1
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
2
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
3
|
Aoki-Utsubo C, Kameoka M, Deng L, Hanafi M, Dewi BE, Sudarmono P, Wakita T, Hotta H. Statins enhance extracellular release of hepatitis C virus particles through ERK5 activation. Microbiol Immunol 2024; 68:359-370. [PMID: 39073705 DOI: 10.1111/1348-0421.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Statins, such as lovastatin, have been known to inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Statins were reported to moderately suppress hepatitis C virus (HCV) replication in cultured cells harboring HCV RNA replicons. We report here using an HCV cell culture (HCVcc) system that high concentrations of lovastatin (5-20 μg/mL) markedly enhanced the release of HCV infectious particles (virion) in the culture supernatants by up to 40 times, without enhancing HCV RNA replication, HCV protein synthesis, or HCV virion assembly in the cells. We also found that lovastatin increased the phosphorylation (activation) level of extracellular-signal-regulated kinase 5 (ERK5) in both the infected and uninfected cells in a dose-dependent manner. The lovastatin-mediated increase of HCV virion release was partially reversed by selective ERK5 inhibitors, BIX02189 and XMD8-92, or by ERK5 knockdown using small interfering RNA (siRNA). Moreover, we demonstrated that other cholesterol-lowering statins, but not dehydrolovastatin that is incapable of inhibiting HMG-CoA reductase and activating ERK5, enhanced HCV virion release to the same extent as observed with lovastatin. These results collectively suggest that statins markedly enhance HCV virion release from infected cells through HMG-CoA reductase inhibition and ERK5 activation.
Collapse
Affiliation(s)
- Chie Aoki-Utsubo
- Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Masanori Kameoka
- Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Muhammad Hanafi
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Serpong, Indonesia
| | - Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Pratiwi Sudarmono
- Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Hak Hotta
- Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Japan
| |
Collapse
|
4
|
Tripathi SK, Aneja A, Borgaonkar T, Das S. PSPC1 Binds to HCV IRES and Prevents Ribosomal Protein S5 Binding, Inhibiting Viral RNA Translation. Viruses 2024; 16:738. [PMID: 38793620 PMCID: PMC11126058 DOI: 10.3390/v16050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) infects the human liver, and its chronic infection is one of the major causes of Hepatocellular carcinoma. Translation of HCV RNA is mediated by an Internal Ribosome Entry Site (IRES) element located in the 5'UTR of viral RNA. Several RNA Binding proteins of the host interact with the HCV IRES and modulate its function. Here, we demonstrate that PSPC1 (Paraspeckle Component 1), an essential paraspeckle component, upon HCV infection is relocalized and interacts with HCV IRES to prevent viral RNA translation. Competition UV-crosslinking experiments showed that PSPC1 interacts explicitly with the SLIV region of the HCV IRES, which is known to play a vital role in ribosomal loading to the HCV IRES via interaction with Ribosomal protein S5 (RPS5). Partial silencing of PSPC1 increased viral RNA translation and, consequently, HCV replication, suggesting a negative regulation by PSPC1. Interestingly, the silencing of PSPC1 protein leads to an increased interaction of RPS5 at the SLIV region, leading to an overall increase in the viral RNA in polysomes. Overall, our results showed how the host counters viral infection by relocalizing nuclear protein to the cytoplasm as a survival strategy.
