1
|
Role of E2F transcription factor in Oral cancer: Recent Insight and Advancements. Semin Cancer Biol 2023; 92:28-41. [PMID: 36924812 DOI: 10.1016/j.semcancer.2023.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
|
2
|
Epstein-Barr Virus Facilitates Expression of KLF14 by Regulating the Cooperative Binding of the E2F-Rb-HDAC Complex in Latent Infection. J Virol 2020; 94:JVI.01209-20. [PMID: 32847849 DOI: 10.1128/jvi.01209-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV) was discovered as the first human tumor virus more than 50 years ago. EBV infects more than 90% of the human population worldwide and is associated with numerous hematologic malignancies and epithelial malignancies. EBV establishes latent infection in B cells, which is the typical program seen in lymphomagenesis. Understanding EBV-mediated transcription regulatory networks is one of the current challenges that will uncover new insights into the mechanism of viral-mediated lymphomagenesis. Here, we describe the regulatory profiles of several cellular factors (E2F6, E2F1, Rb, HDAC1, and HDAC2) together with EBV latent nuclear antigens using next-generation sequencing (NGS) analysis. Our results show that the E2F-Rb-HDAC complex exhibits similar distributions in genomic regions of EBV-positive cells and is associated with oncogenic super-enhancers involving long-range regulatory regions. Furthermore, EBV latent antigens cooperatively hijack this complex to bind at KLFs gene loci and facilitate KLF14 gene expression in lymphoblastoid cell lines (LCLs). These results demonstrate that EBV latent antigens can function as master regulators of this multisubunit repressor complex (E2F-Rb-HDAC) to reverse its suppressive activities and facilitate downstream gene expression that can contribute to viral-induced lymphomagenesis. These results provide novel insights into targets for the development of new therapeutic interventions for treating EBV-associated lymphomas.IMPORTANCE Epstein-Barr virus (EBV), as the first human tumor virus, infects more than 90% of the human population worldwide and is associated with numerous human cancers. Exploring EBV-mediated transcription regulatory networks is critical to understand viral-associated lymphomagenesis. However, the detailed mechanism is not fully explored. Now we describe the regulatory profiles of the E2F-Rb-HDAC complex together with EBV latent antigens, and we found that EBV latent antigens cooperatively facilitate KLF14 expression by antagonizing this multisubunit repressor complex in EBV-positive cells. This provides potential therapeutic targets for the treatment of EBV-associated cancers.
Collapse
|
3
|
The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 2018; 516:55-70. [PMID: 29329079 DOI: 10.1016/j.virol.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus LMP1 is an oncoprotein required for immortalizing B lymphocytes and also plays important roles in transforming non-lymphoid tissue. The discovery of LMP1 protein interactions will likely generate targets to treat EBV-associated cancers. Here, we define the broader LMP1 interactome using the recently developed BioID method. Combined with mass spectrometry, we identified over 1000 proteins across seven independent experiments with direct or indirect relationships to LMP1. Pathway analysis suggests that a significant number of the proteins identified are involved in signal transduction and protein or vesicle trafficking. Interestingly, a large number of proteins thought to be important in the formation of exosomes and protein targeting were recognized as probable LMP1 interacting partners, including CD63, syntenin-1, ALIX, TSG101, HRS, CHMPs, and sorting nexins. Therefore, it is likely that LMP1 modifies protein trafficking and exosome biogenesis pathways. In support of this, knock-down of syntenin-1 and ALIX resulted in reduced exosomal LMP1.
Collapse
|
4
|
Pei Y, Banerjee S, Sun Z, Jha HC, Saha A, Robertson ES. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation. PLoS Pathog 2016; 12:e1005844. [PMID: 27548379 PMCID: PMC4993364 DOI: 10.1371/journal.ppat.1005844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022] Open
Abstract
Epstein–Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. EBV is associated with a broad range of human cancers. EBV-encoded nuclear antigen 3C (EBNA3C) is one of the essential latent antigens important for deregulating the functions of numerous host transcription factors which play vital roles in B-cell immortalization. The family of E2F transcription factors are involved in diverse cellular functions. More specifically, E2F6 is one of the E2F family members with a unique property of transcriptional repression. Our current study now demonstrates that EBNA3C can enhance E2F6 repressive functions, and is also responsible for increased E2F6 protein expression in EBV-transformed LCLs. EBNA3C directly interacts with E2F6 at its amino and carboxy terminal domains. Additionally, E2F6 was stabilized by EBNA3C and co-localized in nuclear compartments. Our study also demonstrated that EBNA3C and E2F6 expression resulted in decreased transcriptional activity of E2F1, and that EBNA3C, E2F6 and E2F1 can form a protein complex, and EBNA3C competes with E2F1 for E2F6 binding. The recruitment of E2F6 by EBNA3C was also shown to be important for its related cell proliferation. These results showed a crucial role for EBNA3C-mediated deregulation of E2F6 and its impact on the activities of other E2F family members. Our findings also provide new insights for targeting these E2F transcription factors as potential therapeutic intervention strategies in EBV-associated cancers.
Collapse
Affiliation(s)
- Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuvomoy Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Biological Sciences, Presidency University, Kolkata, India
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Lim GE, Albrecht T, Piske M, Sarai K, Lee JTC, Ramshaw HS, Sinha S, Guthridge MA, Acker-Palmer A, Lopez AF, Clee SM, Nislow C, Johnson JD. 14-3-3ζ coordinates adipogenesis of visceral fat. Nat Commun 2015. [PMID: 26220403 PMCID: PMC4532800 DOI: 10.1038/ncomms8671] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27(Kip1). Indeed, concomitant knockdown of p27(Kip1) or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27(Kip1) abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis.
