1
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Xiao X, Xu F, Jia F. Early Transcriptional Changes in Feline Herpesvirus-1-Infected Crandell-Rees Feline Kidney Cells. Vet Sci 2024; 11:529. [PMID: 39591303 PMCID: PMC11599068 DOI: 10.3390/vetsci11110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
FHV-1 is a highly contagious pathogen that significantly threatens feline health and contributes to rising pet healthcare costs. The mechanisms underlying FHV-1 and host interactions remain poorly understood. For the first time, we conducted a systematic analysis of transcriptomic changes in CRFK cells following FHV-1 infection using RNA-seq. The differentially expressed genes (DEGs) displayed significant associations with cellular components, particularly the chromatin structure. Pathway analysis of the DEGs highlighted key host immune responses, including Toll-like receptors (TLRs), IL-17, TNF, MAPK, and Rap1 signaling pathways. By integrating the RNA-seq and RT-qPCR results, we identified CXCL8, CXCL10, MMP1, MMP9, CSF2, CSF3, CCL20, TLR2, TLR3, TLR4, TNF, and FOS as potentially important genes in the host's immune response to FHV-1. These findings provide valuable insights into the mechanisms underlying FHV-1 and host interactions.
Collapse
Affiliation(s)
- Xiuqing Xiao
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| |
Collapse
|
3
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
4
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
5
|
Kong IY, Giulino-Roth L. Targeting latent viral infection in EBV-associated lymphomas. Front Immunol 2024; 15:1342455. [PMID: 38464537 PMCID: PMC10920267 DOI: 10.3389/fimmu.2024.1342455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to the development of a significant subset of human lymphomas. As a herpes virus, EBV can transition between a lytic state which is required to establish infection and a latent state where a limited number of viral antigens are expressed which allows infected cells to escape immune surveillance. Three broad latency programs have been described which are defined by the expression of viral proteins RNA, with latency I being the most restrictive expressing only EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) and latency III expressing the full panel of latent viral genes including the latent membrane proteins 1 and 2 (LMP1/2), and EBNA 2, 3, and leader protein (LP) which induce a robust T-cell response. The therapeutic use of EBV-specific T-cells has advanced the treatment of EBV-associated lymphoma, however this approach is only effective against EBV-associated lymphomas that express the latency II or III program. Latency I tumors such as Burkitt lymphoma (BL) and a subset of diffuse large B-cell lymphomas (DLBCL) evade the host immune response to EBV and are resistant to EBV-specific T-cell therapies. Thus, strategies for inducing a switch from the latency I to the latency II or III program in EBV+ tumors are being investigated as mechanisms to sensitize tumors to T-cell mediated killing. Here, we review what is known about the establishment and regulation of latency in EBV infected B-cells, the role of EBV-specific T-cells in lymphoma, and strategies to convert latency I tumors to latency II/III.
Collapse
|
6
|
Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res 2023; 51:12092-12110. [PMID: 37889078 PMCID: PMC10711448 DOI: 10.1093/nar/gkad936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.
Collapse
Affiliation(s)
- Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
8
|
Lee SH, Kim KD, Cho M, Huh S, An SH, Seo D, Kang K, Lee M, Tanizawa H, Jung I, Cho H, Kang H. Characterization of a new CCCTC-binding factor binding site as a dual regulator of Epstein-Barr virus latent infection. PLoS Pathog 2023; 19:e1011078. [PMID: 36696451 PMCID: PMC9876287 DOI: 10.1371/journal.ppat.1011078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Distinct viral gene expression characterizes Epstein-Barr virus (EBV) infection in EBV-producing marmoset B-cell (B95-8) and EBV-associated gastric carcinoma (SNU719) cell lines. CCCTC-binding factor (CTCF) is a structural chromatin factor that coordinates chromatin interactions in the EBV genome. Chromatin immunoprecipitation followed by sequencing against CTCF revealed 16 CTCF binding sites in the B95-8 and SNU719 EBV genomes. The biological function of one CTCF binding site (S13 locus) located on the BamHI A right transcript (BART) miRNA promoter was elucidated experimentally. Microscale thermophoresis assay showed that CTCF binds more readily to the stable form than the mutant form of the S13 locus. EBV BART miRNA clusters encode 22 miRNAs, whose roles are implicated in EBV-related cancer pathogenesis. The B95-8 EBV genome lacks a 11.8-kb EcoRI C fragment, whereas the SNU719 EBV genome is full-length. ChIP-PCR assay revealed that CTCF, RNA polymerase II, H3K4me3 histone, and H3K9me3 histone were more enriched at S13 and S16 (167-kb) loci in B95-8 than in the SNU719 EBV genome. 4C-Seq and 3C-PCR assays using B95-8 and SNU719 cells showed that the S13 locus was associated with overall EBV genomic loci including 3-kb and 167-kb region in both EBV genomes. We generated mutations in the S13 locus in bacmids with or without the 11.8-kb BART transcript unit (BART(+/-)). The S13 mutation upregulated BART miRNA expression, weakened EBV latency, and reduced EBV infectivity in the presence of EcoRI C fragment. Another 3C-PCR assay using four types of BART(+/-)·S13(wild-type(Wt)/mutant(Mt)) HEK293-EBV cells revealed that the S13 mutation decreased DNA associations between the 167-kb region and 3-kb in the EBV genome. Based on these results, CTCF bound to the S13 locus along with the 11.8-kb EcoRI C fragment is suggested to form an EBV 3-dimensional DNA loop for coordinated EBV BART miRNA expression and infectivity.