Collapse
Affiliation(s)
- Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Ashish Aneja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Teji Borgaonkar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
5
|
Niu B, Ma L, Yao L, Zhang Y, Su H. HCV affects K ATP channels through GnT-IVa-mediated N-glycosylation of GLUT2 on the surface of pancreatic β-cells leading to impaired insulin secretion. Endocrine 2024; 84:427-440. [PMID: 37962815 PMCID: PMC11076383 DOI: 10.1007/s12020-023-03589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To explore the mechanism of insulin secretion dysfunction in pancreatic beta cells induced by N-glycosylation mediated by an infection from the hepatitis C virus (HCV). METHODS Min6 cell models infected with HCV and stimulated with glucose were constructed. Meanwhile, an HCV-infected animal model and a type 2 diabetes mellitus (T2DM) rat model were constructed. Glucose uptake in the Min6 cells was detected, and insulin secretion was detected by ELISA. Flow cytometry, immunofluorescence staining, Western blotting, RT-qPCR, and lectin blotting were used to detect the expression levels of related proteins and mRNA, as well as the level of N-glycosylation. HE staining was used to observe the pathological changes in the pancreatic tissue, and an oral glucose tolerance test (OGTT) was used to evaluate the glucose tolerance of the rats. RESULTS Compared with the NC group, the expression levels of GnT-IVa, GLUT2, galectin-9, and voltage-dependent calcium channel 1.2 (Cav1.2) were significantly downregulated in the HCV-infected group. The ATP-sensitive potassium channel (KATP) component proteins SUR1 and Kir6.2 were significantly upregulated, while intracellular glucose intake and insulin secretion decreased, N-glycosylation levels and ATP levels significantly decreased, and the overexpression of GnT-IVa reversed the effect of the HCV infection. However, treatment with the glycosylation inhibitor kifunensine (KIF) or the KATP channel activator diazine (Dia) reversed the effects of the overexpression of GnT-IVa. In the animal experiments, HE staining revealed serious pathological injuries in the pancreatic tissue of the HCV-infected rats, with decreased glucose tolerance and glycosylation levels, decreased insulin secretion, downregulated expression of GnT-IVa, GLUT2, and Cav1.2, and upregulated expression of SUR1 and Kir6.2. The overexpression treatment of GnT-IVa or the KATP channel antagonist miglinide reversed the effects of HCV. CONCLUSION HCV infection inhibits GLUT2 N-glycosylation on the pancreatic β cell surface by downregulating the expression of GnT-IVa and then activates the KATP pathway, which ultimately leads to disturbances in insulin secretion.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lijing Ma
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lixuan Yao
- Department of Nephrology, Bao Ji People's Hospital, Baoji, 721000, Shaanxi, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Matsui C, Yuliandari P, Deng L, Abe T, Shoji I. The Role of Chaperone-Mediated Autophagy in Hepatitis C Virus-Induced Pathogenesis. Front Cell Infect Microbiol 2021; 11:796664. [PMID: 34926330 PMCID: PMC8674663 DOI: 10.3389/fcimb.2021.796664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Lysosome incorporate and degrade proteins in a process known as autophagy. There are three types of autophagy; macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Although autophagy is considered a nonselective degradation process, CMA is known as a selective degradation pathway. All proteins internalized in the lysosome via CMA contain a pentapeptide KFERQ-motif, also known as a CMA-targeting motif, which is necessary for selectivity. CMA directly delivers a substrate protein into the lysosome lumen using the cytosolic chaperone HSC70 and the lysosomal receptor LAMP-2A for degradation. Hepatitis C virus (HCV) NS5A protein interacts with hepatocyte-nuclear factor 1α (HNF-1α) together with HSC70 and promotes the lysosomal degradation of HNF-1α via CMA, resulting in HCV-induced pathogenesis. HCV NS5A promotes recruitment of HSC70 to the substrate protein HNF-1α. HCV NS5A plays a crucial role in HCV-induced CMA. Further investigations of HCV NS5A-interacting proteins containing CMA-targeting motifs may help to elucidate HCV-induced pathogenesis.
Collapse
Affiliation(s)
- Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Putu Yuliandari
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
8
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
9
|
Estefan S, Brandão-Melo CE, Dos Santos Silva CM, Gomes DCK, Cardoso P, Costa MHS. Metabolic Evaluation in Patients With Hepatitis C Treated With Direct Antiviral Agents. Front Med (Lausanne) 2021; 8:631600. [PMID: 34136497 PMCID: PMC8200477 DOI: 10.3389/fmed.2021.631600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Epidemiological data clearly indicate a link between hepatitis C virus (HCV) and altered glucose homeostasis. Objective: To evaluate the response of treatment with direct antiviral agents (DAAs) on metabolic variables of patients with hepatitis C. Methods: Observational, cross-sectional study in a sample of patients with hepatitis C starting therapy with DAAs followed on the hepatology division of Federal University of Rio de Janeiro State. Data were collected in two stages: before the start of therapy and between 12 and 52 weeks after obtaining the sustained virological response. Results: In the baseline assessment of the 97 patients selected, 19.3% were obese, 38.6% were overweight, 50% were hypertensive, 43.8% were pre-diabetic, 12.5% were diabetic, 31.2% were dyslipidemic, and 21.8% had metabolic syndrome. There was an increase in total cholesterol and LDL levels (p < 0.001), and a non-significant reduction in blood glucose, glycated hemoglobin, insulin, and HOMA-IR levels after treatment. In the post-treatment, there was a reduction in fibrosis (p = 0.016), with a reduction in the levels of GGT, AST, and ALT (all with p < 0.001), as well as in the FIB4 and APRI scores (both with p < 0.001) and in the degree of fibrosis evaluated by elastography represented in kPa (p = 0.006). The blood glucose level was higher in patients with steatosis (p = 0.039) after treatment. There was a positive pre-treatment correlation between the degree of fibrosis (kPa) and FIB4 (r = 0.319, p = 0.004), APRI (r = 0.287, p = 0.010), and the NAFLD score (r = 0.275, p = 0.016). Conclusion: Patients with hepatitis C had a high prevalence of metabolic disturbance in the pre-treatment phase, but the therapy did not show beneficial effects, especially on glucose metabolism.
