1
|
Li C, Chen X, Wu J, Heng S, Xu Z, Gu H, Lin E, Wang J, Shan Y. High-throughput screening identified pacritinib as a promising therapeutic approach to overcome lenvatinib resistance in hepatocellular carcinoma by targeting IRAK1. Biochem Biophys Res Commun 2024; 734:150782. [PMID: 39378786 DOI: 10.1016/j.bbrc.2024.150782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lenvatinib resistance presents a significant challenge in the clinical management of advanced hepatocellular carcinoma (HCC). To address this issue, we established lenvatinib resistant HCC cells and performed high-throughput screening using FDA-approved anti-cancer drug library. Through quantitative selective drug sensitivity scoring (sDSS), pacritinib, a well-known JAK inhibitor, emerged as the top candidate, displaying the highest sDSS score among 219 compounds. We further demonstrated that pacritinib reduced the viability of a panel of HCC cell lines in a dose-dependent manner, while exhibiting minimal effects on normal liver cells. Interestingly, pacritinib, but not other JAK inhibitors such as ruxolitinib, upadacitinib, or filgotinib, acted synergistically with lenvatinib in HCC cells. In lenvatinib-resistant HCC cells, pacritinib significantly decreased proliferation and induced apoptosis. Rescue studies using IL-1 receptor-associated kinase 1 (IRAK1) overexpression and knockdown revealed that pacritinib's effects are mediated through IRAK1, with minimal impact on normal liver cells. In a xenograft model of lenvatinib-resistant HCC, oral administration of pacritinib significantly reduced tumor size without affecting body weight. Immunohistochemical analysis of tumor sections revealed that pacritinib reduced Ki67 staining and phosphorylated IRAK1. Our findings suggest that pacritinib may be a promising therapeutic option for the treatment of advanced HCC, particularly in patients who have developed resistance to lenvatinib.
Collapse
Affiliation(s)
- Changyu Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghao Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Heng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyi Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enhua Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiazhen Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wu Y, Wang V, Yarchoan R. Pacritinib inhibits proliferation of primary effusion lymphoma cells and production of viral interleukin-6 induced cytokines. Sci Rep 2024; 14:4125. [PMID: 38374336 PMCID: PMC10876599 DOI: 10.1038/s41598-024-54453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Primary effusion lymphoma (PEL) and a form of multicentric Castleman's disease (MCD) are both caused by Kaposi sarcoma herpesvirus (KSHV). There is a critical need for improved therapies for these disorders. The IL-6/JAK/STAT3 pathway plays an important role in the pathogenesis of both PEL and KSHV-MCD. We explored the potential of JAK inhibitors for use in PEL and KSHV-MCD, and found that pacritinib was superior to others in inhibiting the growth of PEL cell lines. Pacritinib induced apoptosis in PEL cells and inhibited STAT3 and NF-κB activity as evidenced by reduced amount of phosphorylated moieties. Pacritinib also inhibits FLT3, IRAK1, and ROS1; studies utilizing other inhibitors of these targets revealed that only FLT3 inhibitors exhibited similar cell growth inhibitory effects. FLT3's likely contribution to pacritinib's cell growth inhibition was further demonstrated by siRNA knockdown of FLT3. RNA sequencing and RT-PCR showed that many key host genes including cyclins and IL-6 were downregulated by pacritinib, while KSHV genes were variably altered. Finally, pacritinib suppressed KSHV viral IL-6-induced human IL-6 and IL-10 production in peripheral blood mononuclear cells, which may model an important step in KSHV-MCD pathogenesis. These results suggest that pacritinib warrants testing for the treatment of KSHV-MCD and PEL.
Collapse
Affiliation(s)
- Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA
| | - Victoria Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
3
|
Key Genes of Immunity Associated with Pterygium and Primary Sjögren's Syndrome. Int J Mol Sci 2023; 24:ijms24032047. [PMID: 36768371 PMCID: PMC9916617 DOI: 10.3390/ijms24032047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Pterygium and primary Sjögren's Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein-protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention.
