1
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Sartalamacchia K, Porter MS, Veletanlic V, Ogden KM. Avian deltacoronaviruses encode fusion-associated small transmembrane proteins that can induce syncytia formation. Virology 2024; 600:110258. [PMID: 39406032 PMCID: PMC11737098 DOI: 10.1016/j.virol.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Fusion-associated small transmembrane (FAST) proteins are nonstructural viral proteins that induce cell-cell fusion. FAST proteins, which previously were identified in the genomes of double-stranded RNA viruses, typically contain an acylated N-terminal ectodomain, central transmembrane domain, and C-terminal endodomain with a polybasic region. Using sequence homology and protein motif prediction, we identified accessory proteins in a subset of avian deltacoronaviruses as putative FAST proteins. Transient expression of thrush coronavirus NS7b or common moorhen coronavirus NS7a, but not night heron coronavirus NS7b, induced cell-cell fusion. Syncytia were detected in primate kidney epithelial cells or fibroblasts but not chicken embryo fibroblasts, and addition of an N-terminal FLAG peptide to the proteins ablated fusion activity. These findings suggest that multiple avian deltacoronaviruses, positive-sense RNA viruses, encode nonstructural proteins that can mediate cell-cell fusion and share features with known FAST proteins. Additional studies are needed to understand contributions of these proteins to deltacoronavirus biology.
Collapse
Affiliation(s)
- Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA.
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Suite D-2220, Nashville, TN, 37232, USA
| | - Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Suite D-2220, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Goldstein SA, Elde NC. Recurrent viral capture of cellular phosphodiesterases that antagonize OAS-RNase L. Proc Natl Acad Sci U S A 2024; 121:e2312691121. [PMID: 38277437 PMCID: PMC10835031 DOI: 10.1073/pnas.2312691121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 01/28/2024] Open
Abstract
Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.
Collapse
Affiliation(s)
- Stephen A. Goldstein
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, UT84112
- HHMI, Chevy Chase, MD20815
| | - Nels C. Elde
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, UT84112
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
5
|
Diefenbacher MV, Baric TJ, Martinez DR, Baric RS, Catanzaro NJ, Sheahan TP. A nano-luciferase expressing human coronavirus OC43 for countermeasure development. Virus Res 2024; 339:199286. [PMID: 38016504 PMCID: PMC10714359 DOI: 10.1016/j.virusres.2023.199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV.
Collapse
Affiliation(s)
- Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Lytras S, Wickenhagen A, Sugrue E, Stewart DG, Swingler S, Sims A, Jackson Ireland H, Davies EL, Ludlam EM, Li Z, Hughes J, Wilson SJ. Resurrection of 2'-5'-oligoadenylate synthetase 1 (OAS1) from the ancestor of modern horseshoe bats blocks SARS-CoV-2 replication. PLoS Biol 2023; 21:e3002398. [PMID: 38015855 PMCID: PMC10683996 DOI: 10.1371/journal.pbio.3002398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
The prenylated form of the human 2'-5'-oligoadenylate synthetase 1 (OAS1) protein has been shown to potently inhibit the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. However, the OAS1 orthologue in the horseshoe bats (superfamily Rhinolophoidea), the reservoir host of SARS-related coronaviruses (SARSr-CoVs), has lost the prenylation signal required for this antiviral activity. Herein, we used an ancestral state reconstruction approach to predict and reconstitute in vitro, the most likely OAS1 protein sequence expressed by the Rhinolophoidea common ancestor prior to its prenylation loss (RhinoCA OAS1). We exogenously expressed the ancient bat protein in vitro to show that, unlike its non-prenylated horseshoe bat descendants, RhinoCA OAS1 successfully blocks SARS-CoV-2 replication. Using protein structure predictions in combination with evolutionary hypothesis testing methods, we highlight sites under unique diversifying selection specific to OAS1's evolution in the Rhinolophoidea. These sites are located near the RNA-binding region and the C-terminal end of the protein where the prenylation signal would have been. Our results confirm that OAS1 prenylation loss at the base of the Rhinolophoidea clade ablated the ability of OAS1 to restrict SARSr-CoV replication and that subsequent evolution of the gene in these bats likely favoured an alternative function. These findings can advance our understanding of the tightly linked association between SARSr-CoVs and horseshoe bats.