Collapse
Affiliation(s)
- Sergio Estefan
- Endocrinology and Hepatology Division of Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | | | | | - Danilo Cosme Klein Gomes
- Endocrinology and Hepatology Division of Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Paula Cardoso
- Endocrinology and Hepatology Division of Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Marcia Helena S Costa
- Endocrinology and Hepatology Division of Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Cai H, Yao W, Huang J, Xiao J, Chen W, Hu L, Mai R, Liang M, Chen D, Jiang N, Zhou L, Peng T. Apolipoprotein M, identified as a novel hepatitis C virus (HCV) particle associated protein, contributes to HCV assembly and interacts with E2 protein. Antiviral Res 2020; 177:104756. [PMID: 32119870 DOI: 10.1016/j.antiviral.2020.104756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver diseases such as steatosis, cirrhosis, and hepatocellular carcinoma. HCV particles have been found to associate with apolipoproteins, and apolipoproteins not only participate in the HCV life cycle, but also help HCV escape recognition by the host immune system, which pose challenges for the development of both HCV treatments and vaccines. However, no study has reported on the comprehensive identification of apolipoprotein associations with HCV particles. In the present study, we performed proteome analysis by affinity purification coupled with mass spectrometry (AP-MS) to comprehensively identify the apolipoprotein associations with HCV particles, and ApoM was first identified by AP-MS besides the previously reported ApoE, ApoB, ApoA-I and ApoC-I. Additionally, three assays further confirmed that ApoM was a novel virus particle associated protein. We also showed that ApoM was required for HCV production, especially for the assembly/release step of HCV life cycle. Furthermore, ApoM interacted with the HCV E2 protein. Finally, HCV infection reduced ApoM expression both in vitro and in vivo. Collectively, our study demonstrates that ApoM, identified as a novel HCV particle associated protein, contributes to HCV assembly/release and interacts with HCV E2 protein. It provides new insights on how HCV and the host apolipoproteins are reciprocally influenced and lays a basis for research in developing innovative antiviral strategies.
Collapse
Affiliation(s)
- Hua Cai
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenxia Yao
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Jingxian Huang
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenli Chen
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Longbo Hu
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Runming Mai
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nan Jiang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Zhou
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Peng
- Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Impact of Treatment with Direct Acting Antiviral Drugs on Glycemic Control in Patients with Hepatitis C and Diabetes Mellitus. Int J Hepatol 2020; 2020:6438753. [PMID: 32395351 PMCID: PMC7201615 DOI: 10.1155/2020/6438753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
AIM To assess the effect of treating chronic hepatitis C virus (HCV) infection with direct acting antiviral drugs (DAAs) on glycemic control in patients with concomitant diabetes mellitus (DM). METHODS We performed a retrospective case-control study in a viral hepatitis ambulatory clinic in Shreveport, Louisiana, during the period 11/01/2014 to 12/31/2017. All the clinic patient ages 18 years and above with treatment-naïve/biopsy-proven chronic hepatitis C and DM (hemoglobin A1C level ≥ 6.5%) who were eligible for treatment were included in the study. Of 118 such patients, 59 were treated with oral DAAs for 8-12 weeks with the goal of achieving a sustained virologic response (SVR). A control group of 59 patients did not receive treatment for their hepatitis C and was followed in the clinic. Patients in the control group did not receive treatment either due to insurance issues or refusal of hepatitis C treatment. RESULTS Fifty-five of the 59 patients treated with DAAs (93%) achieved a SVR. Six months after treatment completion, their mean ± SEM HbA1C level had decreased by 1.1 ± 0.03% (P < 0.0001). Four of the 59 patients treated with DAAs did not achieve a SVR. Their mean HbA1C 6 months after treatment completion had increased by 0.8 ± 0.2%. Furthermore, there was no improvement in HbA1C levels over time in the untreated group (mean HbA1C increase, 0.2 ± 0.05%; P < 0.0001 vs. the treatment group, which had a mean HbA1C decrease of 0.9 ± 0.2%). CONCLUSION This controlled study demonstrated that treatment of chronic hepatitis C with DAAs results in statistically significant and meaningful reductions in hemoglobin A1C levels in patients with coexisting diabetic mellitus if a SVR is achieved.
