1
|
Vázquez-Arreguín K, Gonzalez A, Webb A, Mo X, Otani Y, Kaur B. Engineering a novel HSV-1 strain for oncolytic therapy of solid tumors. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200961. [PMID: 40165989 PMCID: PMC11957669 DOI: 10.1016/j.omton.2025.200961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Oncolytic herpes simplex virus (HSV)-1-derived viruses are being developed for cancer treatment. Here, we describe the isolation of a novel strain of HSV-1 and its engineering to safely harness it as an oncolytic therapeutic. This strain (UT1a) was isolated from a de-identified consented patient biorepository. CRISPR-Cas9-based recombination was utilized to insert bacterial artificial chromosome (BAC) genes into the viral UL39 and UL40 locus, resulting in the deletion of both large and small subunits of the viral ribonucleotide reductase (RR). Subsequent deletion of viral RL1 genes encoding the neurovirulence factor γ34.5 resulted in OncoDelta (OncoD), a virus deleted for UL39, UL40, and both copies of RL1. OncoD retained tumor-cell-specific cytotoxicity and replication; was safe and non-toxic in intracranial injections in naive mice up to doses of 5 × 106, the maximal injectable dose for OncoD; and showed significant anti-tumor immune-activating potential in multiple tumor models. Transcriptome profiling of OncoD showed that it impaired DNA damage repair pathways and hence synergized with radiation to improve therapeutic response in vitro and in vivo.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| | - Alex Gonzalez
- Department of Neurosurgery, UTHealth Houston, Houston, TX 77030, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Canova PN, Katzenell S, Cerón S, Charron AJ, Pesola JM, Oh HS, Coen DM, Knipe DM, Leib DA. Regulation of the innate immune response in human neurons by ICP34.5 maintains herpes simplex virus 1 latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647253. [PMID: 40291710 PMCID: PMC12026746 DOI: 10.1101/2025.04.04.647253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infections in sensory neurons, from which HSV sporadically reactivates due to external stress and other stimuli. Latency and reactivation are studied through in vivo models in a variety of hosts, as well as in vitro models using primary neurons, and neurons derived from pluripotent stem cells (iPSCs). These systems behave disparately, but the reasons remain unknown. The interferon (IFN)-based neuronal innate immune response is critical in controlling HSV-1 replication and HSV-1 counters these responses in part through infectedcell protein 34.5 (ICP34.5). ICP34.5 also promotes neurovirulence by preventing host translational shutoff and interfering with host cell autophagy. Here we demonstrate in a human iPSC neuronal model that sustaining host translation is the key activity of ICP34.5 for enhancement of reactivation. Specifically, our data shows that ICP34.5 was key for maintenance of HSV-1 latency. While interaction of ICP34.5 with the autophagy regulator Beclin 1 was important for maintaining latency, this was not due to modulation of bulk autophagy. Our work from primary mouse neurons suggested that the major effect of ICP34.5 on latency maintenance occurs in an IRF3/7-dependent manner. Notably, the role of ICP34.5 in regulating latency and reactivation differs between neurons derived from human iPSCs (iNeurons) and primary mouse trigeminal (TG) neurons. This highlights the importance of selecting an appropriate neuronal model and validating experimental outcomes in multiple models.