Collapse
Affiliation(s)
- Spyros Lytras
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Arthur Wickenhagen
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Elena Sugrue
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Douglas G. Stewart
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Simon Swingler
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Anna Sims
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Hollie Jackson Ireland
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Emma L. Davies
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Eliza M. Ludlam
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Zhuonan Li
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Sam J. Wilson
- MRC–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Goldstein SA, Elde NC. Recurrent Viral Capture of Cellular Phosphodiesterases that Antagonize OAS-RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540623. [PMID: 37745432 PMCID: PMC10515750 DOI: 10.1101/2023.05.12.540623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions is less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronavirus genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of Rotavirus A was acquired independently from Rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of Rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.
Collapse
Affiliation(s)
- Stephen A Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|
8
|
He WT, Li D, Baele G, Zhao J, Jiang Z, Ji X, Veit M, Suchard MA, Holmes EC, Lemey P, Boni MF, Su S. Newly identified lineages of porcine hemagglutinating encephalomyelitis virus exhibit respiratory phenotype. Virus Evol 2023; 9:vead051. [PMID: 37711483 PMCID: PMC10499004 DOI: 10.1093/ve/vead051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023] Open
Abstract
Swine pathogens have a long history of zoonotic transmission to humans, occasionally leading to sustained outbreaks or pandemics. Through a retrospective epidemiological study of swine populations in China, we describe novel lineages of porcine hemagglutinating encephalomyelitis virus (PHEV) complex coronaviruses (CoVs) that cause exclusively respiratory symptoms with no signs of the neurological symptoms typically associated with classical PHEV infection. Through large-scale epidemiological surveillance, we show that these novel lineages have circulated in at least eight provinces in southeastern China. Phylogenetic and recombination analyses of twenty-four genomes identified two major viral lineages causing respiratory symptoms with extensive recombination within them, between them, and between classical PHEV and the novel respiratory variant PHEV (rvPHEV) lineages. Divergence times among the sampled lineages in the PHEV virus complex date back to 1886-1958 (mean estimate 1928), with the two major rvPHEV lineages separating approximately 20 years later. Many rvPHEV viruses show amino acid substitutions at the carbohydrate-binding site of hemagglutinin esterase (HE) and/or have lost the cysteine required for HE dimerization. This resembles the early adaptation of human CoVs, where HE lost its hemagglutination ability to adapt to growth in the human respiratory tract. Our study represents the first report of the evolutionary history of rvPHEV circulating in swine and highlights the importance of characterizing CoV diversity and recombination in swine to identify pathogens with outbreak potential that could threaten swine farming.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | - Dongyan Li
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin 14163, Germany
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | | | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Aloise C, Schipper JG, van Vliet A, Oymans J, Donselaar T, Hurdiss DL, de Groot RJ, van Kuppeveld FJM. SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. PLoS Pathog 2023; 19:e1011582. [PMID: 37607209 PMCID: PMC10473545 DOI: 10.1371/journal.ppat.1011582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
Collapse
Affiliation(s)
- Chiara Aloise
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle G. Schipper
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arno van Vliet
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith Oymans
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim Donselaar
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Daniel L. Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Raoul J. de Groot
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti NA, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 Diverges from Other Betacoronaviruses in Only Partially Activating the IRE1α/XBP1 Endoplasmic Reticulum Stress Pathway in Human Lung-Derived Cells. mBio 2022; 13:e0241522. [PMID: 36125275 PMCID: PMC9600248 DOI: 10.1128/mbio.02415-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Nicholas A. Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, Canton J, Sánchez-Cordón PJ, Fernandez-Delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022; 18:e1010834. [PMID: 36129908 PMCID: PMC9491562 DOI: 10.1371/journal.ppat.1010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