Collapse
Affiliation(s)
- Sun Hee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Miyeon Cho
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Sora Huh
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Seong Ho An
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Donghyun Seo
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyuhyun Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Minhee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- * E-mail: (HC); (HK)
| | - Hyojeung Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
- * E-mail: (HC); (HK)
| |
Collapse
|
9
|
Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol 2022; 10:1035543. [PMID: 36324900 PMCID: PMC9620476 DOI: 10.3389/fbioe.2022.1035543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic dysregulation is an important determinant of many pathological conditions and diseases. Designer molecules that can specifically target endogenous DNA sequences provide a means to therapeutically modulate gene function. The prokaryote-derived CRISPR/Cas editing systems have transformed our ability to manipulate the expression program of genes through specific DNA and RNA targeting in living cells and tissues. The simplicity, utility, and robustness of this technology have revolutionized epigenome editing for research and translational medicine. Initial success has inspired efforts to discover new systems for targeting and manipulating nucleic acids on the epigenetic level. The evolution of nuclease-inactive and RNA-targeting Cas proteins fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions opened up an unprecedented level of possibilities for the development of "next-generation" gene therapy therapeutics. The rational design and construction of different types of designer molecules paired with viral-mediated gene-to-cell transfers, specifically using lentiviral vectors (LVs) and adeno-associated vectors (AAVs) are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription. Notwithstanding the speedy progress of CRISPR/Cas-based gene therapy products, multiple challenges outlined by undesirable off-target effects, oncogenicity and other virus-induced toxicities could derail the successful translation of these new modalities. Here, we review how CRISPR/Cas-based gene therapy is translated from research-grade technological system to therapeutic modality, paying particular attention to the therapeutic flow from engineering sophisticated genome and epigenome-editing transgenes to delivery vehicles throughout efficient and safe manufacturing and administration of the gene therapy regimens. In addition, the potential solutions to some of the obstacles facing successful CRISPR/Cas utility in the clinical research are discussed in this review. We believe, that circumventing these challenges will be essential for advancing CRISPR/Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Joseph Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Mohanapriya Cumaran
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Sahil Malhotra
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
10
|
Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, Keith K, Tan Y, Boyle S, Lieberman PM, Tempera I. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun 2022; 13:187. [PMID: 35039491 PMCID: PMC8764100 DOI: 10.1038/s41467-021-27894-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome. We also map intragenomic contact changes after PARP inhibition to global binding of chromatin looping factors CTCF and cohesin across the EBV genome. We find that PARP inhibition leads to fewer total unique intragenomic interactions within the EBV episome, yet new chromatin loops distinct from the untreated episome are also formed. This study also illustrates that PARP inhibition alters gene expression at the regions where chromatin looping is most effected. We observe that PARP1 inhibition does not alter cohesin binding sites but does increase its frequency of binding at those sites. Taken together, these findings demonstrate that PARP has an essential role in regulating global EBV chromatin structure and latent gene expression.
Collapse
Affiliation(s)
- Sarah M Morgan
- The Wistar Institute, Philadelphia, PA, USA
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | | | - Michael Hulse
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, NJ, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
11
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
12
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
13
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
14
|
Ignatova E, Seriak D, Fedyanin M, Tryakin A, Pokataev I, Menshikova S, Vakhabova Y, Smirnova K, Tjulandin S, Ajani JA. Epstein-Barr virus-associated gastric cancer: disease that requires special approach. Gastric Cancer 2020; 23:951-960. [PMID: 32514646 DOI: 10.1007/s10120-020-01095-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer [EBV-associated GC, EBV( +) GC] is a distinct molecular subtype of gastrointestinal (GI) cancers. It accounts for up to 10% of all molecular subtypes of gastric cancer (GC). It has unique genetic and epigenetic features, which determine its definitive phenotype with male and younger age predominance, proximal stomach localization, and diffuse adenocarcinoma histology. EBV( +) GC also has a unique epigenetic profile and mutational status with frequent mutations of PIK3CA, ARID1A and BCOR, and PD-L1 and PD-L2 amplifications, as well. The aim of this review is to highlight clinical significance of EBV( +) GC and prognostic role of EBV infection, and to determine potentially appropriate drug therapy for this disease.
Collapse
Affiliation(s)
- Ekaterina Ignatova
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Daria Seriak
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Ilya Pokataev
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Sofia Menshikova
- Department of Anticancer Drug Treatment, AO K31 City, Moscow, Russian Federation
| | - Yuliya Vakhabova
- Chemotherapy Department of Tumors Drug Treatment, Moscow Scientific Research Oncological Institution N.a. P.A. Herzen, Branch of Federal State Budgetary Institution "National Medical Research Center of Radiology" of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Ksenia Smirnova
- Laboratory of Viral Carcinogenesis, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Sergey Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Wu N, Nguyen XN, Wang L, Appourchaux R, Zhang C, Panthu B, Gruffat H, Journo C, Alais S, Qin J, Zhang N, Tartour K, Catez F, Mahieux R, Ohlmann T, Liu M, Du B, Cimarelli A. The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog 2019; 15:e1008093. [PMID: 31600344 PMCID: PMC6805002 DOI: 10.1371/journal.ppat.1008093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023] Open
Abstract
ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.
