariel N Hagedorn
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
18
|
Feng Y, Baig TT, Love RP, Chelico L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol 2014; 5:450. [PMID: 25206352 PMCID: PMC4144255 DOI: 10.3389/fmicb.2014.00450] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
19
|
Human APOBEC3F incorporation into human immunodeficiency virus type 1 particles. Virus Res 2014; 191:30-8. [PMID: 25038404 DOI: 10.1016/j.virusres.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022]
Abstract
APOBEC3 proteins are a family of cytidine deaminases that exhibit broad antiretroviral activity. Among APOBEC3 proteins, APOBEC3G (hA3G) and APOBEC3F (hA3F) exhibit the most potent anti-HIV-1 activities. Although the incorporation of hA3F into virions is a prerequisite for exerting its antiviral function, the detail mechanism underlying remains incompletely understood. In this work, we present data showing that the nucleocapsid (NC) domain of HIV-1 Gag and a linker sequence between the two cytidine deaminase domains within hA3F, i.e., 104-156 amino acids, are required for viral packaging of hA3F. A detailed mapping study reveals that the cluster of basic residues surrounding the N-terminal zinc finger (ZF) and the linker region between the ZFs of HIV-1 NC play an important role in A3F incorporation, in addition, at least one of two ZFs is required. A hA3F fragment is able to compete with both hA3G and hA3F for viral incorporation, suggesting a common mechanism underlying virion encapsidation of hA3G and hA3F. Taken together, these results shed a light on the detail mechanism underlying viral incorporation of hA3F.
Collapse
|
20
|
Shlyakhtenko LS, Lushnikov AJ, Li M, Harris RS, Lyubchenko YL. Interaction of APOBEC3A with DNA assessed by atomic force microscopy. PLoS One 2014; 9:e99354. [PMID: 24905100 PMCID: PMC4048275 DOI: 10.1371/journal.pone.0099354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022] Open
Abstract
The APOBEC3 family of DNA cytosine deaminases functions to block the spread of endogenous retroelements and retroviruses including HIV-1. Potency varies among family members depending on the type of parasitic substrate. APOBEC3A (A3A) is unique among the human enzymes in that it is expressed predominantly in myeloid lineage cell types, it is strongly induced by innate immune agonists such as type 1 interferon, and it has the capacity to accommodate both normal and 5-methyl cytosine nucleobases. Here we apply atomic force microscopy (AFM) to characterize the interaction between A3A and single- and double-stranded DNA using a hybrid DNA approach in which a single-stranded region is flanked by defined length duplexes. AFM image analyses reveal A3A binding to single-stranded DNA, and that this interaction becomes most evident (∼80% complex yield) at high protein-to-DNA ratios (at least 100∶1). A3A is predominantly monomeric when bound to single-stranded DNA, and it is also monomeric in solution at concentrations as high as 50 nM. These properties agree well with recent, biochemical, biophysical, and structural studies. However, these characteristics contrast with those of the related enzyme APOBEC3G, which in similar assays can exist as a monomer but tends to form oligomers in a concentration-dependent manner. These AFM data indicate that A3A has intrinsic biophysical differences that distinguish it from APOBEC3G. The potential relationships between these properties and biological functions in innate immunity are discussed.
Collapse
Affiliation(s)
- Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alexander J. Lushnikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
21
|
Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22:668-84. [PMID: 24657093 DOI: 10.1016/j.str.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human APOBEC3 (A3) proteins are host-encoded intrinsic restriction factors that inhibit the replication of many retroviral pathogens. Restriction is believed to occur as a result of the DNA cytosine deaminase activity of the A3 proteins; this activity converts cytosines into uracils in single-stranded DNA retroviral replication intermediates. A3 proteins are also equipped with deamination-independent means to restrict retroviruses that work cooperatively with deamination-dependent restriction pathways. A3 proteins substantially bolster the intrinsic immune system by providing a powerful block to the transmission of retroviral pathogens; however, most retroviruses are able to subvert this replicative restriction in their natural host. HIV-1, for instance, evades A3 proteins through the activity of its accessory protein Vif. Here, we summarize data from recent A3 structural and functional studies to provide perspectives into the interactions between cellular A3 proteins and HIV-1 macromolecules throughout the viral replication cycle.