Collapse
|
4
|
Duan Z, Xing J, Shi H, Wang Y, Zhao C. The matrix protein of Newcastle disease virus inhibits inflammatory response through IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 218:295-309. [PMID: 35872314 DOI: 10.1016/j.ijbiomac.2022.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The matrix (M) protein of several cytoplasmic RNA viruses has been reported to be an NF-κB pathway antagonist. However, the function and mechanism of NDV M protein antagonizing NF-κB activation remain largely unknown. In this study, we found that the expression levels of IRAK4, TRAF6, TAK1, and RELA/p65 were obviously reduced late in NDV infection. In addition, the cytoplasmic M protein rather than other viral proteins decreased the expression of these proteins in a dose-dependent manner. Further indepth analysis showed that the N-terminal 180 amino acids of M protein were not only responsible for the reduced expression of these proteins, but also responsible for the inhibition of NF-κB activation and nuclear translocation of RELA/p65, as well as the production of inflammatory cytokines. Moreover, small interference RNA-mediated knockdown of IRAK4 or overexpression of IRAK4 markedly enhanced or reduced NDV replication by decreasing or increasing inflammatory cytokines production through the IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Strangely, there were no interactions detected between NDV M protein and IRAK4, TRAF6, TAK1 or RELA/p65. Our findings described here contribute to a better understanding of the innate immune antagonism function of M protein and the molecular mechanism underlying the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yanbi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Caiqin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Calvani J, Gérard L, Fadlallah J, Poullot E, Galicier L, Robe C, Garzaro M, Bertinchamp R, Boutboul D, Cuccuini W, Cayuela JM, Gaulard P, Oksenhendler É, Meignin V. A Comprehensive Clinicopathologic and Molecular Study of 19 Primary Effusion Lymphomas in HIV-infected Patients. Am J Surg Pathol 2022; 46:353-362. [PMID: 34560683 DOI: 10.1097/pas.0000000000001813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary effusion lymphoma (PEL) is associated with human herpesvirus 8 and frequently with Epstein-Barr virus (EBV). We report here a single-center series of 19 human immunodeficiency virus-associated PELs, including 14 EBV+ and 5 EBV- PELs. The objectives were to describe the clinicopathologic features of PELs, with a focus on programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) expression, to search for genetic alterations by targeted deep sequencing analysis, and to compare the features between EBV+ and EBV- cases. All the patients were male, and the median age at diagnosis was 47 years old (interquartile range: 40 to 56 y). Reflecting the terminal B-cell differentiation, immunophenotypic profiles showed low expression levels of B-cell markers, including CD19 (0/19), CD20 (1/19), CD79a (0/19), PAX5 (1/19), BOB1 (3/19), and OCT2 (4/19), contrasting with a common expression of CD38 (10/19), CD138 (7/19), and IRF4/MUM1 (18/19). We observed a frequent aberrant expression of T-cell markers, especially CD3 (10/19), and less frequently CD2 (2/19), CD4 (3/19), CD5 (1/19), and CD8 (0/19). Only 2 cases were PD-L1 positive on tumor cells and none PD-1 positive. With respect to immune cells, 3 samples tested positive for PD-L1 and 5 for PD-1. Our 36-gene lymphopanel revealed 7 distinct variants in 5/10 PELs, with either a single or 2 mutations per sample: B2M (n=2), CD58 (n=1), EP300 (n=1), TNFAIP3 (n=1), ARID1A (n=1), and TP53 (n=1). Finally, we did not observe any major clinical, pathologic, or immunohistochemical differences between EBV+ and EBV- PELs and the outcome was similar (2-y overall survival probability of 61.9% [95% confidence interval, 31.2-82.1] vs. 60.0% [95% confidence interval, 12.6-88.2], respectively, P=0.62).
Collapse
Affiliation(s)
| | | | | | - Elsa Poullot
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | - Cyrielle Robe
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | | | | | | | - Jean-Michel Cayuela
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- University of Paris, Paris
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | | |
Collapse
|
6
|
Sheng M, Cai H, Yang Q, Li J, Zhang J, Liu L. A Random Walk-Based Method to Identify Candidate Genes Associated With Lymphoma. Front Genet 2021; 12:792754. [PMID: 34899868 PMCID: PMC8655984 DOI: 10.3389/fgene.2021.792754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a serious type of cancer, especially for adolescents and elder adults, although this malignancy is quite rare compared with other types of cancer. The cause of this malignancy remains ambiguous. Genetic factor is deemed to be highly associated with the initiation and progression of lymphoma, and several genes have been related to this disease. Determining the pathogeny of lymphoma by identifying the related genes is important. In this study, we presented a random walk-based method to infer the novel lymphoma-associated genes. From the reported 1,458 lymphoma-associated genes and protein–protein interaction network, raw candidate genes were mined by using the random walk with restart algorithm. The determined raw genes were further filtered by using three screening tests (i.e., permutation, linkage, and enrichment tests). These tests could control false-positive genes and screen out essential candidate genes with strong linkages to validate the lymphoma-associated genes. A total of 108 inferred genes were obtained. Analytical results indicated that some inferred genes, such as RAC3, TEC, IRAK2/3/4, PRKCE, SMAD3, BLK, TXK, PRKCQ, were associated with the initiation and progression of lymphoma.
Collapse
Affiliation(s)
- Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin Yang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Lihua Liu
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021; 17:e1009033. [PMID: 33411764 PMCID: PMC7790267 DOI: 10.1371/journal.ppat.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs. New viruses are constantly emerging. The ORFEOME project was based on the hypothesis that every virus, regardless of its molecular makeup and biology should encode functions that intersect the p53 signaling network, since p53 guards the cell from genomic insults, of which depositing a foreign, viral nucleic acid is one. The result of the ORFEOME screen of proteins without any known function, of predicted open reading frames and of suspected non-coding RNAs is the identification of two viral proteins that interact with p53. The first one, orf10, is encoded by Kaposi Sarcoma-associated herpesvirus and the second one, NS2A, is encoded by the Zika virus.
Collapse
Affiliation(s)
- Dina Alzhanova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen Corcoran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aubrey G. Bailey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Long
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Grant S. Broussard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Barrett L, Chen J, Dai L, Plaisance-Bonstaff K, Del Valle L, Qin Z. Role of Interleukin-1 Family Members and Signaling Pathways in KSHV Pathogenesis. Front Cell Infect Microbiol 2020; 10:587929. [PMID: 33194830 PMCID: PMC7662392 DOI: 10.3389/fcimb.2020.587929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) represents the etiological agent for several human malignancies, including Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), which are mostly seen in immunocompromised patients. In fact, KSHV has developed many strategies to hijack host immune response, including the regulation of inflammatory cytokine production. Interleukin-1 (IL-1) family represents a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Furthermore, a broadening list of diseases has revealed the pathologic role of IL-1 mediated inflammation. In the current mini-review, we have summarized recent findings about how this oncogenic virus is able to manipulate the activities of IL-1 signaling pathway to facilitate disease progression. We also discuss the therapeutic potential of IL-1 blockade against KSHV-related diseases and several unsolved questions in this interesting field.
Collapse
Affiliation(s)
- Lindsey Barrett
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|