Collapse
|
12
|
Sevastianos VA, Voulgaris TA, Dourakis SP. Hepatitis C, systemic inflammation and oxidative stress: correlations with metabolic diseases. Expert Rev Gastroenterol Hepatol 2020; 14:27-37. [PMID: 31868062 DOI: 10.1080/17474124.2020.1708191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatitis C chronic infection has long been correlated with numerous systemic diseases, such as diabetes mellitus and hepatic steatosis. Recent studies have also revealed an association with atherosclerosis.Areas covered: An analysis is presented on the mechanisms through which the hepatitis C viral infection can lead to a systemic increase in pro-inflammatory markers, especially tumor necrosis factor-a and interleukin-6. The immunological imbalance created may, through different mechanisms, act on the metabolic pathways that contribute to the development of insulin resistance, the accumulation of lipids in the liver, and even the formation of atherosclerotic plaques. Moreover, an additional contributing factor to the above-mentioned metabolic derangements is the unopposed oxidative stress observed in chronic hepatitis C viral infection. The virus itself contributes to the formation of oxidative stress, through alterations in the trace metal homeostasis and its effect on pro-inflammatory cytokines, such as tumor necrosis factor-a.Expert opinion: The scope of this review is to emphasize the importance of the metabolic manifestations of hepatitis C viral infection and to elucidate the pathophysiological mechanisms behind their emergence.
Collapse
Affiliation(s)
- Vassilios A Sevastianos
- Department of Internal Medicine and Liver Outpatient Clinic, "Evangelismos" General Hospital, Athens, Greece
| | - Theodoros A Voulgaris
- Department of Internal Medicine and Liver Outpatient Clinic, "Evangelismos" General Hospital, Athens, Greece
| | - Spyros P Dourakis
- Department of Internal Μedicine, Medical School, National and Kapodistrian University of Athens, General Hospital of Athens Ippokrateio, Athens, Greece
| |
Collapse
|
13
|
Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor 1α via Chaperone-Mediated Autophagy. J Virol 2018; 92:JVI.00639-18. [PMID: 29695419 DOI: 10.1128/jvi.00639-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA.IMPORTANCE Many viruses use a protein degradation system, such as the ubiquitin-proteasome pathway or the autophagy pathway, for facilitating viral propagation and viral pathogenesis. We investigated the mechanistic details of the selective lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) induced by hepatitis C virus (HCV) NS5A protein. Using site-directed mutagenesis, we demonstrated that HNF-1α contains a pentapeptide chaperone-mediated autophagy (CMA)-targeting motif within the POU-specific domain of HNF-1α. The CMA-targeting motif is important for the association with HSC70. LAMP-2A is required for degradation of HNF-1α caused by NS5A. We propose that HCV NS5A interacts with HSC70, a key component of the CMA machinery, and recruits HSC70 to HNF-1α to target HNF-1α for CMA-mediated lysosomal degradation, thereby facilitating HCV pathogenesis. We discovered a role of HCV NS5A in CMA-dependent degradation of HNF-1α. Our results may lead to a better understanding of the role of CMA in the pathogenesis of HCV.
Collapse
|
14
|
Li Z, Liu Q. Hepatitis C virus regulates proprotein convertase subtilisin/kexin type 9 promoter activity. Biochem Biophys Res Commun 2018; 496:1229-1235. [PMID: 29397939 DOI: 10.1016/j.bbrc.2018.01.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease mainly expressed in liver. Although PCSK9 has been shown to inhibit hepatitis C virus (HCV) entry and replication, whether HCV regulates PCSK9 transcription has not been well studied. PCSK9 promoter activity is modulated by numerous transcription factors including sterol-regulatory element binding protein (SREBP)-1a, -1c, -2, hepatocyte nuclear factor-1 (HNF-1), and forkhead box O3 (FoxO3). Since they are differently regulated by HCV, we studied the effects of these transcription factors on PCSK9 promoter activity in the context of HCV infection and replication. We demonstrated that PCSK9 promoter activity was up-regulated after HCV infection and in HCV genomic replicon cells. We also studied the effects of HCV proteins on the PCSK9 promoter activity. While HCV structural proteins core, E1, and E2 had no effect, NS2, NS3, NS3-4A, NS5A and NS5B enhanced, and p7 and NS4B decreased PCSK9 promoter activity. Furthermore, we showed that transcription factors SREBP-1c, HNF-1α and specificity protein 1 increased PCSK9 promoter activity in HCV replicon cells, whereas SREBP-1a, HNF-1β and FoxO3 had an inhibitory effect. These results demonstrated the molecular mechanisms of how HCV modulates PCSK9 promoter activity and advanced our understanding on the mutual interactions between HCV and PCSK9.