Collapse
Affiliation(s)
- Halil Aydin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew W Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
22
|
Ara A, Love RP, Chelico L. Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms. PLoS Pathog 2014; 10:e1004024. [PMID: 24651717 PMCID: PMC3961392 DOI: 10.1371/journal.ppat.1004024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/09/2014] [Indexed: 01/12/2023] Open
Abstract
The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (-)HIV-1 DNA. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils, thereby inducing C/G→T/A mutations that can functionally inactivate HIV-1. Although both APOBEC3F and APOBEC3G are expressed in cell types HIV-1 infects and are suppressed by Vif, there has been no prior biochemical analysis of APOBEC3F, in contrast to APOBEC3G. Using synthetic DNA substrates, we characterized APOBEC3F and found that similar to APOBEC3G; it is a processive enzyme and can deaminate at least two cytosines in a single enzyme-substrate encounter. However, APOBEC3F scanning movement is distinct from APOBEC3G, and relies on jumping rather than both jumping and sliding. APOBEC3F jumping movements were also different from APOBEC3G. The lack of sliding movement from APOBEC3F is due to an ¹⁹⁰NPM¹⁹² motif, since insertion of this motif into APOBEC3G decreases its sliding movements. The APOBEC3G NPM mutant induced significantly less mutations in comparison to wild-type APOBEC3G in an in vitro model HIV-1 replication assay and single-cycle infectivity assay, indicating that differences in DNA scanning were relevant to restriction of HIV-1. Conversely, mutation of the APOBEC3F ¹⁹¹Pro to ¹⁹¹Gly enables APOBEC3F sliding movements to occur. Although APOBEC3F ¹⁹⁰NGM¹⁹² could slide, the enzyme did not induce more mutagenesis than wild-type APOBEC3F, demonstrating that the unique jumping mechanism of APOBEC3F abrogates the influence of sliding on mutagenesis. Overall, we demonstrate key differences in the impact of APOBEC3F- and APOBEC3G-induced mutagenesis on HIV-1 that supports a model in which both the processive DNA scanning mechanism and preferred deamination motif (APOBEC3F, 5'TTC; APOBEC3G 5'CCC) influences the mutagenic and gene inactivation potential of an APOBEC3 enzyme.
Collapse
Affiliation(s)
- Anjuman Ara
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
23
|
Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220-45. [PMID: 24189052 PMCID: PMC3943811 DOI: 10.1016/j.jmb.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Ryan C Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - DongFei Qi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
24
|
Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus. Virology 2013; 450-451:49-54. [PMID: 24503066 DOI: 10.1016/j.virol.2013.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/01/2013] [Accepted: 11/29/2013] [Indexed: 11/21/2022]
Abstract
APOBEC3 proteins are DNA cytosine deaminases that restrict the replication of human immunodeficiency virus deficient in the counterdefense protein Vif. Here, we address the capacity of APOBEC3F to restrict via deaminase-dependent and -independent mechanisms by monitoring spreading infections in diverse T cell lines. Our data indicate that only a deaminase-proficient protein is capable of long-term restriction of Vif-deficient HIV in T cells, analogous to prior reports for APOBEC3G. This indicates that the principal mechanism of APOBEC3F restriction is deaminase-dependent.
Collapse
|
25
|
Schmitt K, Katuwal M, Wang Y, Li C, Stephens EB. Analysis of the N-terminal positively charged residues of the simian immunodeficiency virus Vif reveals a critical amino acid required for the antagonism of rhesus APOBEC3D, G, and H. Virology 2013; 449:140-9. [PMID: 24418547 DOI: 10.1016/j.virol.2013.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that apolipoprotein B mRNA editing, enzyme catalytic, polypeptide G (APOBEC3G; hA3G) and F (APOBEC3F; hA3F) proteins interact with a nonlinear binding site located at the N-terminal region of the HIV-1 Vif protein. We have analyzed the role of 12 positively charged amino acids of the N-terminal region of the SIV Vif. Simian-human immunodeficiency viruses (SHIV) were constructed that expressed each of these amino acid substitutions. These viruses were examined for replication in the presence of rhesus macaque APOBEC3 proteins (rhA3A-rhA3H), incorporation of the different A3 proteins into virions, and replication in rhesus macaque PBMC. Similar to other studies, we found that K27 was essential for rhA3G activity and rhA3F but was not important for restriction of SHIVΔvif by rhA3A, rhA3D or rhA3H. Our results identified the arginine at position 14 of the SIV Vif as a critical residue for virus restriction by rhA3D, rhA3G and rhA3H.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Miki Katuwal
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yaqiong Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Cicy Li
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
27
|
Krisko JF, Martinez-Torres F, Foster JL, Garcia JV. HIV restriction by APOBEC3 in humanized mice. PLoS Pathog 2013; 9:e1003242. [PMID: 23555255 PMCID: PMC3610649 DOI: 10.1371/journal.ppat.1003242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/24/2013] [Indexed: 12/31/2022] Open
Abstract
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.