Collapse
Affiliation(s)
- Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Li Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chengfei Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Baptiste Panthu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sandrine Alais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Juliang Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Catez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Theophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (BD); (AC)
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- * E-mail: (BD); (AC)
| |
Collapse
|
16
|
Saviola AJ, Zimmermann C, Mariani MP, Signorelli SA, Gerrard DL, Boyd JR, Wight DJ, Morissette G, Gravel A, Dubuc I, Flamand L, Kaufer BB, Frietze S. Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A. Front Microbiol 2019; 10:1408. [PMID: 31293546 PMCID: PMC6606781 DOI: 10.3389/fmicb.2019.01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome.
Collapse
Affiliation(s)
- Anthony J. Saviola
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cosima Zimmermann
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Michael P. Mariani
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sylvia A. Signorelli
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Diana L. Gerrard
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, United States
| | - Darren J. Wight
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Guillaume Morissette
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Annie Gravel
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Isabelle Dubuc
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Louis Flamand
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Benedikt B. Kaufer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
17
|
Majerciak V, Yang W, Zheng J, Zhu J, Zheng ZM. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. J Virol 2019; 93:e01593-18. [PMID: 30355690 PMCID: PMC6321932 DOI: 10.1128/jvi.01593-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen associated with Burkitt's lymphoma and nasopharyngeal carcinoma. Although the EBV genome harbors more than a hundred genes, a full transcription map with EBV polyadenylation profiles remains unknown. To elucidate the 3' ends of all EBV transcripts genome-wide, we performed the first comprehensive analysis of viral polyadenylation sites (pA sites) using our previously reported polyadenylation sequencing (PA-seq) technology. We identified that EBV utilizes a total of 62 pA sites in JSC-1, 60 in Raji, and 53 in Akata cells for the expression of EBV genes from both plus and minus DNA strands; 42 of these pA sites are commonly used in all three cell lines. The majority of identified pA sites were mapped to the intergenic regions downstream of previously annotated EBV open reading frames (ORFs) and viral promoters. pA sites lacking an association with any known EBV genes were also identified, mostly for the minus DNA strand within the EBNA locus, a major locus responsible for maintenance of viral latency and cell transformation. The expression of these novel antisense transcripts to EBNA were verified by 3' rapid amplification of cDNA ends (RACE) and Northern blot analyses in several EBV-positive (EBV+) cell lines. In contrast to EBNA RNA expressed during latency, expression of EBNA-antisense transcripts, which is restricted in latent cells, can be significantly induced by viral lytic infection, suggesting potential regulation of viral gene expression by EBNA-antisense transcription during lytic EBV infection. Our data provide the first evidence that EBV has an unrecognized mechanism that regulates EBV reactivation from latency.IMPORTANCE Epstein-Barr virus represents an important human pathogen with an etiological role in the development of several cancers. By elucidation of a genome-wide polyadenylation landscape of EBV in JSC-1, Raji, and Akata cells, we have redefined the EBV transcriptome and mapped individual polymerase II (Pol II) transcripts of viral genes to each one of the mapped pA sites at single-nucleotide resolution as well as the depth of expression. By unveiling a new class of viral lytic RNA transcripts antisense to latent EBNAs, we provide a novel mechanism of how EBV might control the expression of viral latent genes and lytic infection. Thus, this report takes another step closer to understanding EBV gene structure and expression and paves a new path for antiviral approaches.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Zheng
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
18
|
PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol 2018; 92:JVI.00755-18. [PMID: 29976663 PMCID: PMC6146685 DOI: 10.1128/jvi.00755-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers. Epstein Barr virus (EBV) is a potentially oncogenic gammaherpesvirus that establishes a chronic, latent infection in memory B cells. The EBV genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type. CTCF is posttranslationally modified by the host enzyme PARP1. PARP1, or poly(ADP-ribose) polymerase 1, catalyzes the transfer of a poly(ADP-ribose) (PAR) moiety from NAD+ onto acceptor proteins, including itself, histone proteins, and CTCF. PARylation of CTCF by PARP1 can affect CTCF's insulator activity, DNA binding capacity, and ability to form chromatin loops. Both PARP1 and CTCF have been implicated in the regulation of EBV latency and lytic reactivation. Thus, we predicted that pharmacological inhibition with PARP1 inhibitors would affect EBV latency type through a chromatin-specific mechanism. Here, we show that PARP1 and CTCF colocalize at specific sites throughout the EBV genome and provide evidence to suggest that PARP1 acts to stabilize CTCF binding and maintain the open chromatin landscape at the active Cp promoter during type III latency. Further, PARP1 activity is important in maintaining latency type-specific viral gene expression. The data presented here provide a rationale for the use of PARP inhibitors in the treatment of EBV-associated cancers exhibiting type III latency and ultimately could contribute to an EBV-specific treatment strategy for AIDS-related or posttransplant lymphomas. IMPORTANCE EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers.
Collapse
|
19
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
20
|
Poole CJ, van Riggelen J. MYC-Master Regulator of the Cancer Epigenome and Transcriptome. Genes (Basel) 2017; 8:genes8050142. [PMID: 28505071 PMCID: PMC5448016 DOI: 10.3390/genes8050142] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Overexpression of MYC is a hallmark of many human cancers. The MYC oncogene has long been thought to execute its neoplastic functions by acting as a classic transcription factor, deregulating the expression of a large number of specific target genes. However, MYC’s influence on many of these target genes is rather modest and there is little overlap between MYC regulated genes in different cell types, leaving many mechanistic questions unanswered. Recent advances in the field challenge the dogma further, revealing a role for MYC that extends beyond the traditional concept of a sequence-specific transcription factor. In this article, we review MYC’s function as a regulator of the cancer epigenome and transcriptome. We outline our current understanding of how MYC regulates chromatin structure in both a site-specific and genome-wide fashion, and highlight the implications for therapeutic strategies for cancers with high MYC expression.