No vaccines or specific antiviral drugs are authorized against Middle East respiratory syndrome coronavirus (MERS-CoV) despite its high mortality rate and prevalence in dromedary camels. Since 2012, MERS-CoV has been causing sporadic zoonotic infections in humans, which poses a risk of genetic evolution to become a pandemic virus. MERS-CoV genome encodes five accessory proteins, 3, 4a, 4b, 5 and 8b for which limited information is available in the context of infection. This work describes 4b as a virulence factor in vivo, since the deletion mutant of a mouse-adapted MERS-CoV-Δ4b (MERS-CoV-MA-Δ4b) was completely attenuated in a humanized DPP4 knock-in mouse model, resulting in no mortality. Attenuation in the absence of 4b was associated with a significant reduction in lung pathology and chemokine expression levels at 4 and 6 days post-infection, suggesting that 4b contributed to the induction of lung inflammatory pathology. The accumulation of 4b in the nucleus in vivo was not relevant to virulence, since deletion of its nuclear localization signal led to 100% mortality. Interestingly, the presence of 4b protein was found to regulate autophagy in the lungs of mice, leading to upregulation of BECN1, ATG3 and LC3A mRNA. Further analysis in MRC-5 cell line showed that, in the context of infection, MERS-CoV-MA 4b inhibited autophagy, as confirmed by the increase of p62 and the decrease of ULK1 protein levels, either by direct or indirect mechanisms. Together, these results correlated autophagy activation in the absence of 4b with downregulation of a pathogenic inflammatory response, thus contributing to attenuation of MERS-CoV-MA-Δ4b.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Javier Canton
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Raúl Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| |
Collapse
|
13
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti N, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 diverges from other betacoronaviruses in only partially activating the IRE1α/XBP1 ER stress pathway in human lung-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.30.474519. [PMID: 35821981 PMCID: PMC9275661 DOI: 10.1101/2021.12.30.474519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Nicholas Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Comar CE, Otter CJ, Pfannenstiel J, Doerger E, Renner DM, Tan LH, Perlman S, Cohen NA, Fehr AR, Weiss SR. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2123208119. [PMID: 35594398 PMCID: PMC9173776 DOI: 10.1073/pnas.2123208119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways—interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)—activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung–derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.
Collapse
Affiliation(s)
- Courtney E. Comar
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Clayton J. Otter
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ethan Doerger
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Li Hui Tan
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Noam A. Cohen
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104
- Department of Surgery, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
15
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
16
|
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374:eabj3624. [PMID: 34581622 PMCID: PMC7612834 DOI: 10.1126/science.abj3624] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Sugrue
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Spyros Lytras
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Srikeerthana Kuchi
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Marko Noerenberg
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Matthew L. Turnbull
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Colin Loney
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jay Allan
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Innes Jarmson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Natalia Cameron-Ruiz
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Rute M. Pinto
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louisa Iselin
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natasha Palmalux
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Douglas G. Stewart
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Edward J. D. Greenwood
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Thomas W. M. Crozier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Quan Gu
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Emma L. Davies
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
| | - Monique Freire Santana
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - ISARIC4C Investigators
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - Eddie C. Y. Wang
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Antonia Ho
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ruth F. Jarrett
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Alfredo Castello
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - David L. Robertson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm G. Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
| | - Massimo Palmarini
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Suzannah J. Rihn
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity. mBio 2021; 12:e0178121. [PMID: 34372695 PMCID: PMC8406329 DOI: 10.1128/mbio.01781-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 2′,5′-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2′,5′-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses (CoVs) and rotaviruses encode 2-5A-degrading enzymes, thereby antagonizing RNase L and its antiviral effects. A-kinase-anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self-double-stranded RNAs that activate OAS. We show that these enzymes, members of the two-histidine phosphoesterase (2H-PE) superfamily, constitute a subfamily referred here as 2′,5′-PEs. 2′,5′-PEs from the mouse CoV mouse hepatitis virus (MHV) (NS2), Middle East respiratory syndrome coronavirus (MERS-CoV) (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3′,5′-oligoribonucleotides, they all cleaved 2′,5′-oligoadenylates efficiently but with variable activity against other 2′,5′-oligonucleotides. The 2′,5′-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2′,5′-p3A3) producing mono- or diadenylates with 2′,3′-cyclic phosphate termini. Our results suggest that the elimination of 2-5A might be the sole function of viral 2′,5′-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L.