Collapse
Affiliation(s)
- John F. Krisko
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francisco Martinez-Torres
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John L. Foster
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
28
|
Harper MS, Barrett BS, Smith DS, Li SX, Gibbert K, Dittmer U, Hasenkrug KJ, Santiago ML. IFN-α treatment inhibits acute Friend retrovirus replication primarily through the antiviral effector molecule Apobec3. THE JOURNAL OF IMMUNOLOGY 2013; 190:1583-90. [PMID: 23315078 DOI: 10.4049/jimmunol.1202920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Therapeutic administration of IFN-α in clinical trials significantly reduced HIV-1 plasma viral load and human T-lymphotropic virus type I proviral load in infected patients. The mechanism may involve the concerted action of multiple antiretroviral effectors collectively known as "restriction factors," which could vary in relative importance according to the magnitude of transcriptional induction. However, direct genetic approaches to identify the relevant IFN-α restriction factors will not be feasible in humans in vivo. Meanwhile, mice encode an analogous set of restriction factor genes and could be used to obtain insights on how IFN-α could inhibit retroviruses in vivo. As expected, IFN-α treatment of mice significantly upregulated the transcription of multiple restriction factors including Tetherin/BST2, SAMHD1, Viperin, ISG15, OAS1, and IFITM3. However, a dominant antiretroviral factor, Apobec3, was only minimally induced. To determine whether Apobec3 was necessary for direct IFN-α antiretroviral action in vivo, wild-type and Apobec3-deficient mice were infected with Friend retrovirus, then treated with IFN-α. Treatment of infected wild-type mice with IFN-α significantly reduced acute plasma viral load 28-fold, splenic proviral load 5-fold, bone marrow proviral load 14-fold, and infected bone marrow cells 7-fold, but no inhibition was observed in Apobec3-deficient mice. These findings reveal that IFN-α inhibits acute Friend retrovirus infection primarily through the antiviral effector Apobec3 in vivo, demonstrate that transcriptional induction levels did not predict the mechanism of IFN-α-mediated control, and highlight the potential of the human APOBEC3 proteins as therapeutic targets against pathogenic retrovirus infections.
Collapse
Affiliation(s)
- Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. J Virol 2012; 87:444-53. [PMID: 23097438 DOI: 10.1128/jvi.00676-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins inhibit HIV-1 replication in experimental systems and induce hypermutation in infected patients; however, the relative contributions of several APOBEC3 proteins to restriction of HIV-1 replication in the absence of the viral Vif protein in human primary CD4(+) T cells and macrophages are unknown. We observed significant inhibition of HIV-1Δvif produced in 293T cells in the presence of APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H haplotype II (A3H HapII) but not APOBEC3B (A3B), APOBEC3C (A3C), or APOBEC3H haplotype I (A3H HapI). Our previous studies showed that Vif amino acids Y(40)RHHY(44) are important for inducing proteasomal degradation of A3G, whereas amino acids (14)DRMR(17) are important for degradation of A3F and A3DE. Here, we introduced substitution mutations of (40)YRHHY(44) and (14)DRMR(17) in replication-competent HIV-1 to generate vif mutants NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 to compare the antiviral activity of A3G to the combined antiviral activity of A3F and A3DE in activated CD4(+) T cells and macrophages. During the first 15 days (round 1), in which multiple cycles of viral replication occurred, both the NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutants replicated in activated CD4(+) T cells and macrophages, and only the NL4-3 YRHHY>A5 mutant showed a 2- to 4-day delay in replication compared to the wild type. During the subsequent 27 days (round 2) of cultures initiated with peak virus obtained from round 1, the NL4-3 YRHHY>A5 mutant exhibited a longer, 8- to 10-day delay and the NL4-3 DRMR>A4 mutant exhibited a 2- to 6-day delay in replication compared to the wild type. The NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutant proviruses displayed G-to-A hypermutations primarily in GG and GA dinucleotides as expected of A3G- and A3F- or A3DE-mediated deamination, respectively. We conclude that A3G exerts a greater restriction effect on HIV-1 than A3F and A3DE.