Collapse
Affiliation(s)
- Candace J Poole
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, 1410 Laney-Walker Blvd., Augusta, GA 30912, USA.
| |
Collapse
|
21
|
Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, Pomerantz RT, Miranda JL, Tempera I. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology 2017; 507:220-230. [PMID: 28456021 PMCID: PMC5521201 DOI: 10.1016/j.virol.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
Abstract
The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation.
Collapse
Affiliation(s)
- Lena N Lupey-Green
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Stephanie A Moquin
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla A Martin
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shane M McDevitt
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael Hulse
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lisa B Caruso
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Richard T Pomerantz
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jj L Miranda
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Italo Tempera
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Ribeiro J, Oliveira C, Malta M, Sousa H. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review. Future Oncol 2017; 13:567-579. [PMID: 28118740 DOI: 10.2217/fon-2016-0475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
METHODS A systematic review of literature was conducted to identify all published reports regarding the expression of Epstein-Barr Virus (EBV) proteins/transcripts and EBV latency patterns in EBV-associated gastric carcinomas (EBVaGC). RESULTS The literature search retrieved 247 papers, of which 25 papers matched the inclusion criteria. The analysis reveals that the most frequently expressed EBV latent proteins are EBNA1 (98.1%) and LMP2A (53.8%), while LMP1 and LMP2B are present in only 10% of cases. Lytic proteins, such as BARF0 and BARF1, and other lytic transcripts are present in almost half of cases. CONCLUSION EBVaGC seems to display a unique transcription/latency pattern that does not fit the 'standard' EBV latency patterns and therefore should be further studied to better understand EBVaGC carcinogenesis.
Collapse
Affiliation(s)
- Joana Ribeiro
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Faculty of Medicine of Porto University (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal
| | - Cláudia Oliveira
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mariana Malta
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
23
|
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:95-117. [PMID: 28528441 DOI: 10.1007/978-3-319-53168-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleus is composed of multiple compartments and domains, which directly or indirectly influence many cellular processes including gene expression, RNA splicing and maturation, protein post-translational modifications, and chromosome segregation. Nuclear-replicating viruses, especially herpesviruses, have co-evolved with the cell, adopting strategies to counteract and eventually hijack this hostile environment for their own benefit. This allows them to persist in the host for the entire life of an individual and to ensure their maintenance in the target species. Herpesviruses establish latency in dividing or postmitotic cells from which they can efficiently reactivate after sometimes years of a seemingly dormant state. Therefore, herpesviruses circumvent the threat of permanent silencing by reactivating their dormant genomes just enough to escape extinction, but not too much to avoid life-threatening damage to the host. In addition, herpesviruses that establish latency in dividing cells must adopt strategies to maintain their genomes in the daughter cells to avoid extinction by dilution of their genomes following multiple cell divisions. From a biochemical point of view, reactivation and maintenance of viral genomes in dividing cells occur successfully because the viral genomes interact with the nuclear architecture in a way that allows the genomes to be transmitted faithfully and to benefit from the nuclear micro-environments that allow reactivation following specific stimuli. Therefore, spatial positioning of the viral genomes within the nucleus is likely to be essential for the success of the latent infection and, beyond that, for the maintenance of herpesviruses in their respective hosts.
Collapse
Affiliation(s)
- Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, 69008, Lyon, France.
| |
Collapse
|
24
|
HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol 2016; 90:5353-5367. [PMID: 27009953 PMCID: PMC4934754 DOI: 10.1128/jvi.00239-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixed-lineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependent C promoter (Cp) and Q promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt's lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation. IMPORTANCE EBV latency is associated with several human cancers. Viral latent cycle gene expression is regulated by the epigenetic control of the OriP enhancer region. Here, we show that cellular factors OCT2 and HCF1 bind OriP in association with EBNA1 to maintain elevated histone H3K4me3 and transcriptional enhancer function. HCF1 is known as a transcriptional coactivator of herpes simplex virus (HSV) immediate early (IE) transcription, suggesting that OriP enhancer shares aspects of HSV IE transcription control.
