1
|
Yang M, Zhong P, Liu Q, Jiao H, Lei J, Wei P. Biochemical and structural insights into position 97 micropolymorphisms in human leukocyte antigen (HLA)-C*12 allotypes and their differential disease associations. Int J Biol Macromol 2025; 306:141681. [PMID: 40044006 DOI: 10.1016/j.ijbiomac.2025.141681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
Micropolymorphisms drastically shape the antigen presentation characteristics of human leukocyte antigen class I (HLA-I) molecules, with profound implications for immune responses and disease susceptibility. HLA-C*12:02 and HLA-C*12:03 are closely related HLA-I allotypes that differ by a single amino acid substitution (R97W) but exhibit distinct associations with disease. HLA-C*12:02 has been shown to provide protective effects against HIV infection, playing a crucial role in controlling viral replication and slowing disease progression, whereas HLA-C*12:03 is associated with increased susceptibility to psoriasis. We determined the X-ray crystal structures of the two allotypes presenting MARELHPEY (MY9) and RAFPGLRYV (RV9). Peptide residues that function as anchors, as well as those accessible for T-cell antigen receptor (TCR) contact, were identified. Our results, combined with those of biochemical studies, demonstrated that the R97W variation alters the peptide-binding groove (PBG) volume and charge, leading to conformational and stability changes in pHLA-C*12 complexes and ultimately affecting peptide-binding preferences for the two HLA-C*12 allotypes. This research not only advances our understanding of the impact of HLA-I micropolymorphisms but also offers clues for the use of structure-guided therapeutics to interfere with peptide binding.
Collapse
Affiliation(s)
- Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Huifang Jiao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Department of Laboratory Medicine, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310063, China
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Kuse N, Noyori O, Takahashi N, Zhang Y, Suzu S, Takiguchi M. Recognition of HIV-1-infected fibrocytes lacking Nef-mediated HLA-B downregulation by HIV-1-specific T cells. J Virol 2024; 98:e0079124. [PMID: 38940584 PMCID: PMC11264601 DOI: 10.1128/jvi.00791-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Fibrocytes were reported to be host cells for HIV-1, but the immunological recognition of HIV-1-infected fibrocytes has not been studied. Here, we investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific CD8+ T cells. CD8+ T cells specific for five HIV-1 epitopes (HLA-A*24:02-restricted, HLA-B*52:01-restricted, and HLA-C*12:02-restricted epitopes) produced IFN-γ and expressed CD107a after coculture with HIV-1-infected fibrocytes. HIV-1-infected fibrocytes were effectively killed by HIV-1-specific CD8+ T cells. Although it is well known that HIV-1 Nef-mediated downregulation of HLA-A and HLA-B critically affects the T cell recognition of HIV-1-infected CD4+ T cells and HIV-1-infected macrophages, Nef downregulated HLA-A, but not HLA-B, in HIV-1-infected fibrocytes. These findings suggested that HIV-1-specific CD8+ T cells could recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells or HIV-1-infected macrophages. HIV-1-infected fibrocytes were also recognized by HIV-1-specific HLA-DR-restricted T cells, indicating that HIV-1-infected fibrocytes can present HIV-1 epitopes to helper T cells. Collectively, these findings suggest that fibrocytes have an important role as antigen-presenting cells during HIV-1 infection. The present study demonstrates effective recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells and suggests possible roles of fibrocytes in the induction and maintenance of HIV-1-specific T cells. IMPORTANCE Fibrocytes were identified as unique hematopoietic cells with the features of both macrophages and fibroblasts and were demonstrated to be host cells for HIV-1. However, T cell recognition of HIV-1-infected fibrocytes has not been studied. We investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells. HIV-1-infected fibrocytes were effectively recognized and killed by CD8+ T cells specific for HIV-1 epitopes presented by HLA-A, HLA-B, or HLA-C and were recognized by HIV-1-specific HLA-DR-restricted CD4+ T cells. HIV-1 Nef-mediated downregulation of HLA-A and HLA-B was found in HIV-1-infected CD4+ T cells, whereas Nef did not downregulate HLA-B in HIV-1-infected fibrocytes. These results suggest that HIV-1-specific CD8+ T cells recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells. The present study suggests the importance of fibrocytes in the induction and maintenance of HIV-1-specific T cells.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Noyori