Collapse
Affiliation(s)
- Zhubing Li
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
15
|
Minami N, Abe T, Deng L, Matsui C, Fukuhara T, Matsuura Y, Shoji I. Unconjugated interferon-stimulated gene 15 specifically interacts with the hepatitis C virus NS5A protein via domain I. Microbiol Immunol 2017; 61:287-292. [PMID: 28543875 DOI: 10.1111/1348-0421.12493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein, is induced by type I INF. Although several groups have reported ISGylation of the HCV NS5A protein, it is still unclear whether ISGylation of NS5A has anti- or pro-viral effects in hepatitis C virus (HCV) infection. In the present study, the role of ISGylation-independent, unconjugated ISG15 in HCV infection was examined. Immunoprecipitation analyses revealed that ISG15 interacts specifically with NS5A domain I. ISG15 mutants lacking the C-terminal glycine residue that is essential for ISGylation still interacted with NS5A protein. Taken together, these results suggest that unconjugated ISG15 affects the functions of HCV NS5A through protein-protein interaction.
Collapse
Affiliation(s)
- Nanae Minami
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| |
Collapse
|
16
|
Pirro M, Bianconi V, Francisci D, Schiaroli E, Bagaglia F, Sahebkar A, Baldelli F. Hepatitis C virus and proprotein convertase subtilisin/kexin type 9: a detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J Cell Mol Med 2017; 21:3150-3161. [PMID: 28722331 PMCID: PMC5706572 DOI: 10.1111/jcmm.13273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
From viral binding to the hepatocyte surface to extracellular virion release, the replication cycle of the hepatitis C virus (HCV) intersects at various levels with lipid metabolism; this leads to a derangement of the lipid profile and to increased viral infectivity. Accumulating evidence supports the crucial regulatory role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipoprotein metabolism. Notably, a complex interaction between HCV and PCSK9 has been documented. Indeed, either increased or reduced circulating PCSK9 levels have been observed in HCV patients; this discrepancy might be related to several confounders, including HCV genotype, human immunodeficiency virus (HIV) coinfection and the ambiguous HCV‐mediated influence on PCSK9 transcription factors. On the other hand, PCSK9 may itself influence HCV infectivity, inasmuch as the expression of different hepatocyte surface entry proteins and receptors is regulated by PCSK9. The aim of this review is to summarize the current evidence about the complex interaction between HCV and liver lipoprotein metabolism, with a specific focus on PCSK9. The underlying assumption of this review is that the interconnections between HCV and PCSK9 may be central to explain viral infectivity.
Collapse
Affiliation(s)
- Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Bagaglia
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Franco Baldelli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, Baudesson C, Higgs MR, Picard A, Magnan C, Foufelle F, Pawlotsky JM. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem 2017; 292:12860-12873. [PMID: 28559285 DOI: 10.1074/jbc.m117.785030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
Collapse
Affiliation(s)
- Hervé Lerat
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France.
| | - Mohamed Rabah Imache
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Jacqueline Polyte
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Aurore Gaudin
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Marion Mercey
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Flora Donati
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Camille Baudesson
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Martin R Higgs
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Alexandre Picard
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Fabienne Foufelle
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jean-Michel Pawlotsky
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France; National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, AP-HP, 94010 Créteil, France
| |
Collapse
|
18
|
Kim DJ, Kang YH, Kim KK, Kim TW, Park JB, Choe M. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutr Res Pract 2017; 11:180-189. [PMID: 28584574 PMCID: PMC5449374 DOI: 10.4162/nrp.2017.11.3.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/29/2016] [Accepted: 04/02/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.
Collapse
Affiliation(s)
- Dae Jung Kim
- Well-being Bioproducts RIC, Kangwon National University, Gangwon 25209, Korea
| | - Yun Hwan Kang
- National Development Institute of Korean Medicine, Gyeongbuk 38540, Korea
| | - Kyoung Kon Kim
- Department of Bio-Health Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 24341, Korea
| | - Tae Woo Kim
- Well-being Bioproducts RIC, Kangwon National University, Gangwon 25209, Korea
| | - Jae Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Gangwon 24252, Korea
| | - Myeon Choe
- Well-being Bioproducts RIC, Kangwon National University, Gangwon 25209, Korea.,Department of Bio-Health Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 24341, Korea
| |
Collapse
|
19
|
Chen M, Gan X, Yoshino KI, Kitakawa M, Shoji I, Deng L, Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol Immunol 2017; 60:407-17. [PMID: 27080060 DOI: 10.1111/1348-0421.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A-interacting protein, SET and MYND domain-containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon-harboring and HCV-infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N-SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A-SMYD3 interaction. NS5A co-localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP-1) activity, this being potentiated by co-expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP-1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP-1 activation in HCV-infected cells.