Collapse
|
25
|
Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, Chen YL, Chen HC, Hsu HJ, Liou JW, Kieff E, Peng CW. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proc Natl Acad Sci U S A 2016; 113:2229-34. [PMID: 26858444 PMCID: PMC4776490 DOI: 10.1073/pnas.1525444113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Jun Liang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Liangru Ke
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Ya-Lin Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hong-Chi Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Biochemical Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Elliott Kieff
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan;
| |
Collapse
|
26
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Ernberg I, Niller HH, Minarovits J. Epigenetic Alterations of Viral and Cellular Genomes in EBV-Infected Cells. EPIGENETICS AND HUMAN HEALTH 2016:91-122. [DOI: 10.1007/978-3-319-27186-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology 2015; 82:212-223. [PMID: 26337667 DOI: 10.1159/000434683] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct subtype of gastric carcinoma, consisting of clonal growth of EBV-infected epithelial cells. Its unique characteristics have been demonstrated by epidemiological, clinical and pathological studies using in situ hybridization for EBV-encoded small RNAs. An oncogenic process for EBVaGC has also been revealed. EBV uses various host-cell machineries, including cell division machinery to propagate clonal virus genomes, DNA-methylation machinery to epigenetically control infected cells, and microRNA and exosome machineries to modify the behavior and microenvironment of infected cells. Recent comprehensive molecular analyses from The Cancer Genome Atlas project demonstrate that EBVaGC is a representative molecular subtype that is distinct from microsatellite unstable, genomically stable and chromosome unstable subtypes. In addition to having the highest level of DNA methylation in CpG islands of promoter regions, EBVaGC harbors particular gene alterations, including a high frequency of mutations in PIK3CA and ARID1A, mutation in BCOR, and amplification of PD-L1 and PD-L2. Although currently undetermined, the virus might use the altered cellular functions that are induced by these somatic mutations. Further investigation of virus-driven oncogenesis will enable hitherto unknown functions of stomach epithelial cell machineries to be elucidated, which may reveal potential therapeutic targets for EBVaGC.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
30
|
Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014; 88:1703-13. [PMID: 24257606 PMCID: PMC3911611 DOI: 10.1128/jvi.02209-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023] Open
Abstract
The chromatin regulatory factors CTCF and cohesin have been implicated in the coordinated control of multiple gene loci in Epstein-Barr virus (EBV) latency. We have found that CTCF and cohesin are highly enriched at the convergent and partially overlapping transcripts for the LMP1 and LMP2A genes, but it is not yet known how CTCF and cohesin may coordinately regulate these transcripts. We now show that genetic disruption of this CTCF binding site (EBVΔCTCF166) leads to a deregulation of LMP1, LMP2A, and LMP2B transcription in EBV-immortalized B lymphocytes. EBVΔCTCF166 virus-immortalized primary B lymphocytes showed a decrease in LMP1 and LMP2A mRNA and a corresponding increase in LMP2B mRNA. The reduction of LMP1 and LMP2A correlated with a loss of euchromatic histone modification H3K9ac and a corresponding increase in heterochromatic histone modification H3K9me3 at the LMP2A promoter region in EBVΔCTCF166. Chromosome conformation capture (3C) revealed that DNA loop formation with the origin of plasmid replication (OriP) enhancer was eliminated in EBVΔCTCF166. We also observed that the EBV episome copy number was elevated in EBVΔCTCF166 and that this was not due to increased lytic cycle activity. These findings suggest that a single CTCF binding site controls LMP2A and LMP1 promoter selection, chromatin boundary function, DNA loop formation, and episome copy number control during EBV latency.
Collapse
Affiliation(s)
| | - Kayla A. Martin
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lena N. Lupey
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Italo Tempera
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014; 26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms play a fundamental role in generating diverse and heritable patterns of viral and cellular gene expression. Epstein-Barr virus (EBV) can adopt a variety of gene expression programs that are necessary for long-term viral persistence and latency in multiple host-cell types and conditions. The latent viral genomes assemble into chromatin structures with different histone and DNA modifications patterns that control viral gene expression. Variations in nucleosome organization and chromatin conformations can also influence gene expression by coordinating physical interactions between different regulatory elements. The viral-encoded and host-cell factors that control these epigenetic features are beginning to be understood at the genome-wide level. These epigenetic regulators can also influence viral pathogenesis by expanding tissue tropism, evading immune detection, and driving host-cell carcinogenesis. Here, we review some of the recent findings and perspectives on how the EBV epigenome plays a central role in viral latency and viral-associated carcinogenesis.
Collapse
Affiliation(s)
- Italo Tempera
- The Fels Institute, Department of Microbiology and Immunology, Temple School of Medicine, Philadelphia, PA 19140, United States.
| | | |
Collapse
|
32
|
Catez F, Rousseau A, Labetoulle M, Lomonte P. Detection of the genome and transcripts of a persistent DNA virus in neuronal tissues by fluorescent in situ hybridization combined with immunostaining. J Vis Exp 2014:e51091. [PMID: 24514006 DOI: 10.3791/51091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Collapse
Affiliation(s)
- Frédéric Catez
- Virus and Centromere Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS UMR 5534
| | | | | | | |
Collapse
|
33
|
Chen YL, Liu CD, Cheng CP, Zhao B, Hsu HJ, Shen CL, Chiu SJ, Kieff E, Peng CW. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci U S A 2014; 111:243-8. [PMID: 24344309 PMCID: PMC3890893 DOI: 10.1073/pnas.1321800111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry. Nucleolin (NCL) was identified to be EBNA1 associated. EBNA1's N-terminal 100 aa and NCL's RNA-binding domains were critical for EBNA1/NCL interaction. Lentivirus shRNA-mediated NCL depletion substantially reduced EBNA1 recruitment to oriP DNA, EBNA1-dependent transcription of an EBV oriP luciferase reporter, and EBV genome maintenance in lymphoblastoid cell lines. NCL RNA-binding domain K429 was critical for ATP and EBNA1 binding. NCL overexpression increased EBNA1 binding to oriP and transcription, whereas NCL K429A was deficient. Moreover, NCL silencing impaired lymphoblastoid cell line growth. These experiments reveal a surprisingly critical role for NCL K429 in EBNA1 episome maintenance and transcription, which may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- Ya-Lin Chen
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Cheng-Der Liu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Bo Zhao
- Department of Medicine, Brigham and Women’s Hospital, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Chih-Long Shen
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Elliott Kieff
- Department of Medicine, Brigham and Women’s Hospital, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Chih-wen Peng
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| |
Collapse
|
34
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
35
|
Li B, Li S, Yin J, Zhong J. Identification and characterization of the Spodoptera Su(var) 3-9 histone H3K9 trimethyltransferase and its effect in AcMNPV infection. PLoS One 2013; 8:e69442. [PMID: 23894480 PMCID: PMC3722159 DOI: 10.1371/journal.pone.0069442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
Histone H3-lysine9 (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodopterafrugiperda (S. frugiperda), S. exigua and S. litura. Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus–host interaction mechanism.