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Naofumi Takahashi
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yu Zhang
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Kuse N, Gatanaga H, Zhang Y, Chikata T, Oka S, Takiguchi M. Epitope-dependent effect of long-term cART on maintenance and recovery of HIV-1-specific CD8 + T cells. J Virol 2023; 97:e0102423. [PMID: 37877716 PMCID: PMC10688310 DOI: 10.1128/jvi.01024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE HIV-1-specific CD8+ T cells are anticipated to become effector cells for curative treatment using the "shock and kill" approach in people living with HIV-1 (PLWH) under combined antiretroviral therapy (cART). Previous studies demonstrated that the frequency of HIV-1-specific CD8+ T cells is reduced under cART and their functional ability remains impaired. These studies analyzed T-cell responses to a small number of HIV-1 epitopes or overlapping HIV-1 peptides. Therefore, the features of CD8+ T cells specific for HIV-1 epitopes under cART remain only partially clarified. Here, we analyzed CD8+ T cells specific for 63 well-characterized epitopes in 90 PLWH. We demonstrated that CD8+ T cells specific for large numbers of HIV-1 epitopes were maintained in an epitope-dependent fashion under long-term cART and that long-term cART enhanced or restored the ability of HIV-1-specific T cells to proliferate in vitro. This study implies that some HIV-1-specific T cells would be useful as effector cells for curative treatment.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Zhang
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Hu D, Irving AT. Massively-multiplexed epitope mapping techniques for viral antigen discovery. Front Immunol 2023; 14:1192385. [PMID: 37818363 PMCID: PMC10561112 DOI: 10.3389/fimmu.2023.1192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.
Collapse
Affiliation(s)
- Diya Hu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aaron T. Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Biomedical and Health Translational Research Centre of Zhejiang Province (BIMET), Haining, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Definition of a New HLA B*52-Restricted Rev CTL Epitope Targeted by an HIV-1-Infected Controller. Viruses 2023; 15:v15020567. [PMID: 36851781 PMCID: PMC9959870 DOI: 10.3390/v15020567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The analysis of T-cell responses in HIV-1-infected controllers may contribute to a better understanding of the protective components of the immune system. Here, we analyzed the HIV-1-specific T-cell response in a 59-year-old HIV-1-infected controller, infected for at least seven years, who presented with low viral loads ranging from <20 copies/mL to 200 copies/mL and normal CD4 counts of >800 cells/µL. In γ-IFN-ELISpot assays using freshly isolated PBMCs, he displayed a very strong polyclonal T-cell response to eight epitopes in Gag, Nef and Rev; with the dominant responses directed against the HLA-B*57-epitope AISPRTLNAW and against a so-far-unknown epitope within Rev. Further analyses using peptide-stimulated T-cell lines in γ-IFN-ELISpot assays delineated the peptide RQRQIRSI (Rev-RI8) as a newly defined HLA-B*52-restricted epitope located within a functionally important region of Rev. Peptide-stimulation assays in 15 HLA-B*52-positive HIV-1-infected subjects, including the controller, demonstrated recognition of the Rev-RI8 epitope in 6/15 subjects. CD4 counts before the start of antiviral therapy were significantly higher in subjects with recognition of the Rev-RI8 epitope. Targeting of the Rev-RI8 epitope in Rev by CTL could contribute to the positive association of HLA-B*52 with a more favorable course of HIV-1-infection.