Collapse
|
3
|
Lu X, Wu Y, Zhao C, Zheng J, Chen S, Wang Y, Xia Y. Co-expression of HSV-1 ICP34.5 enhances the expression of gene delivered by self-amplifying RNA and mitigates its immunogenicity. FEBS Open Bio 2025. [PMID: 40200732 DOI: 10.1002/2211-5463.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Self-amplifying RNA (saRNA) vectors have garnered significant attention for their potential in transient recombinant protein expression and vaccination strategies. These vectors are notable for their safety and the ability to produce high levels of protein from minimal input templates, offering a promising avenue for gene therapy applications. Despite their advantages, saRNA vectors face a critical challenge in their propensity to trigger a robust innate immune response. The presence of double-stranded RNA intermediates during saRNA replication activates pattern recognition receptors (PRRs), leading to the activation of protein kinase R (PKR) and interferon (IFN) signaling, which can result in a general translational shutdown within the host cell. To mitigate the stimulatory effects on PRRs and enhance the translation efficiency of saRNA, this study employs the saRNA-encoding HSV-1 neurovirulence protein ICP34.5, which is known for its ability to counteract the effects of PKR activation, potentially improving the translation efficiency of saRNA. It was shown that saRNA-encoding ICP34.5 clearly mediated the eukaryotic initiation factor 2 alpha subunit (eIF2α) dephosphorylation and significant suppression of innate immune responses in vitro, leading to enhanced expression of saRNA-encoded genes. The application of ICP34.5 incorporating saRNA vectors offers a more efficient and cost-effective solution for the production of proteins and the development of vaccines. This strategy could revolutionize the fields where saRNA utilization is envisioned, particularly in neurotropic disease applications where HSV-1 proteins may offer additional benefits.
Collapse
Affiliation(s)
- Xuemin Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yabin Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Chunye Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shangwu Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
4
|
Song X, Wang Y, Zou W, Wang Z, Cao W, Liang M, Li F, Zeng Q, Ren Z, Wang Y, Zheng K. Inhibition of mitophagy via the EIF2S1-ATF4-PRKN pathway contributes to viral encephalitis. J Adv Res 2024:S2090-1232(24)00326-6. [PMID: 39103048 DOI: 10.1016/j.jare.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown. OBJECTIVES We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection. METHODS The antiviral effects of compounds were investigated by Western blot, RT-PCR and plaque assay. The changes of Parkin (PRKN)-mediated mitophagy and Nuclear Factor kappa B (NFKB)-mediated neuroinflammation were examined by TEM, RT-qPCR, Western blot and ELISA. The therapeutic effect of taurine or PRKN-overexpression was confirmed in the HSE mouse model by evaluating survival rate, eye damage, neurodegenerative symptoms, immunohistochemistry analysis and histopathology. RESULTS HSV-1 infection caused the accumulation of damaged mitochondria in neuronal cells and in the brain tissue of HSE mice. Early HSV-1 infection led to mitophagy activation, followed by inhibition in the later viral infection. The HSV-1 proteins ICP34.5 or US11 deregulated the EIF2S1-ATF4 axis to suppress PRKN/Parkin mRNA expression, thereby impeding PRKN-dependent mitophagy. Consequently, inhibition of mitophagy by specific inhibitor midiv-1 promoted HSV-1 infection, whereas mitophagy activation by PRKN overexpression or agonists (CCCP and rotenone) attenuated HSV-1 infection and reduced the NF-κB-mediated neuroinflammation. Moreover, PRKN-overexpressing mice showed enhanced resistance to HSV-1 infection and ameliorated HSE pathogenesis. Furthermore, taurine, a differentially regulated gut microbial metabolite upon HSV-1 infection, acted as a mitophagy activator that transcriptionally promotes PRKN expression to stimulate mitophagy and to limit HSV-1 infection both in vitro and in vivo. CONCLUSION These results reveal the protective function of mitophagy in HSE pathogenesis and highlight mitophagy activation as a potential antiviral therapeutic strategy for HSV-1-related diseases.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China; Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510440, China
| | - Weixiangmin Zou
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Minting Liang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Tarbeeva DV, Pislyagin EA, Menchinskaya ES, Berdyshev DV, Krylova NV, Iunikhina OV, Kalinovskiy AI, Shchelkanov MY, Mishchenko NP, Aminin DL, Fedoreyev SA. Polyphenols from Maackia amurensis Heartwood Protect Neuronal Cells from Oxidative Stress and Prevent Herpetic Infection. Int J Mol Sci 2024; 25:4142. [PMID: 38673729 PMCID: PMC11050087 DOI: 10.3390/ijms25084142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.