Collapse
Affiliation(s)
- Binbin Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Sisi Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Juan Yin
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013; 3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022]
Abstract
The gammaherpesviruses are unique for their capacity to establish a variety of gene expression programs during latent and lytic infection. This capacity enables the virus to control host-cell proliferation, prevent programmed cell death, elude immune cell detection, and ultimately adapt to a wide range of environmental and developmental changes in the host cell. This remarkable plasticity of gene expression results from the combined functionalities of viral and host factors that biochemically remodel and epigenetically modify the viral chromosome. These epigenetic modifications range from primary DNA methylations, to chromatin protein post-translational modifications, to higher-order chromosome conformations. In addition, gammaherpesviruses have acquired specialized tools to modulate the epigenetic processes that promote viral genome propagation and host-cell survival.
Collapse
|
37
|
Ernberg I, Karimi M, Ekström TJ. Epigenetic mechanisms as targets and companions of viral assaults. Ann N Y Acad Sci 2012; 1230:E29-36. [DOI: 10.1111/j.1749-6632.2011.06357.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol 2012; 86:4752-61. [PMID: 22357272 DOI: 10.1128/jvi.06768-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) predominantly establishes latent infection in B cells, and the reactivation of the virus from latency is dependent on the expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), calcium ionophores, or histone deacetylase (HDAC) inhibitors. In some cell lines latently infected with EBV, an HDAC inhibitor alone can induce BZLF1 transcription, while the treatment does not enhance expression in other cell lines, such as B95-8 or Raji cells, suggesting unknown suppressive mechanisms besides histone deacetylation in those cells. Here, we found the epigenetic modification of the BZLF1 promoter in latent Raji cells by histone H3 lysine 27 trimethylation (H3K27me3), H3K9me2/me3, and H4K20me3. Levels of active markers such as histone acetylation and H3K4me3 were low in latent cells but increased upon reactivation. Treatment with 3-deazaneplanocin A (DZNep), an inhibitor of H3K27me3 and H4K20me3, significantly enhanced the BZLF1 transcription in Raji cells when in combination with an HDAC inhibitor, trichostatin A (TSA). The knockdown of Ezh2 or Suv420h1, histone methyltransferases for H3K27me3 or H4K20me3, respectively, further proved the suppression of Zp by the methylations. Taken together, the results indicate that H3K27 methylation and H4K20 methylation are involved, at least partly, in the maintenance of latency, and histone acetylation and H3K4 methylation correlate with the reactivation of the virus in Raji cells.
Collapse
|
39
|
Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J Virol 2012; 86:1034-45. [PMID: 22072770 PMCID: PMC3255836 DOI: 10.1128/jvi.05923-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Establishment of persistent Epstein-Barr virus (EBV) infection requires transition from a program of full viral latency gene expression (latency III) to one that is highly restricted (latency I and 0) within memory B lymphocytes. It is well established that DNA methylation plays a critical role in EBV gene silencing, and recently the chromatin boundary protein CTCF has been implicated as a pivotal regulator of latency via its binding to several loci within the EBV genome. One notable site is upstream of the common EBNA gene promoter Cp, at which CTCF may act as an enhancer-blocking factor to initiate and maintain silencing of EBNA gene transcription. It was previously suggested that increased expression of CTCF may underlie its potential to promote restricted latency, and here we also noted elevated levels of DNA methyltransferase 1 (DNMT1) and DNMT3B associated with latency I. Within B-cell lines that maintain latency I, however, stable knockdown of CTCF, DNMT1, or DNMT3B or of DNMT1 and DNMT3B in combination did not result in activation of latency III protein expression or EBNA gene transcription, nor did knockdown of DNMTs significantly alter CpG methylation within Cp. Thus, differential expression of CTCF and DNMT1 and -3B is not critical for maintenance of restricted latency. Finally, mutant EBV lacking the Cp CTCF binding site exhibited sustained Cp activity relative to wild-type EBV in a recently developed B-cell superinfection model but ultimately was able to transition to latency I, suggesting that CTCF contributes to but is not necessarily essential for the establishment of restricted latency.