Collapse
|
6
|
Control of HIV-1 Replication by CD8 + T Cells Specific for Two Novel Pol Protective Epitopes in HIV-1 Subtype A/E Infection. J Virol 2022; 96:e0081122. [PMID: 36154612 PMCID: PMC9555181 DOI: 10.1128/jvi.00811-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many HIV-1-specific CD8+ T cell epitopes have been identified and used in various HIV-1 studies, most of these epitopes were derived from HIV-1 subtypes B and C. Only 17 well-defined epitopes, none of which were protective, have been identified for subtype A/E infection. The roles of HIV-1-specific T cells have been rarely analyzed for subtype A/E infection. In this study, we identified six novel HLA-B*15:02-restricted optimal HIV-1 subtype A/E epitopes and then analyzed the presentation of these epitopes by HIV-1 subtype A/E virus-infected cells and the T cell responses to these epitopes in treatment-naive HIV-1 subtype A/E-infected HLA-B*15:02+ Vietnamese individuals. Responders to the PolTY9 or PolLF10 epitope had a significantly lower plasma viral load (pVL) than nonresponders among HLA-B*15:02+ individuals, whereas no significant difference in pVL was found between responders to four other epitopes and nonresponders. The breadth of T cell responses to these two Pol epitopes correlated inversely with pVL. These findings suggest that HLA-B*15:02-restricted T cells specific for PolTY9 and PolLF10 contribute to the suppression of HIV-1 replication in HLA-B*15:02+ individuals. The HLA-B*15:02-associated mutation Pol266I reduced the recognition of PolTY9-specific T cells in vitro but did not affect HIV-1 replication by PolTY9-specific T cells in Pol266I mutant virus-infected individuals. These findings indicate that PolTY9-specific T cells suppress replication of the Pol266I mutant virus even though the T cells selected this mutant. This study demonstrates the effective role of T cells specific for these Pol epitopes to control circulating viruses in HIV-1 subtype A/E infection. IMPORTANCE It is expected that HIV-1-specific CD8+ T cells that effectively suppress HIV-1 replication will contribute to HIV-1 vaccine development and therapy to achieve an HIV cure. T cells specific for protective epitopes were identified in HIV-1 subtype B and C infections but not in subtype A/E infection, which is epidemic in Southeast Asia. In the present study, we identified six T cell epitopes derived from the subtype A/E virus and demonstrated that T cells specific for two Pol epitopes effectively suppressed HIV-1 replication in treatment-naive Vietnamese individuals infected with HIV-1 subtype A/E. One of these Pol protective epitopes was conserved among circulating viruses, and one escape mutation was accumulated in the other epitope. This mutation did not critically affect HIV-1 control by specific T cells in HIV-1 subtype A/E-infected individuals. This study identified two protective Pol epitopes and characterized them in cases of HIV-1 subtype A/E infection.
Collapse
|
7
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
8
|
Murakoshi H, Chikata T, Akahoshi T, Zou C, Borghan MA, Van Tran G, Nguyen TV, Van Nguyen K, Kuse N, Takiguchi M. Critical effect of Pol escape mutations associated with detrimental allele HLA-C*15: 05 on clinical outcome in HIV-1 subtype A/E infection. AIDS 2021; 35:33-43. [PMID: 33031103 PMCID: PMC7752225 DOI: 10.1097/qad.0000000000002704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The mechanism explaining the role of detrimental HLA alleles in HIV-1 infections has been investigated in very few studies. HLA-A*29:01-B*07:05-C*15:05 is a detrimental haplotype in HIV-1 subtype A/E-infected Vietnamese individuals. The accumulation of mutations at Pol 653/657 is associated with a poor clinical outcome in these individuals. However, the detrimental HLA allele and the mechanism responsible for its detrimental effect remains unknown. Therefore, in this current study we identified the detrimental HLA allele and investigated the mechanism responsible for the detrimental effect. DESIGN AND METHODS A T-cell epitope including Pol 653/657 and its HLA restriction were identified by using overlapping HIV-1 peptides and cell lines expressing a single HLA. The effect of the mutations on the T-cell recognition of HIV-1-infected cells was investigated by using target cells infected with the mutant viruses. The effect of these mutations on the clinical outcome was analyzed in 74 HLA-C*15:05 Vietnamese infected with the subtype A/E virus. RESULTS We identified HLA-C*15:05-restricted SL9 epitope including Pol 653/657. PolS653A/T/L mutations within this epitope critically impaired the T-cell recognition of HIV-1-infected cells, indicating that these mutations had escaped from the T cells. T-cell responders infected with these mutants showed significantly lower CD4 T-cell counts than those with the wild-type virus or Pol S653K/Q mutants, which are not associated with HLA-C*15:05. CONCLUSION The accumulation of Pol S653A/T/L escape mutants critically affected the control of HIV-1 by SL9-specific T cells and led to a poor clinical outcome in the subtype A/E-infected individuals having the detrimental HLA-C*15:05 allele.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Mohamed Ali Borghan
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Sultanate of Oman
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | | | - Nozomi Kuse
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Role of Escape Mutant-Specific T Cells in Suppression of HIV-1 Replication and Coevolution with HIV-1. J Virol 2020; 94:JVI.01151-20. [PMID: 32699092 PMCID: PMC7495385 DOI: 10.1128/jvi.01151-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1. The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.