Collapse
Affiliation(s)
- Gareth E Lim
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Tobias Albrecht
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Micah Piske
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Karnjit Sarai
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jason T C Lee
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Hayley S Ramshaw
- The Centre for Cancer Biology, SAPathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Mark A Guthridge
- Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, VIC 3004, Australia
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main 60438, Germany
| | - Angel F Lopez
- The Centre for Cancer Biology, SAPathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Susanne M Clee
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
6
|
Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins. J Virol 2015; 89:7277-90. [PMID: 25948738 DOI: 10.1128/jvi.00321-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affected LMP1-induced signaling. BiFC between the identified proteins and LMP1 was localized to lipid raft domains and was dependent on LMP1-induced signaling. Proximity biotinylation assays with LMP1 induced biotinylation of the actin-associated proteins, which were shifted in molecular mass. Together, the findings of this study suggest that the association of LMP1 with lipid rafts is mediated at least in part through interactions with the actin cytoskeleton. IMPORTANCE LMP1 signaling requires oligomerization, lipid raft partitioning, and binding to cellular adaptors. The current study utilized a genome-wide screen to identify several actin-associated proteins as candidate LMP1-binding proteins. The interaction between LMP1 and these proteins was localized to lipid rafts and dependent on LMP1 signaling. This suggests that the association of LMP1 with lipid rafts is mediated through interactions with actin-associated proteins.
Collapse
|
7
|
Al-Salam S, Awwad A, Alashari M. Epstein-Barr virus infection is inversely correlated with the expression of retinoblastoma protein in Reed-Sternberg cells in classic Hodgkin lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7508-7517. [PMID: 25550786 PMCID: PMC4270594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by few neoplastic Hodgkin/Reed-Sternberg (H/RS) cells in a background of intense inflammatory infiltrate. Epstein-Barr virus (EBV) has been shown to affect cell cycle and regulation of apoptosis. In total, 82 cases of cHL were studied. Five- micrometer sections were prepared and stained with haematoxylin and eosin and immunohistochemical streptavidin-biotin methods for EBV-LMP-1, pRb, ki-67 and cleaved caspase-3. In-situ hybridization for EBV encoded RNA was used to confirm the detection of EBV in H/RS cells. There were 45 nodular sclerosis, 28 mixed cellularity, 4 lymphocyte-rich, and 5 lymphocyte depletion subtypes in this series of cases. EBV and pRb were detected in 55% (46/82) and 64% (50/82) of the cases respectively. EBV was detected in 78% (25/32) of pRb-negative cases and 81% (29/36) of EBV-negative cases are pRb-positive. A statistically significant inverse relationship was observed between the presence of EBV and expression of pRb (P = 0.001). In conclusion, EBV infection is inversely correlated with pRb in H/RS cells in cHL.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Aktham Awwad
- Department of Laboratory Medicine, Tawam Hospital in Affiliation with Johns Hopkins International MedicineAl Ain, United Arab Emirates
| | - Mouied Alashari
- Department Of Pathology, University of Utah, Primary Children’s Hospital100 North Mario Capecchi Drive, Salt Lake City, UT 84103, USA
| |
Collapse
|
8
|
Identification of transmembrane protein 134 as a novel LMP1-binding protein by using bimolecular fluorescence complementation and an enhanced retroviral mutagen. J Virol 2012; 86:11345-55. [PMID: 22855487 DOI: 10.1128/jvi.00523-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.
Collapse
|
9
|
Talaty P, Emery A, Everly DN. Characterization of the latent membrane protein 1 signaling complex of Epstein-Barr virus in the membrane of mammalian cells with bimolecular fluorescence complementation. Virol J 2011; 8:414. [PMID: 21864338 PMCID: PMC3173395 DOI: 10.1186/1743-422x-8-414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023] Open
Abstract
Background Bimolecular fluorescence complementation (BiFC) is a novel technique to examine protein-protein interaction through the assembly of fluorescent proteins. In the present study, BiFC was used to study the assembly of the Epstein-Barr virus latent membrane protein 1 (LMP1) signaling complex within the membrane of mammalian cells. LMP1 signaling requires oligomerization, localization to lipid rafts, and association of the cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor associated factors (TRAFs). Methods LMP1-TRAF and LMP1-LMP1 interactions were assayed by BiFC using fluorescence microscopy and flow cytometry. Function of LMP1 BiFC contructs were confirmed by transformation assays and nuclear factor- κB (NF-κB) reporter assays. Results BiFC was observed between LMP1 and TRAF2 or TRAF3 and mutation of the LMP1 signaling domains reduced complementation. Fluorescence was observed in previously described LMP1 signaling locations. Oligomerization of LMP1 with itself induced complementation and BiFC. LMP1-BiFC constructs were fully functional in rodent fibroblast transformation assays and activation of NF-κB reporter activity. The BiFC domain partially suppressed some LMP1 mutant phenotypes. Conclusions Together these data suggest that BiFC is a unique and novel platform to identify and characterize proteins recruited to the LMP1-signaling complex.
Collapse
Affiliation(s)
- Pooja Talaty
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Illinois 60064, USA
| | | | | |
Collapse
|