Collapse
|
18
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Kehrer T, García-Sastre A, Miorin L. Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. J Interferon Cytokine Res 2021; 41:205-219. [PMID: 34161170 PMCID: PMC8336211 DOI: 10.1089/jir.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of unprecedented proportions. After the emergence of SARS-CoV-1 in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, this is the third outbreak of a highly pathogenic zoonotic coronavirus (CoV) that the world has witnessed in the last 2 decades. Infection with highly pathogenic human CoVs often results in a severe respiratory disease characterized by a delayed and blunted interferon (IFN) response, accompanied by an excessive production of proinflammatory cytokines. This indicates that CoVs developed effective mechanisms to overcome the host innate immune response and promote viral replication and pathogenesis. In this review, we describe the key innate immune signaling pathways that are activated during infection with SARS-CoV-2 and other well studied pathogenic CoVs. In addition, we summarize the main strategies that these viruses employ to modulate the host immune responses through the antagonism of IFN induction and effector pathways.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Acquah C, Jeevanandam J, Tan KX, Danquah MK. Engineered Aptamers for Enhanced COVID-19 Theranostics. Cell Mol Bioeng 2021; 14:209-221. [PMID: 33488836 PMCID: PMC7810429 DOI: 10.1007/s12195-020-00664-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The 2019-novel coronavirus disease (COVID-19) is an intractable global health challenge resulting in an aberrant rate of morbidity and mortality worldwide. The mode of entry for SARS-CoV-2 into host cells occurs through clathrin-mediated endocytosis. As part of the efforts to mitigate COVID-19 infections, rapid and accurate detection methods, as well as smart vaccine and drug designs with SARS-CoV-2 targeting capabilities are critically needed. This systematic review aimed to present a good mapping between the structural and functional characteristics of aptamers and their potential applications in COVID-19 theranostics. METHODS In this study, extensive discussions into the potential development of aptameric systems as robust theranostics for rapid mitigation of the virulent SARS-CoV-2 was made. Information required for this study were extracted from a systematic review of literature in PubMed, SCOPUS, Web of Science (WOS), and other official related reports from reputable organisations. RESULTS The global burden of COVID-19 pandemic was discussed including the progress in rapid detection, repurposing of existing antiviral drugs, and development of prophylactic vaccines. Aptamers have highly specific and stable target binding characteristics which can be generated and engineered with less complexity for COVID-19 targeted theranostic applications. CONCLUSIONS There is an urgent need to develop safe innovative biomedical technologies to mitigate the dire impact of COVID-19 on public health worldwide. Research advances into aptameric systems bode well with the fact that they can be engineered for the development of effective and affordable diagnostics, therapeutics and prophylactic vaccines for SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
21
|
Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proc Natl Acad Sci U S A 2021; 118:2101713118. [PMID: 34031250 DOI: 10.1073/pnas.2101713118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infection with the flavivirus Zika virus (ZIKV) can result in tissue tropism, disease outcome, and route of transmission distinct from those of other flaviviruses; therefore, we aimed to identify host machinery that exclusively promotes the ZIKV replication cycle, which can inform on differences at the organismal level. We previously reported that deletion of the host antiviral ribonuclease L (RNase L) protein decreases ZIKV production. Canonical RNase L catalytic activity typically restricts viral infection, including that of the flavivirus dengue virus (DENV), suggesting an unconventional, proviral RNase L function during ZIKV infection. In this study, we reveal that an inactive form of RNase L supports assembly of ZIKV replication factories (RFs) to enhance infectious virus production. Compared with the densely concentrated ZIKV RFs generated with RNase L present, deletion of RNase L induced broader subcellular distribution of ZIKV replication intermediate double-stranded RNA (dsRNA) and NS3 protease, two constituents of ZIKV RFs. An inactive form of RNase L was sufficient to contain ZIKV genome and dsRNA within a smaller RF area, which subsequently increased infectious ZIKV release from the cell. Inactive RNase L can interact with cytoskeleton, and flaviviruses remodel cytoskeleton to construct RFs. Thus, we used the microtubule-stabilization drug paclitaxel to demonstrate that ZIKV repurposes RNase L to facilitate the cytoskeleton rearrangements required for proper generation of RFs. During infection with flaviviruses DENV or West Nile Kunjin virus, inactive RNase L did not improve virus production, suggesting that a proviral RNase L role is not a general feature of all flavivirus infections.