Collapse
|
11
|
Domingo E, de Ávila AI, Gallego I, Sheldon J, Perales C. Viral fitness: history and relevance for viral pathogenesis and antiviral interventions. Pathog Dis 2020; 77:5454742. [PMID: 30980658 DOI: 10.1093/femspd/ftz021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
The quasispecies dynamics of viral populations (continuous generation of variant genomes and competition among them) has as one of its frequent consequences variations in overall multiplication capacity, a major component of viral fitness. This parameter has multiple implications for viral pathogenesis and viral disease control, some of them unveiled thanks to deep sequencing of viral populations. Darwinian fitness is an old concept whose quantification dates back to the early developments of population genetics. It was later applied to viruses (mainly to RNA viruses) to quantify relative multiplication capacities of individual mutant clones or complex populations. The present article reviews the fitness concept and its relevance for the understanding of the adaptive dynamics of viruses in constant and changing environments. Many studies have addressed the fitness cost of escape mutations (to antibodies, cytotoxic T cells or inhibitors) as an influence on the efficacy of antiviral interventions. Here, we summarize the evidence that the basal fitness level can be a determinant of inhibitor resistance.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana I de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Julie Sheldon
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), D-30625, Hannover, Germany
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain.,Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, Madrid 28040, Spain
| |
Collapse
|
12
|
Wang C, Liu D, Zuo T, Hora B, Cai F, Ding H, Kappes J, Ochsenbauer C, Kong W, Yu X, Bhattacharya T, Perelson AS, Gao F. Accumulated mutations by 6 months of infection collectively render transmitted/founder HIV-1 significantly less fit. J Infect 2019; 80:210-218. [PMID: 31812703 DOI: 10.1016/j.jinf.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS Paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection were generated from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS All ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Division of the Second in Vitro Diagnostic, National Institute for Food and Drug Control, Beijing 100050, China
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Identification of Immunodominant HIV-1 Epitopes Presented by HLA-C*12:02, a Protective Allele, Using an Immunopeptidomics Approach. J Virol 2019; 93:JVI.00634-19. [PMID: 31217245 PMCID: PMC6694829 DOI: 10.1128/jvi.00634-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.
Collapse
|
14
|
Effective Suppression of HIV-1 Replication by Cytotoxic T Lymphocytes Specific for Pol Epitopes in Conserved Mosaic Vaccine Immunogens. J Virol 2019; 93:JVI.02142-18. [PMID: 30674626 PMCID: PMC6430542 DOI: 10.1128/jvi.02142-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure. Cytotoxic T lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize circulating HIV-1 could be key for both HIV-1 cure and prophylaxis. We recently designed conserved mosaic T-cell vaccine immunogens (tHIVconsvX) composed of 6 Gag and Pol regions. Since the tHIVconsvX vaccine targets conserved regions common to most global HIV-1 variants and employs a bivalent mosaic design, it is expected that it could be universal if the vaccine works. Although we recently demonstrated that CTLs specific for 5 Gag epitopes in the vaccine immunogens had strong ability to suppress HIV-1 replication in vitro and in vivo, it remains unknown whether the Pol region-specific CTLs are equally efficient. In this study, we investigated CTLs specific for Pol epitopes in the immunogens in treatment-naive Japanese patients infected with HIV-1 clade B. Overall, we mapped 20 reported and 5 novel Pol conserved epitopes in tHIVconsvX. Responses to 6 Pol epitopes were significantly associated with good clinical outcome, suggesting that CTLs specific for these 6 Pol epitopes had a strong ability to suppress HIV-1 replication in HIV-1-infected individuals. In vitro T-cell analyses further confirmed that the Pol-specific CTLs could effectively suppress HIV-1 replication. The present study thus demonstrated that the Pol regions of the vaccine contained protective epitopes. T-cell responses to the previous 5 Gag and present 6 Pol protective epitopes together also showed a strong correlation with better clinical outcome. These findings support the testing of the conserved mosaic vaccine in HIV-1 cure and prevention in humans. IMPORTANCE It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure.