Collapse
|
30
|
Love RP, Xu H, Chelico L. Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A. J Biol Chem 2012; 287:30812-22. [PMID: 22822074 DOI: 10.1074/jbc.m112.393181] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and nucleus, not only restricts HIV but can also initiate catabolism of cellular DNA. Despite being ascribed these roles, there is a paucity of data available on the biochemical mechanism by which APOBEC3A deaminates ssDNA. Here we assessed APOBEC3A deamination activity on ssDNA and in dynamic systems modeling HIV replication (cytoplasmic event) and DNA transcription (nuclear event). We find that APOBEC3A, unlike the highly processive APOBEC3G, exhibits low or no processivity when deaminating synthetic ssDNA substrates with two cytosines located 5-63 nucleotides apart, likely because of an apparent K(d) in the micromolar range (9.1 μm). APOBEC3A was able to deaminate nascently synthesized (-)DNA in an in vitro model HIV replication assay but induced fewer mutations overall in comparison to APOBEC3G. However, the data indicate that the target deamination motif (5'-TC for APOBEC3A and 5'-CC for APOBEC3G) and not the number of mutations best predicted the ability to mutationally inactivate HIV. We further assessed APOBEC3A for the ability to deaminate dsDNA undergoing transcription, which could allow for collateral deaminations to occur in genomic DNA similar to the action of activation-induced cytidine deaminase. That APOBEC3A was able to deaminate dsDNA undergoing transcription suggests a genomic cost of a deamination-based retroviral restriction system.
Collapse
Affiliation(s)
- Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
31
|
Endogenous origins of HIV-1 G-to-A hypermutation and restriction in the nonpermissive T cell line CEM2n. PLoS Pathog 2012; 8:e1002800. [PMID: 22807680 PMCID: PMC3395617 DOI: 10.1371/journal.ppat.1002800] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
The DNA deaminase APOBEC3G converts cytosines to uracils in retroviral cDNA, which are immortalized as genomic strand G-to-A hypermutations by reverse transcription. A single round of APOBEC3G-dependent mutagenesis can be catastrophic, but evidence suggests that sublethal levels contribute to viral genetic diversity and the associated problems of drug resistance and immune escape. APOBEC3G exhibits an intrinsic preference for the second cytosine in a 5'CC dinucleotide motif leading to 5'GG-to-AG mutations. However, an additional hypermutation signature is commonly observed in proviral sequences from HIV-1 infected patients, 5'GA-to-AA, and it has been attributed controversially to one or more of the six other APOBEC3 deaminases. An unambiguous resolution of this problem has been difficult to achieve, in part due to dominant effects of protein over-expression. Here, we employ gene targeting to dissect the endogenous APOBEC3 contribution to Vif-deficient HIV-1 restriction and hypermutation in a nonpermissive T cell line CEM2n. We report that APOBEC3G-null cells, as predicted from previous studies, lose the capacity to inflict 5'GG-to-AG mutations. In contrast, APOBEC3F-null cells produced viruses with near-normal mutational patterns. Systematic knockdown of other APOBEC3 genes in an APOBEC3F-null background revealed a significant contribution from APOBEC3D in promoting 5'GA-to-AA hypermutations. Furthermore, Vif-deficient HIV-1 restriction was strong in parental CEM2n and APOBEC3D-knockdown cells, partially alleviated in APOBEC3G- or APOBEC3F-null cells, further alleviated in APOBEC3F-null/APOBEC3D-knockdown cells, and alleviated to the greatest extent in APOBEC3F-null/APOBEC3G-knockdown cells revealing clear redundancy in the HIV-1 restriction mechanism. We conclude that endogenous levels of APOBEC3D, APOBEC3F, and APOBEC3G combine to restrict Vif-deficient HIV-1 and cause the hallmark dinucleotide hypermutation patterns in CEM2n. Primary T lymphocytes express a similar set of APOBEC3 genes suggesting that the same repertoire may be important in vivo.