Collapse
|
22
|
Ujike M, Taguchi F. Recent Progress in Torovirus Molecular Biology. Viruses 2021; 13:435. [PMID: 33800523 PMCID: PMC7998386 DOI: 10.3390/v13030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| |
Collapse
|
23
|
Cascarina SM, Ross ED. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB J 2020; 34:9832-9842. [PMID: 32562316 PMCID: PMC7323129 DOI: 10.1096/fj.202001351] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
To date, the recently discovered SARS-CoV-2 virus has afflicted >6.9 million people worldwide and disrupted the global economy. Development of effective vaccines or treatments for SARS-CoV-2 infection will be aided by a molecular-level understanding of SARS-CoV-2 proteins and their interactions with host cell proteins. The SARS-CoV-2 nucleocapsid (N) protein is highly homologous to the N protein of SARS-CoV, which is essential for viral RNA replication and packaging into new virions. Emerging models indicate that nucleocapsid proteins of other viruses can form biomolecular condensates to spatiotemporally regulate N protein localization and function. Our bioinformatic analyses, in combination with pre-existing experimental evidence, suggest that the SARS-CoV-2 N protein is capable of forming or regulating biomolecular condensates in vivo by interaction with RNA and key host cell proteins. We discuss multiple models, whereby the N protein of SARS-CoV-2 may harness this activity to regulate viral life cycle and host cell response to viral infection.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Eric D. Ross
- Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
24
|
Zika Virus Production Is Resistant to RNase L Antiviral Activity. J Virol 2019; 93:JVI.00313-19. [PMID: 31142667 DOI: 10.1128/jvi.00313-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
There is currently no knowledge of how the emerging human pathogen Zika virus (ZIKV) interacts with the antiviral endoribonuclease L (RNase L) pathway during infection. Since activation of RNase L during infection typically limits virus production dramatically, we used CRISPR-Cas9 gene editing technology to knockout (KO) targeted host genes involved in the RNase L pathway to evaluate the effects of RNase L on ZIKV infection in human A549 cells. RNase L was activated in response to ZIKV infection, which degraded ZIKV genomic RNA. Surprisingly, despite viral genome reduction, RNase L activity did not reduce ZIKV infectious titers. In contrast, both the flavivirus dengue virus and the alphavirus Sindbis virus replicated to significantly higher titers in RNase L KO cells compared to wild-type (WT) cells. Using MAVS/RNase L double KO cells, we demonstrated that the absence of increased ZIKV production in RNase L KO cells was not due to compensation by enhanced type I interferon transcripts to thus inhibit virus production. Finally, when synthetic double-stranded RNA was detected by OAS3 to induce RNase L antiviral activity prior to ZIKV infection, we observed reduced ZIKV replication factory formation, as well as a 42-fold reduction in virus yield in WT but not RNase L KO cells. This study proposes that ZIKV evades RNase L antiviral activity by generating a viral genome reservoir protected from RNase L cleavage during early infection, allowing for sufficient virus production before RNase L activation is detectable.IMPORTANCE With the onset of the 2015 ZIKV outbreak, ZIKV pathogenesis has been of extreme global public health interest, and a better understanding of interactions with the host would provide insight into molecular mechanisms driving the severe neurological outcomes of ZIKV disease. Here is the initial report on the relationship between ZIKV and the host oligoadenylate synthetase-RNase L (OAS-RNase L) system, a potent antiviral pathway effective at restricting replication of diverse viruses. Our study elucidated a unique mechanism whereby ZIKV production is impervious to antiviral RNase L activity, through a mechanism of viral RNA protection that is not mimicked during infection with numerous other RNase L-activating viruses, thus identifying a distinct replication strategy potentially important for ZIKV pathogenesis.