Collapse
|
15
|
Tough RH, McLaren PJ. Interaction of the Host and Viral Genome and Their Influence on HIV Disease. Front Genet 2019; 9:720. [PMID: 30728828 PMCID: PMC6351501 DOI: 10.3389/fgene.2018.00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
The course of Human Immunodeficiency Virus type 1 (HIV) infection is a dynamic interplay in which both host and viral genetic variation, among other factors, influence disease susceptibility and rate of progression. HIV set-point viral load (spVL), a key indicator of HIV disease progression, has an estimated 30% of variance attributable to common heritable effects and roughly 70% attributable to environmental factors and/or additional non-genetic factors. Genome-wide genotyping and sequencing studies have allowed for large-scale association testing studying host and viral genetic variants associated with infection and disease progression. Host genomics of HIV infection has been studied predominantly in Caucasian populations consistently identifying human leukocyte antigen (HLA) genes and C-C motif chemokine receptor 5 as key factors of HIV susceptibility and progression. However, these studies don’t fully assess all classes of genetic variation (e.g., very rare polymorphisms, copy number variants etc.) and do not inform on non-European ancestry groups. Additionally, viral sequence variability has been demonstrated to influence disease progression independently of host genetic variation. Viral sequence variation can be attributed to the rapid evolution of the virus within the host due to the selective pressure of the host immune response. As the host immune system responds to the virus, e.g., through recognition of HIV antigens, the virus is able to mitigate this response by evolving HLA-specific escape mutations. Diversity of viral genotypes has also been correlated with moderate to strong effects on CD4+ T cell decline and some studies showing weak to no correlation with spVL. There is evidence to support these viral genetic factors being heritable between individuals and the evolution of these factors having important consequences in the genetic epidemiology of HIV infection on a population level. This review will discuss the host-pathogen interaction of HIV infection, explore the importance of host and viral genetics for a better understanding of pathogenesis and identify opportunities for additional genetic studies.
Collapse
Affiliation(s)
- Riley H Tough
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Murakoshi H, Koyanagi M, Akahoshi T, Chikata T, Kuse N, Gatanaga H, Rowland-Jones SL, Oka S, Takiguchi M. Impact of a single HLA-A*24:02-associated escape mutation on the detrimental effect of HLA-B*35:01 in HIV-1 control. EBioMedicine 2018; 36:103-112. [PMID: 30249546 PMCID: PMC6197679 DOI: 10.1016/j.ebiom.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background HLA-B*35 is an HLA allele associated with rapid progression to AIDS. However, a mechanism underlying the detrimental effect of HLA-B*35 on disease outcome remains unknown. Recent studies demonstrated that most prevalent subtype HLA-B*35:01 is a detrimental allele in HIV-1 clade B-infected individuals. We here investigated the effect of mutations within the epitopes on HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. Methods We analyzed 16 HLA-B*35:01-restricted epitope-specific T cells in 63 HIV-1 clade B-infected Japanese B*35:01+ individuals and identified HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. We further analyzed the effect of HLA-associated mutations on the ability of these T cells. Findings The breadth of T cell responses to 4 epitopes was inversely associated with plasma viral load (pVL). However, the accumulation of an Y135F mutation in NefYF9 out of the 4 epitopes, which is selected by HLA-A*24:02-restricted T cells, affected the ability of YF9-specific T cells to suppress HIV-1 replication. HLA-B*35:01+ individuals harboring this mutation had much higher pVL than those without it. YF9-specific T cells failed to suppress replication of the Y135F mutant in vitro. These results indicate that this mutation impairs