Collapse
Affiliation(s)
- Ming Chen
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Xiang Gan
- Division of Microbiology.,Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | | | | | - Ikuo Shoji
- Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Lin Deng
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Hak Hotta
- Division of Microbiology.,Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
20
|
Abstract
Hepatitis C virus (HCV) infection often causes intrahepatic diseases, such as chronic hepatitis, liver chirrohsis, and hepatocellular carcinoma (HCC). Moreover, HCV infection exhibits various extrahepatic manifestations, such as thyroiditis, glucose and lipid metabolic disorder, and iron metabolic disorder. HCV infection is often associated with type 2 diabetes, involving hepatic fibrosis and poor prognosis. Type 2 diabetes increases the risk of HCC. We have been investigating molecular mechanisms of HCV-induced glucose metabolic disorder and we reported that HCV infection promotes hepatic gluconeogenesis through forkhead box O1 (FoxO1)-dependent pathway and that HCV infection suppresses the cell surface expression of glucose transporter 2 (GLUT2), resulting in suppression of glucose uptake. We have found that HCV NS5A protein plays important roles in these two independent pathways. Here we discuss the roles of HCV NS5A in HCV-induced glucose metabolic disorder.
Collapse
|
21
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Vallianou I, Dafou D, Vassilaki N, Mavromara P, Hadzopoulou-Cladaras M. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma. Int J Biochem Cell Biol 2016; 78:315-326. [PMID: 27477312 DOI: 10.1016/j.biocel.2016.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC.
Collapse
Affiliation(s)
- Ioanna Vallianou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
23
|
Sianipar IR, Matsui C, Minami N, Gan X, Deng L, Hotta H, Shoji I. Physical and functional interaction between hepatitis C virus NS5A protein and ovarian tumor protein deubiquitinase 7B. Microbiol Immunol 2016; 59:466-76. [PMID: 26112491 DOI: 10.1111/1348-0421.12278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) NS5A protein plays crucial roles in viral RNA replication, virus assembly, and viral pathogenesis. Although NS5A has no known enzymatic activity, it modulates various cellular pathways through interaction with cellular proteins. HCV NS5A (and other HCV proteins) are reportedly degraded through the ubiquitin-proteasome pathway; however, the physiological roles of ubiquitylation and deubiquitylation in HCV infection are largely unknown. To elucidate the role of deubiquitylation in HCV infection, an attempt was made to identify a deubiquitinase (DUB) that can interact with NS5A protein. An ovarian tumor protein (OTU), deubiquitinase 7B (OTUD7B), was identified as a novel NS5A-binding protein. Co-immunoprecipitation analyses showed that NS5A interacts with OTUD7B in both Huh-7 and HCV RNA replicon cells. Immunofluorescence staining revealed that HCV NS5A protein colocalizes with OTUD7B in the cytoplasm. Moreover, HCV infection was found to enhance the nuclear localization of OTUD7B. The OTUD7B-binding domain on NS5A was mapped using a series of NS5A deletion mutants. The present findings suggest that the domain I of NS5A is important and the region from amino acid 121 to 126 of NS5A essential for the interaction. Either V121A or V124A mutation in NS5A disrupts the NS5A-OTUD7B interaction. The results of this in vivo ubiquitylation assay suggest that HCV NS5A enhances OTUD7B DUB activity. Taken together, these results suggest that HCV NS5A protein interacts with OTUD7B, thereby modulating its DUB activity.