Collapse
|
25
|
Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and NS4b Accessory Proteins during MERS Coronavirus Infection. mBio 2019; 10:mBio.00319-19. [PMID: 30914508 PMCID: PMC6437052 DOI: 10.1128/mbio.00319-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the second novel zoonotic
coronavirus to emerge in the 21st century and cause outbreaks of severe respiratory
disease. More than 2,200 cases and 800 deaths have been reported to date, yet there are no
licensed vaccines or treatments. Coronaviruses encode unique accessory proteins that are
not required for replication but most likely play roles in immune antagonism and/or
pathogenesis. Our study describes the functions of MERS-CoV accessory proteins NS4a and
NS4b during infection of a human airway-derived cell line. Loss of these accessory
proteins during MERS-CoV infection leads to host antiviral activation and modestly
attenuates replication. In the case of both NS4a and NS4b, we have identified roles during
infection not previously described, yet the lack of robust activation suggests much
remains to be learned about the interactions between MERS-CoV and the infected host. Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in 2012 as a
novel etiological agent of severe respiratory disease in humans. As during infection by
other viruses, host sensing of viral double-stranded RNA (dsRNA) induces several antiviral
pathways. These include interferon (IFN), oligoadenylate synthetase (OAS)-RNase L, and
protein kinase R (PKR). Coronaviruses, including MERS-CoV, potently suppress the
activation of these pathways, inducing only modest host responses. Our study describes the
functions of two accessory proteins unique to MERS-CoV and related viruses, NS4a and NS4b,
during infection in human airway epithelium-derived A549 cells. NS4a has been previously
characterized as a dsRNA binding protein, while NS4b is a
2′,5′-phosphodiesterase with structural and enzymatic similarity to NS2
encoded by mouse hepatitis virus (MHV). We found that deletion of NS4a results in
increased interferon lambda (IFNL1) expression, as does mutation of
either the catalytic site or nuclear localization sequence of NS4b. All of the mutant
viruses we tested exhibited slight decreases in replication. We previously reported that,
like MHV NS2, NS4b antagonizes OAS-RNase L, but suppression of IFN is a previously
unidentified function for viral phosphodiesterases. Unexpectedly, deletion of NS4a does
not result in robust activation of the PKR or OAS-RNase L pathways. Therefore, MERS-CoV
likely encodes other proteins that contribute to suppression or evasion of these antiviral
innate immune pathways that should be an important focus of future work. This study
provides additional insight into the complex interactions between MERS-CoV and the host
immune response.
Collapse
|
26
|
Badolo A, Burt F, Daniel S, Fearns R, Gudo ES, Kielian M, Lescar J, Shi Y, von Brunn A, Weiss SR, Hilgenfeld R. Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Res 2018; 162:142-150. [PMID: 30597184 PMCID: PMC7132404 DOI: 10.1016/j.antiviral.2018.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 11/23/2022]
Abstract
The Third Tofo Advanced Study Week on Emerging and Re-Emerging Viruses (3rd TASW) was held in Praia do Tofo, Mozambique, from September 02 to 06, 2018. It brought together 55 participants from 10 African countries as well as from Belgium, China, Germany, Singapore, and the USA. Meeting sessions covered aspects of the epidemiology, diagnosis, molecular and structural biology, vaccine development, and antiviral drug discovery for emerging RNA viruses that are current threats in Africa and included flaviviruses (dengue and Zika), alphaviruses (chikungunya), coronaviruses, filoviruses (Ebola), influenza viruses, Crimean Congo hemorrhagic fever virus, Rift Valley fever Virus, Lassa virus, and others. Data were presented on recent flavivirus and/or chikungunyavirus outbreaks in Angola, Burkina Faso, and Mozambique. In addition, these viruses are endemic in many sub-Saharan countries. The TASW series on emerging viruses is unique in Africa and successful in promoting collaborations between researchers in Africa and other parts of the world, as well as among African scientists. This report summarizes the lectures held at the meeting and highlights advances in the field. The 3rd Tofo Advanced Study Week on Emerging and Re-emerging Viruses took place from September 2–6, 2018. African attendees came from Angola, Botswana, Burkina Faso, the CAR, Mozambique, Nigeria, S Africa, Tanzania and Zimbabwe. Other participants were from Europe, China, Singapore, and the USA. This unique meeting enabled scientists from Africa and elsewhere to discuss problems and initiate new collaborations. Presentations covered dengue virus, Zika, chikungunya, coronaviruses, Ebola, influenza, Rift Valley fever, CCHF, and RSV.