Collapse
Affiliation(s)
- David J Hughes
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and Penn State Hershey Cancer Institute, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
40
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
The insulator protein CTCF binding sites in the orf73/LANA promoter region of herpesvirus saimiri are involved in conferring episomal stability in latently infected human T cells. J Virol 2011; 86:1862-73. [PMID: 22130528 DOI: 10.1128/jvi.06295-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses establish latency in suitable cells of the host organism after a primary lytic infection. Subgroup C strains of herpesvirus saimiri (HVS), a primate gamma-2 herpesvirus, are able to transform human and other primate T lymphocytes to stable growth in vitro. The viral genomes persist as nonintegrated, circular, and histone-associated episomes in the nuclei of those latently infected T cells. Epigenetic modifications of episomes are essential to restrict the transcription during latency to selected viral genes, such as the viral oncogenes stpC/tip and the orf73/LANA. In this study, we describe a genome-wide chromatin immunoprecipitation-on-chip (ChIP-on-chip) analysis to profile the occupancy of CTCF on the latent HVS genome. We then focused on two distinct, conserved CTCF binding sites (CBS) within the orf73/LANA promoter region. Analysis of recombinant viruses harboring deletions or mutations within the CBS indicated that the lytic replication of such viruses is not substantially influenced by CTCF. However, T cells latently infected with CBS mutants were impaired in their proliferation abilities and showed a significantly reduced episomal maintenance. We detected a reduced transcription of the orf73/LANA gene in the T cells, corresponding to the reduced viral genomes; this might contribute to the loss of HVS episomes, as LANA is central in the maintenance of viral episomes in the dividing T cell populations. These data demonstrate that the episomal stability of HVS genomes in latently infected human T cells is dependent on CTCF.
Collapse
|
42
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
43
|
Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011; 7:e1002180. [PMID: 21829357 PMCID: PMC3145795 DOI: 10.1371/journal.ppat.1002180] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies. The viral genes expressed during latent infection can vary depending on host cell or tumor type. The different gene expression programs, referred to as latency types, are determined by alternative viral promoter usage. In this work, we investigate how differential DNA loop formation regulates viral promoter selection in different latency types. We use chromatin conformation capture methods to demonstrate that the transcriptional enhancer at OriP forms a stable loop with one of two different promoters, depending on the latency type. In type I latency, OriP forms a loop with the active Q promoter (Qp). In type III latency, OriP forms a loop with the active C promoter (Cp). Loop formation was mediated, in part, by CTCF binding sites located within the loops. Mutation in the CTCF binding site located at Qp caused a loss of OriP-Qp loop formation, a loss of Qp transcription, and a reactivation of Cp transcription from an alternative loop formed with OriP-Cp. These findings indicate that OriP loop formation is an integral component of promoter selection, and that chromatin conformation may determine EBV latency type.
Collapse
Affiliation(s)
- Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael Klichinsky
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Holdorf MM, Cooper SB, Yamamoto KR, Miranda JJL. Occupancy of chromatin organizers in the Epstein-Barr virus genome. Virology 2011; 415:1-5. [PMID: 21550623 PMCID: PMC3808970 DOI: 10.1016/j.virol.2011.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/11/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
The human CCCTC-binding factor, CTCF, regulates transcription of the double-stranded DNA genomes of herpesviruses. The architectural complex cohesin and RNA Polymerase II also contribute to this organization. We profiled the occupancy of CTCF, cohesin, and RNA Polymerase II on the episomal genome of the Epstein-Barr virus in a cell culture model of latent infection. CTCF colocalizes with cohesin but not RNA Polymerase II. CTCF and cohesin bind specific sequences throughout the genome that are found not just proximal to the regulatory elements of latent genes, but also near lytic genes. In addition to tracking with known transcripts, RNA Polymerase II appears at two unannotated positions, one of which lies within the latent origin of replication. The widespread occupancy profile of each protein reveals binding near or at a myriad of regulatory elements and suggests context-dependent functions.
Collapse
MESH Headings
- Base Sequence
- CCCTC-Binding Factor
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/metabolism
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression Regulation, Viral
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/physiology
- Humans
- Plasmids/genetics
- Promoter Regions, Genetic
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Replication Origin/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Analysis, DNA
- Virus Latency
- Cohesins
Collapse
Affiliation(s)
- Meghan M. Holdorf
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Samantha B. Cooper
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
- Graduate Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA 94158
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - JJL Miranda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
45
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
46
|
Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV, Lieberman PM. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virol J 2010; 7:262. [PMID: 20929547 PMCID: PMC2964674 DOI: 10.1186/1743-422x-7-262] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/07/2010] [Indexed: 11/12/2022] Open
Abstract
The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA1 binding sites.
Collapse
Affiliation(s)
- Fang Lu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
48
|
Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 2010; 6:e1001048. [PMID: 20730088 PMCID: PMC2921154 DOI: 10.1371/journal.ppat.1001048] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/15/2010] [Indexed: 12/15/2022] Open
Abstract
The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection. Epstein-Barr Virus (EBV) establishes a latent infection that is associated with several lymphoid and epithelial cell malignancies. The latent virus persists as a circular minichromosome in the nucleus of infected cells. Epigenetic modifications of the viral DNA and chromatin are known to control viral gene expression and genome stability, but the nature and mechanisms of these epigenetic marks are not known. Here, we use viral genome-wide analysis to characterize patterns of DNA and histone methylation, and how these are organized by the chromatin boundary factor CTCF. Mutation of one such CTCF site at the EBV Q promoter results in aberrant accumulation of DNA CpG methylation and histone H3 K9 trimethylation, and the consequent silencing of Qp transcription. We conclude that CTCF chromatin insulator function is required for the epigenetic programming and stable maintenance of latent viral infection.