Collapse
Affiliation(s)
- Darya V. Tarbeeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Evgeny A. Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Dmitrii V. Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Natalya V. Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia; (N.V.K.); (O.V.I.); (M.Y.S.)
| | - Olga V. Iunikhina
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia; (N.V.K.); (O.V.I.); (M.Y.S.)
| | - Anatoliy I. Kalinovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia; (N.V.K.); (O.V.I.); (M.Y.S.)
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.P.); (E.S.M.); (D.V.B.); (A.I.K.); (N.P.M.); (D.L.A.); (S.A.F.)
| |
Collapse
|
6
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
7
|
Zhang L, Zhang L, Li F, Liu W, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. When herpes simplex virus encephalitis meets antiviral innate immunity. Front Immunol 2023; 14:1118236. [PMID: 36742325 PMCID: PMC9896518 DOI: 10.3389/fimmu.2023.1118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus (HSV) is the most common pathogen of infectious encephalitis, accounting for nearly half of the confirmed cases of encephalitis. Its clinical symptoms are often atypical. HSV PCR in cerebrospinal fluid is helpful for diagnosis, and the prognosis is usually satisfactory after regular antiviral treatment. Interestingly, some patients with recurrent encephalitis have little antiviral effect. HSV PCR in cerebrospinal fluid is negative, but glucocorticoid has a significant effect after treatment. Specific antibodies, such as the NMDA receptor antibody, the GABA receptor antibody, and even some unknown antibodies, can be isolated from cerebrospinal fluid, proving that the immune system contributes to recurrent encephalitis, but the specific mechanism is still unclear. Based on recent studies, we attempt to summarize the relationship between herpes simplex encephalitis and innate immunity, providing more clues for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| |
Collapse
|
8
|
Modulation of mitochondria by viral proteins. Life Sci 2023; 313:121271. [PMID: 36526048 DOI: 10.1016/j.lfs.2022.121271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.
Collapse
|
9
|
Interplay between Autophagy and Herpes Simplex Virus Type 1: ICP34.5, One of the Main Actors. Int J Mol Sci 2022; 23:ijms232113643. [DOI: 10.3390/ijms232113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that occasionally may spread to the central nervous system (CNS), being the most common cause of sporadic encephalitis. One of the main neurovirulence factors of HSV-1 is the protein ICP34.5, which although it initially seems to be relevant only in neuronal infections, it can also promote viral replication in non-neuronal cells. New ICP34.5 functions have been discovered during recent years, and some of them have been questioned. This review describes the mechanisms of ICP34.5 to control cellular antiviral responses and debates its most controversial functions. One of the most discussed roles of ICP34.5 is autophagy inhibition. Although autophagy is considered a defense mechanism against viral infections, current evidence suggests that this antiviral function is only one side of the coin. Different types of autophagic pathways interact with HSV-1 impairing or enhancing the infection, and both the virus and the host cell modulate these pathways to tip the scales in its favor. In this review, we summarize the recent progress on the interplay between autophagy and HSV-1, focusing on the intricate role of ICP34.5 in the modulation of this pathway to fight the battle against cellular defenses.