Collapse
Affiliation(s)
- Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Ouaga, Ouagadougou, Burkina Faso.
| | - Felicity Burt
- Division of Virology, National Health Laboratory Services and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Susan Daniel
- Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Rachel Fearns
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Julien Lescar
- Structural Biology and Biochemistry, Nanyang Technological University, Singapore.
| | - Yi Shi
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Site, Munich, Germany.
| | - Susan R Weiss
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rolf Hilgenfeld
- Institute of Biochemistry, University of Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, Lübeck, Germany.
| |
Collapse
|
27
|
Lopp A, Reintamm T, Kuusksalu A, Olspert A, Kelve M. Identification of a novel member of 2H phosphoesterases, 2',5'-oligoadenylate degrading ribonuclease from the oyster Crassostrea gigas. Biochimie 2018; 156:181-195. [PMID: 30195052 DOI: 10.1016/j.biochi.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Several genes of IFN-mediated pathways in vertebrates, among them the genes that participate in the 2',5'-oligoadenylate synthetase (OAS)/RNase L pathway, have been identified in C. gigas. In the present study, we identified genes, which encode proteins having 2',5'-oligoadenylate degrading activity in C. gigas. These proteins belong to the 2H phosphoesterase superfamily and have sequence similarity to the mammalian A kinase anchoring protein 7 (AKAP7) central domain, which is responsible for the 2',5'-phosphodiesterase (2',5'-PDE) activity. Comparison of the genomic structures of C. gigas proteins with that of AKAP7 suggests that these enzymes originate from a direct common ancestor. However, the identified nucleases are not typical 2',5'-PDEs. The found enzymes catalyse the degradation of 2',5'-linked oligoadenylates in a metal-ion-independent way, yielding products with 2',3' -cyclic phosphate and 5'-OH termini similarly to the 3'-5' bond cleavage in RNA, catalyzed by metal-independent ribonucleases. 3',5'-linked oligoadenylates are not substrates for them. The preferred substrates for the C. gigas enzymes are 5'-triphosphorylated 2',5'-oligoadenylates, whose major cleavage reaction results in the removal of the 5'-triphosphorylated 2',3'-cyclic phosphate derivative, leaving behind the respective unphosphorylated 2',5'-oligoadenylate. Such a cleavage reaction results in the direct inactivation of the biologically active 2-5A molecule. The 2',5'-ribonucleases (2',5'-RNases) from C. gigas could be members of the ancient group of ribonucleases, specific to 2'-5' phosphodiester bond, together with the enzyme that was characterized previously from the marine sponge Tethya aurantium. The novel 2',5'-RNases may play a role in the control of cellular 2-5A levels, thereby limiting damage to host cells after viral infection.
Collapse
Affiliation(s)
- Annika Lopp
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia.
| | - Tõnu Reintamm
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Anne Kuusksalu
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Allan Olspert
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Merike Kelve
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| |
Collapse
|
28
|
Donovan J, Rath S, Kolet-Mandrikov D, Korennykh A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA (NEW YORK, N.Y.) 2017; 23:1660-1671. [PMID: 28808124 PMCID: PMC5648034 DOI: 10.1261/rna.062000.117] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/06/2017] [Indexed: 05/20/2023]
Abstract
Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest.
Collapse
Affiliation(s)
- Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - David Kolet-Mandrikov
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|