Collapse
|
32
|
Imahashi M, Nakashima M, Iwatani Y. Antiviral Mechanism and Biochemical Basis of the Human APOBEC3 Family. Front Microbiol 2012; 3:250. [PMID: 22787460 PMCID: PMC3391693 DOI: 10.3389/fmicb.2012.00250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022] Open
Abstract
The human APOBEC3 (A3) family (A, B, C, DE, F, G, and H) comprises host defense factors that potently inhibit the replication of diverse retroviruses, retrotransposons, and the other viral pathogens. HIV-1 has a counterstrategy that includes expressing the Vif protein to abrogate A3 antiviral function. Without Vif, A3 proteins, particularly APOBEC3G (A3G) and APOBEC3F (A3F), inhibit HIV-1 replication by blocking reverse transcription and/or integration and hypermutating nascent viral cDNA. The molecular mechanisms of this antiviral activity have been primarily attributed to two biochemical characteristics common to A3 proteins: catalyzing cytidine deamination in single-stranded DNA (ssDNA) and a nucleic acid-binding capability that is specific to ssDNA or ssRNA. Recent advances suggest that unique property of A3G dimer/oligomer formations, is also important for the modification of antiviral activity. In this review article we summarize how A3 proteins, particularly A3G, inhibit viral replication based on the biochemical and structural characteristics of the A3G protein.
Collapse
Affiliation(s)
- Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | | | | |
Collapse
|
33
|
Compton AA, Hirsch VM, Emerman M. The host restriction factor APOBEC3G and retroviral Vif protein coevolve due to ongoing genetic conflict. Cell Host Microbe 2012; 11:91-8. [PMID: 22264516 DOI: 10.1016/j.chom.2011.11.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/08/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023]
Abstract
APOBEC3G (A3G) is a host cytidine deaminase that inhibits retroviruses. HIV and related primate lentiviruses encode Vif, which counteracts A3G by inducing its degradation. This Vif-mediated A3G inhibition is species specific, suggesting that the A3G-Vif interaction has evolved as primate lentiviruses have adapted to their hosts. We examined the evolutionary dynamics of the A3G-Vif interaction within four African green monkey (AGM) subspecies, which are each naturally infected with a distinct simian immunodeficiency virus (SIV). We identified single amino acid changes within A3G in two AGM subspecies that render it resistant to Vif proteins, except for Vif from the viruses that naturally infect these subspecies. Moreover, experimental infection of AGMs shows that Vif can rapidly adapt to these arising Vif-resistant A3G genotypes. These data suggest that despite being generally nonpathogenic in its natural host, SIV infection selects for Vif-resistant forms of A3G in AGM populations, driving Vif counterevolution and functional divergence.
Collapse
Affiliation(s)
- Alex A Compton
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
34
|
Abstract
Retroviruses have long been a fertile model for discovering host-pathogen interactions and their associated biological principles and processes. These advances have not only informed fundamental concepts of viral replication and pathogenesis but have also provided novel insights into host cell biology. This is illustrated by the recent descriptions of host-encoded restriction factors that can serve as effective inhibitors of retroviral replication. Here, we review our understanding of the three restriction factors that have been widely shown to be potent inhibitors of HIV-1: namely, APOBEC3G, TRIM5α, and tetherin. In each case, we discuss how these unrelated proteins were identified, the mechanisms by which they inhibit replication, the means used by HIV-1 to evade their action, and their potential contributions to viral pathogenesis as well as inter- and intraspecies transmission.
Collapse
Affiliation(s)
- Michael H Malim
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom.
| | | |
Collapse
|
35
|
Kitamura S, Ode H, Iwatani Y. Structural Features of Antiviral APOBEC3 Proteins are Linked to Their Functional Activities. Front Microbiol 2011; 2:258. [PMID: 22203821 PMCID: PMC3243911 DOI: 10.3389/fmicb.2011.00258] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/02/2011] [Indexed: 11/23/2022] Open
Abstract
Human APOBEC3 (A3) proteins are cellular cytidine deaminases that potently restrict the replication of retroviruses by hypermutating viral cDNA and/or inhibiting reverse transcription. There are seven members of this family including A3A, B, C, DE, F, G, and H, all encoded in a tandem array on human chromosome 22. A3F and A3G are the most potent inhibitors of HIV-1, but only in the absence of the virus-encoded protein, Vif. HIV-1 utilizes Vif to abrogate A3 functions in the producer cells. More specifically, Vif, serving as a substrate receptor, facilitates ubiquitination of A3 proteins by forming a Cullin5 (Cul5)-based E3 ubiquitin ligase complex, which targets A3 proteins for rapid proteasomal degradation. The specificity of A3 degradation is determined by the ability of Vif to bind to the target. Several lines of evidence have suggested that three distinct regions of A3 proteins are involved in the interaction with Vif. Here, we review the biological functions of A3 family members with special focus on A3G and base our analysis on the available structural information.