Collapse
Affiliation(s)
- Imelda Rosalyn Sianipar
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Chieko Matsui
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nanae Minami
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Xiang Gan
- Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | - Lin Deng
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hak Hotta
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ikuo Shoji
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
24
|
Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. Eur J Pharmacol 2015; 761:391-7. [DOI: 10.1016/j.ejphar.2015.04.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
|
25
|
Matsui C, Rosalyn Sianipar I, Minami N, Deng L, Hotta H, Shoji I. A single-amino-acid mutation in hepatitis C virus NS5A disrupts physical and functional interaction with the transcription factor HNF-1α. J Gen Virol 2015; 96:2200-2205. [PMID: 25957097 DOI: 10.1099/vir.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infection often causes extrahepatic manifestations, such as type 2 diabetes. We previously reported that HCV infection induces the lysosomal degradation of the transcription factor HNF-1α via an interaction with viral NS5A, thereby suppressing GLUT2 gene expression. However, the molecular mechanism of NS5A-induced degradation of HNF-1α is largely unknown. We aimed to identify the determinants necessary for the degradation of HNF-1α induced by NS5A. Coimmunoprecipitation analysis revealed that the POU specific (POUs) domain spanning from aa 91 to 181 of HNF-1α is responsible for the interaction of NS5A. We also found that the region from aa 121 to 126 of NS5A, which is known as the binding motif of the HCV replication factor FKBP8, is important for the degradation of HNF-1α. A NS5A V121A mutation disrupted the NS5A-HNF-1α interaction as well as the degradation of HNF-1α. Our findings suggest that NS5A Val121 is crucial for viral pathogenesis.
Collapse
Affiliation(s)
- Chieko Matsui
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Imelda Rosalyn Sianipar
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nanae Minami
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lin Deng
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hak Hotta
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ikuo Shoji
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
26
|
Dong B, Li H, Singh AB, Cao A, Liu J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 2014; 290:4047-58. [PMID: 25540198 DOI: 10.1074/jbc.m114.597229] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α.
Collapse
Affiliation(s)
- Bin Dong
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Hai Li
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Amar Bahadur Singh
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Aiqin Cao
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
27
|
Chinnaswamy S. Genetic variants at the IFNL3 locus and their association with hepatitis C virus infections reveal novel insights into host-virus interactions. J Interferon Cytokine Res 2014; 34:479-97. [PMID: 24555572 PMCID: PMC4080901 DOI: 10.1089/jir.2013.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Human genetic variation plays a critical role in both spontaneous clearance of and response to interferon (IFN)-based therapies against hepatitis C virus (HCV) as shown by the success of recent genome-wide association studies (GWAS). Several GWAS and later validation studies have shown that single nucleotide polymorphisms (SNPs) at the IFNL3 (formerly IL28B) locus on chromosome 19 are involved in eliminating HCV in human patients. No doubt that this information is helping clinicians worldwide in making better clinical decisions in anti-HCV therapy, but the biological mechanisms involving the SNPs leading to differential responses to therapy and spontaneous clearance of HCV remain elusive. Recent reports including the discovery of a novel IFN (IFN-λ4) gene at the IFNL3 locus and in vitro functional studies implicating 2 SNPs as causal variants lead to novel conclusions and perhaps to new directions in research. An attempt is made in this review to summarize the major findings of the GWAS, the efforts involved in the discovery of causal SNPs; and to explain the biological basis for spontaneous clearance and response to treatment in HCV infections.
Collapse
|
28
|
Foka P, Karamichali E, Dalagiorgou G, Serti E, Doumba PP, Pissas G, Kakkanas A, Kazazi D, Kochlios E, Gaitanou M, Koskinas J, Georgopoulou U, Mavromara P. Hepatitis C virus modulates lipid regulatory factor Angiopoietin-like 3 gene expression by repressing HNF-1α activity. J Hepatol 2014; 60:30-38. [PMID: 23978712 DOI: 10.1016/j.jhep.2013.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/30/2013] [Accepted: 08/10/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS HCV relies on host lipid metabolism to complete its life cycle and HCV core is crucial to this interaction. Liver secreted ANGPTL-3 is an LXR- and HNF-1α-regulated protein, which plays a key role in lipid metabolism by increasing plasma lipids via inhibition of lipase enzymes. Here we aimed to investigate the modulation of ANGPTL-3 by HCV core and identify the molecular mechanisms involved. METHODS qRT-PCR and ELISA were used to assess ANGPTL-3 mRNA and protein levels in HCV patients, the JFH-1 infectious system and liver cell lines. Transfections, chromatin immunoprecipitation and immunofluorescence delineated parts of the molecular mechanisms implicated in the core-mediated regulation of ANGPTL-3 gene expression. RESULTS ANGPTL-3 gene expression was decreased in HCV-infected patients and the JFH-1 infectious system. mRNA and promoter activity levels were down-regulated by core. The response was lost when an HNF-1α element in ANGPTL-3 promoter was mutated, while loss of HNF-1α DNA binding to this site was recorded in the presence of HCV core. HNF-1α mRNA and protein levels were not altered by core. However, trafficking between nucleus and cytoplasm was observed and then blocked by an inhibitor of the HNF-1α-specific kinase Mirk/Dyrk1B. Transactivation of LXR/RXR signalling could not restore core-mediated down-regulation of ANGPTL-3 promoter activity. CONCLUSIONS ANGPTL-3 is negatively regulated by HCV in vivo and in vitro. HCV core represses ANGPTL-3 expression through loss of HNF-1α binding activity and blockage of LXR/RXR transactivation. The putative ensuing increase in serum lipid clearance and uptake by the liver may sustain HCV virus replication and persistence.