Collapse
Affiliation(s)
- Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Istituto Pasteur – Fondazione Cenci Bolognetti, Rome, Italy
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, Lee S, Buckley JD, Laird PW, Marquez VE, Jung JU. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog 2010; 6:e1001013. [PMID: 20661424 PMCID: PMC2908616 DOI: 10.1371/journal.ppat.1001013] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modifications of the herpesviral genome play a key role in the transcriptional control of latent and lytic genes during a productive viral lifecycle. In this study, we describe for the first time a comprehensive genome-wide ChIP-on-Chip analysis of the chromatin associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) genome during latency and lytic reactivation. Depending on the gene expression class, different combinations of activating [acetylated H3 (AcH3) and H3K4me3] and repressive [H3K9me3 and H3K27me3] histone modifications are associated with the viral latent genome, which changes upon reactivation in a manner that is correlated with their expression. Specifically, both the activating marks co-localize on the KSHV latent genome, as do the repressive marks. However, the activating and repressive histone modifications are mutually exclusive of each other on the bulk of the latent KSHV genome. The genomic region encoding the IE genes ORF50 and ORF48 possesses the features of a bivalent chromatin structure characterized by the concomitant presence of the activating H3K4me3 and the repressive H3K27me3 marks during latency, which rapidly changes upon reactivation with increasing AcH3 and H3K4me3 marks and decreasing H3K27me3. Furthermore, EZH2, the H3K27me3 histone methyltransferase of the Polycomb group proteins (PcG), colocalizes with the H3K27me3 mark on the entire KSHV genome during latency, whereas RTA-mediated reactivation induces EZH2 dissociation from the genomic regions encoding IE and E genes concurrent with decreasing H3K27me3 level and increasing IE/E lytic gene expression. Moreover, either the inhibition of EZH2 expression by a small molecule inhibitor DZNep and RNAi knockdown, or the expression of H3K27me3-specific histone demethylases apparently induced the KSHV lytic gene expression cascade. These data indicate that histone modifications associated with the KSHV latent genome are involved in the regulation of latency and ultimately in the control of the temporal and sequential expression of the lytic gene cascade. In addition, the PcG proteins play a critical role in the control of KSHV latency by maintaining a reversible heterochromatin on the KSHV lytic genes. Thus, the regulation of the spatial and temporal association of the PcG proteins with the KSHV genome may be crucial for propagating the KSHV lifecycle. KSHV is a ubiquitous herpesvirus that establishes a life-long persistent infection in humans and is associated with Kaposi's sarcoma and several lymphoid malignancies. During latency, the KSHV genome persists as a multicopy circular DNA assembled into nucleosomal structures. While viral latency is characterized by restricted viral gene expression, reactivation induces the lytic replication program and the expression of viral genes in defined sequential and temporal order. Posttranslational modifications of the viral chromatin structure have been implicated to regulate viral gene expressions but the underlying gene regulatory mechanisms are still elusive. Here, we demonstrate that the latent and lytic chromatins of KSHV are associated with a distinctive pattern of activating and repressive histone modifications whose distribution changes upon reactivation in an organized manner in correlation with the temporally ordered expression of viral lytic genes. Furthermore, we demonstrate that the evolutionarily conserved Polycomb group proteins, that maintain the repression of genes involved in hematopoiesis, X-chromosome inactivation, cell proliferation and stem cell differentiation, also play a critical role in the regulation of KSHV latency by maintaining a repressive chromatin structure. Thus, the epigenetic program of KSHV is at the crux of restricting latent gene expression and the orderly expression of lytic genes.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dennis T. Maglinte
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sun Hwa Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hye-Ra Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lai-Yee Wong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kevin F. Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stacy Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan D. Buckley
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter W. Laird
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Washington AT, Singh G, Aiyar A. Diametrically opposed effects of hypoxia and oxidative stress on two viral transactivators. Virol J 2010; 7:93. [PMID: 20459757 PMCID: PMC2874542 DOI: 10.1186/1743-422x-7-93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Background Many pathogens exist in multiple physiological niches within the host. Differences between aerobic and anaerobic conditions are known to alter the expression of bacterial virulence factors, typically through the conditional activity of transactivators that modulate their expression. More recently, changes in physiological niches have been shown to affect the expression of viral genes. For many viruses, differences in oxygen tension between hypoxia and normoxia alter gene expression or function. Oxygen tension also affects many mammalian transactivators including AP-1, NFkB, and p53 by affecting the reduced state of critical cysteines in these proteins. We have recently determined that an essential cys-x-x-cys motif in the EBNA1 transactivator of Epstein-Barr virus is redox-regulated, such that transactivation is favoured under reducing conditions. The crucial Tat transactivator of human immunodeficiency virus (HIV) has an essential cysteine-rich region, and is also regulated by redox. Contrary to EBNA1, it is reported that Tat's activity is increased by oxidative stress. Here we have compared the effects of hypoxia, oxidative stress, and cellular redox modulators on EBNA1 and Tat. Results Our results indicate that unlike EBNA1, Tat is less active during hypoxia. Agents that generate hydroxyl and superoxide radicals reduce EBNA1's activity but increase transactivation by Tat. The cellular redox modulator, APE1/Ref-1, increases EBNA1's activity, without any effect on Tat. Conversely, thioredoxin reductase 1 (TRR1) reduces Tat's function without any effect on EBNA1. Conclusions We conclude that oxygen partial pressure and oxidative stress affects the functions of EBNA1 and Tat in a dramatically opposed fashion. Tat is more active during oxidative stress, whereas EBNA1's activity is compromised under these conditions. The two proteins respond to differing cellular redox modulators, suggesting that the oxidized cysteine adduct is a disulfide bond(s) in Tat, but sulfenic acid in EBNA1. The effect of oxygen partial pressure on transactivator function suggests that changes in redox may underlie differences in virus-infected cells dependent upon the physiological niches they traffic to.
Collapse
Affiliation(s)
- Amber T Washington
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|