Collapse
Affiliation(s)
- Shingo Kitamura
- Laboratory of Infectious Diseases, Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | | | | |
Collapse
|
36
|
The breadth of antiviral activity of Apobec3DE in chimpanzees has been driven by positive selection. J Virol 2011; 85:11361-71. [PMID: 21835794 DOI: 10.1128/jvi.05046-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Apobec3 family of cytidine deaminases can inhibit the replication of retroviruses and retrotransposons. Human and chimpanzee genomes encode seven Apobec3 paralogs; of these, Apobec3DE has the greatest sequence divergence between humans and chimpanzees. Here we show that even though human and chimpanzee Apobec3DEs are very divergent, the two orthologs similarly restrict long terminal repeat (LTR) and non-LTR retrotransposons (MusD and Alu, respectively). However, chimpanzee Apobec3DE also potently restricts two lentiviruses, human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagmTAN), unlike human Apobec3DE, which has poor antiviral activity against these same viruses. This difference between human and chimpanzee Apobec3DE in the ability to restrict retroviruses is not due to different levels of Apobec3DE protein incorporation into virions but rather to the ability of Apobec3DE to deaminate the viral genome in target cells. We further show that Apobec3DE rapidly evolved in chimpanzee ancestors approximately 2 to 6 million years ago and that this evolution drove the increased breadth of chimpanzee Apobec3DE antiviral activity to its current high activity against some lentiviruses. Despite a difference in target specificities between human and chimpanzee Apobec3DE, Apobec3DE is likely to currently play a role in host defense against retroelements in both species.
Collapse
|
37
|
Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011; 85:11220-34. [PMID: 21835787 DOI: 10.1128/jvi.05238-11] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.
Collapse
|
38
|
Iwatani Y. [Mechanisms for inhibition of retrovirus replication by APOBEC3 family]. Uirusu 2011; 61:67-72. [PMID: 21972557 DOI: 10.2222/jsv.61.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human cells developed the defense systems against retrovirus infections during the evolutions. These systems include retroviral restrictions by DNA cytidine deaminases of APOBEC3 family (A, B, C, DE, F, G, and H), which are potent factors to block the viral replication by blocking reverse transcription and/or integration and by hypermutating viral cDNA. In case of HIV-1, the viral protein, Vif abrogates the APOBEC3F/G function through specific machinery of ubiquitination and proteasomal degradation. Without Vif, APOBEC3F/G are incorporated into virus particles and block reverse transcription and/or integration in a newly infected cell. Recent advances in our understanding about biochemical and structure-biological characteristics of the enzymes provide new insights to reveal more detailed molecular mechanisms for anti-retroviral activity by APOBEC3 family. Here I briefly review how APOBEC3 proteins block retrovirus replications, focusing on APOBEC3G.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- National Hospital Organization Nagoya Medical Center, 4-1-1 San-no-Maru, Naka-ku, Nagoya, Aichi 460-0001, Japan.
| |
Collapse
|
39
|
Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 2011; 85:3842-57. [PMID: 21307203 DOI: 10.1128/jvi.01880-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation.
Collapse
|
40
|
Iwabu Y, Kinomoto M, Tatsumi M, Fujita H, Shimura M, Tanaka Y, Ishizaka Y, Nolan D, Mallal S, Sata T, Tokunaga K. Differential anti-APOBEC3G activity of HIV-1 Vif proteins derived from different subtypes. J Biol Chem 2010; 285:35350-8. [PMID: 20833716 DOI: 10.1074/jbc.m110.173286] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral cytidine deaminase APOBEC3G, which is abundantly expressed in peripheral blood lymphocytes and macrophages, strongly protects these cells against HIV-1 infection. The HIV-1 Vif protein overcomes this antiviral effect by enhancing proteasome-mediated APOBEC3G degradation and is key for maintaining viral infectivity. The 579-bp-long vif gene displays high genetic diversity among HIV-1 subtypes. Therefore, it is intriguing to address whether Vif proteins derived from different subtypes differ in their viral defense activity against APOBEC3G. Expression plasmids encoding Vif proteins derived from subtypes A, B, C, CRF01_AE, and CRF02_AG isolates were created, and their anti-APOBEC3G activities were compared. Viruses produced from cells expressing APOBEC3G and Vif proteins from different subtypes showed relatively different viral infectivities. Notably, subtype C-derived Vif proteins tested had the highest activity against APOBEC3G that was ascribed to its increased binding activity, for which the N-terminal domain of the Vif protein sequences was responsible. These results suggest that the biological differences of Vif proteins belonging to different subtypes might affect viral fitness and quasispecies in vivo.
Collapse
Affiliation(s)
- Yukie Iwabu
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|