suppression of HIV-1 replication by YF9-specific T cells. Interpretation These findings indicate that the Y135F mutation is a key factor underlying the detrimental effect of HLA-B*35:01 on disease outcomes in HIV-1 clade B-infected individuals. Fund Grants-in-aid for AIDS Research from AMED and for scientific research from the Ministry of Education, Science, Sports, and Culture, Japan. T cells specific for 4 HLA-B*35:01-restricted epitopes have abilities to suppress HIV-1 replication in vivo. An Y135F mutation selected by HLA-A*24:02-restricted T cells affected HIV-1 control by NefYF9-specific T cells in vivo. The NefY135F mutation impaired suppression of HIV-1 replication by NefYF9-specific T cells in vitro.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Sarah L Rowland-Jones
- IRCMS, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
17
|
Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico. J Virol 2018; 92:JVI.01128-17. [PMID: 29093100 PMCID: PMC5752930 DOI: 10.1128/jvi.01128-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
HIV circumvents HLA class I-restricted CD8+ T-cell responses through selection of escape mutations that leave characteristic mutational “footprints,” also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of <0.2, 358 HAPs (201 in Gag, 157 in PR-RT) were identified in Mexico, while 905 (534 in Gag and 371 in PR-RT) were identified in Canada/United States. HAPs identified in Mexico included both canonical HLA-associated escape pathways and novel associations, in particular with HLA alleles enriched in Amerindian and mestizo populations. Remarkably, HLA footprints on HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We compared HLA-associated footprints on HIV in two immunogenetically distinct North American populations, those of Mexico and Canada/United States. We identify both shared and population-specific pathways of HIV adaptation but also make the surprising observation that HLA footprints on HIV in Mexico overall are fewer and weaker than those in Canada/United States, raising the possibility that HLA-restricted antiviral immune responses in Mexico are weaker, and/or escape pathways somewhat less consistent, than those in other populations.
Collapse
|
18
|
Mothe B, Brander C. HIV T-Cell Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:31-51. [DOI: 10.1007/978-981-13-0484-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Chikata T, Murakoshi H, Koyanagi M, Honda K, Gatanaga H, Oka S, Takiguchi M. Control of HIV-1 by an HLA-B*52:01-C*12:02 Protective Haplotype. J Infect Dis 2017; 216:1415-1424. [PMID: 28968792 DOI: 10.1093/infdis/jix483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 11/14/2022] Open
Abstract
HLA-B*52:01-C*12:02, which is found in approximately 20% of all Japanese persons, is well known to be associated with ulcerative colitis and Takayasu arteritis. This haplotype is also known to be protective in individuals infected with human immunodeficiency virus (HIV) type 1. Recent studies showed that HLA-B*52:01-restricted HIV-1-specific T cells suppress HIV-1 and that HLA-C*12:02 together with KIR2DL2 play an important role in natural killer cell-mediated control of HIV-1. However, the role of HLA-C*12:02-restricted cytotoxic T lymphocytes (CTLs) in suppressing HIV-1 replication remains unknown. In the present study, we demonstrated that HLA-C*12:02-restricted CTLs specific for 2 immunodominant epitopes, Pol IY11 and Nef MY9, contributed to the suppression of HIV-1 replication in HIV-1-infected individuals. Further analysis demonstrated that these 2 HLA-C*12:02-restricted CTLs together with 4 HLA-B*52:01-restricted ones effectively suppressed HIV-1 in individuals with the HLA-B*52:01-C*12:02 haplotype. Thus, both HLA-C*12:02 and HLA-B*52:01 alleles contribute to HIV-1 suppression via both HIV-1-specific CTLs and natural killer cells in individuals with this haplotype.
Collapse
Affiliation(s)
| | | | | | - Kazutaka Honda
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Tokyo, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Tokyo, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | |
Collapse
|