Collapse
|
10
|
Shayan S, Arashkia A, Bahramali G, Abdoli A, Nosrati MSS, Azadmanesh K. Cell type-specific response of colon cancer tumor cell lines to oncolytic HSV-1 virotherapy in hypoxia. Cancer Cell Int 2022; 22:164. [PMID: 35477503 PMCID: PMC9044800 DOI: 10.1186/s12935-022-02564-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Novel strategies are required since the hypoxic tumor microenvironment is one of the important impediments for conventional cancer therapy. High mobility group box 1 (HMGB1) protein can block aerobic respiration in cancer cells. We hypothesized that HMGB1could also kill the colorectal cancer cells during hypoxia. Methods In this study, we developed oncolytic herpes simplex virus type 1 expressing HMGB1 protein (HSV-HMGB1) and investigated the cytotoxic effect of HSV-HMGB1 and its parental virus (HSV-ble) on three colorectal cancer cells (HCT116, SW480, and HT29) under normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. We further identified potential autophagy- related genes in HT29 cells by retrieving mRNA expression microarray datasets from the Gene Expression Omnibus database. These genes were then detected in HT29 cells infected with HSV-HMGB1 and HSV-ble during normoxia and hypoxia by Real-Time quantitative PCR (qRT-PCR). Results The cytotoxic effect of HSV-HMGB1 was significantly higher than that of HSV-ble during normoxia; however, during hypoxia, HSV-HMGB1 enhanced the viability of HT29 cells at MOI 0.1. Analyzing the cell death pathway revealed that HSV-HMGB1 induced autophagy in HT29 cells under hypoxic conditions. Conclusion In conclusion, it appears that oncolytic virotherapy is cell context-dependent. Therefore, understanding the cancer cells’ characteristics, microenvironment, and cell signaling are essential to improve the therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02564-4.
Collapse
Affiliation(s)
- Sara Shayan
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Liang MZ, Ke TL, Chen L. Mitochondrial Protein PGAM5 Emerges as a New Regulator in Neurological Diseases. Front Mol Neurosci 2021; 14:730604. [PMID: 34630036 PMCID: PMC8496500 DOI: 10.3389/fnmol.2021.730604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
As mitochondrial dysfunction has increasingly been implicated in neurological diseases, much of the investigation focuses on the response of the mitochondria. It appears that mitochondria can respond to external stimuli speedy fast, in seconds. Understanding how mitochondria sense the signal and communicate with cytosolic pathways are keys to understand mitochondrial regulation in diseases or in response to trauma. It was not until recently that a novel mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5) has emerged to be a new regulator of mitochondrial homeostasis. Although controversial results reveal beneficial as well as detrimental roles of PGAM5 in cancers, these findings also suggest PGAM5 may have diverse regulation on cellular physiology. Roles of PGAM5 in neuronal tissues remain to be uncovered. This review discusses current knowledge of PGAM5 in neurological diseases and provides future perspectives.
Collapse
Affiliation(s)
- Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Ling Ke
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Li D, Yang H, Xiong F, Xu X, Zeng WB, Zhao F, Luo MH. Anterograde Neuronal Circuit Tracers Derived from Herpes Simplex Virus 1: Development, Application, and Perspectives. Int J Mol Sci 2020; 21:E5937. [PMID: 32824837 PMCID: PMC7460661 DOI: 10.3390/ijms21165937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has great potential to be applied as a viral tool for gene delivery or oncolysis. The broad infection tropism of HSV-1 makes it a suitable tool for targeting many different cell types, and its 150 kb double-stranded DNA genome provides great capacity for exogenous genes. Moreover, the features of neuron infection and neuron-to-neuron spread also offer special value to neuroscience. HSV-1 strain H129, with its predominant anterograde transneuronal transmission, represents one of the most promising anterograde neuronal circuit tracers to map output neuronal pathways. Decades of development have greatly expanded the H129-derived anterograde tracing toolbox, including polysynaptic and monosynaptic tracers with various fluorescent protein labeling. These tracers have been applied to neuroanatomical studies, and have contributed to revealing multiple important neuronal circuits. However, current H129-derived tracers retain intrinsic drawbacks that limit their broad application, such as yet-to-be improved labeling intensity, potential nonspecific retrograde labeling, and high toxicity. The biological complexity of HSV-1 and its insufficiently characterized virological properties have caused difficulties in its improvement and optimization as a viral tool. In this review, we focus on the current H129-derived viral tracers and highlight strategies in which future technological development can advance its use as a tool.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA;
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|