Collapse
Affiliation(s)
- Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Polyxeni P Doumba
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - George Pissas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Dorothea Kazazi
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Emmanouil Kochlios
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | | | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
29
|
Hepatitis C virus stimulates low-density lipoprotein receptor expression to facilitate viral propagation. J Virol 2013; 88:2519-29. [PMID: 24352472 DOI: 10.1128/jvi.02727-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Lipids play a crucial role in multiple aspects of hepatitis C virus (HCV) life cycle. HCV modulates host lipid metabolism to enrich the intracellular milieu with lipids to facilitate its proliferation. However, very little is known about the influence of HCV on lipid uptake from bloodstream. Low-density lipoprotein receptor (LDLR) is involved in uptake of cholesterol rich low-density lipoprotein (LDL) particles from the bloodstream. The association of HCV particles with lipoproteins implicates their role in HCV entry; however, the precise role of LDLR in HCV entry still remains controversial. Here, we investigate the effect of HCV infection on LDLR expression and the underlying mechanism(s) involved. We demonstrate that HCV stimulates LDLR expression in both HCV-infected Huh7 cells and in liver tissue from chronic hepatitis C patients. Fluorescence activated cell sorting and immunofluorescence analysis revealed enhanced cell surface and total expression of LDLR in HCV-infected cells. Increased LDLR expression resulted in the enhanced uptake of lipoprotein particles by HCV-infected cells. Analysis of LDLR gene promoter identified a pivotal role of sterol-regulatory element binding proteins (SREBPs), in the HCV-mediated stimulation of LDLR transcription. In addition, HCV negatively modulated the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that facilitates LDLR degradation. Ectopic expression of wild-type PCSK9 or gain-of-function PCSK9 mutant negatively affected HCV replication. Overall, our results demonstrate that HCV regulates LDLR expression at transcriptional and posttranslational level via SREBPs and PCSK9 to promote lipid uptake and facilitate viral proliferation. IMPORTANCE HCV modulates host lipid metabolism to promote enrichment of lipids in intracellular environment, which are essential in multiple aspects of HCV life cycle. However, very little is known about the influence of HCV on lipid uptake from the bloodstream. LDLR is involved in uptake of cholesterol rich lipid particles from bloodstream. In this study, we investigated the effect of HCV on LDLR expression and the underlying mechanism triggered by the virus to modulate LDLR expression. Our observations suggest that HCV upregulates LDLR expression at both the protein and the transcript levels and that this upregulation likely contributes toward the uptake of serum lipids by infected hepatocytes. Abrogation of HCV-mediated upregulation of LDLR inhibits serum lipid uptake and thereby perturbs HCV replication. Overall, our findings highlight the importance of serum lipid uptake by infected hepatocytes in HCV life cycle.
Collapse
|
30
|
Mawatari S, Uto H, Ido A, Nakashima K, Suzuki T, Kanmura S, Kumagai K, Oda K, Tabu K, Tamai T, Moriuchi A, Oketani M, Shimada Y, Sudoh M, Shoji I, Tsubouchi H. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4. PLoS One 2013; 8:e82094. [PMID: 24349192 PMCID: PMC3861371 DOI: 10.1371/journal.pone.0082094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/11/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It has been hypothesized that persistent hepatitis C virus (HCV) infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4), composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS Human C4 was incubated with HCV nonstructural (NS) 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.
Collapse
Affiliation(s)
- Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
- * E-mail:
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Kenji Nakashima
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Tsutomu Tamai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Akihiro Moriuchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Makoto Oketani
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Yuko Shimada
- Miyazaki Prefectural Industrial Support Foundation, Miyazaki, Miyazaki, Japan
| | - Masayuki Sudoh
- Kamakura Research Division, Chugai Pharmaceutical, Co. Ltd., Kamakura, Kanagawa, Japan
| | - Ikuo Shoji
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirohito Tsubouchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
31
|
[Research activities in Kobe-Indonesia Collaborative Research Centers]. Uirusu 2013; 63:59-68. [PMID: 24769579 DOI: 10.2222/jsv.63.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.
Collapse
|