1
|
McCrae C, Dzgoev A, Ståhlman M, Horndahl J, Svärd R, Große A, Großkopf T, Skujat MA, Williams N, Schubert S, Echeverri C, Jackson C, Guedán A, Solari R, Vaarala O, Kraan M, Rådinger M. Lanosterol Synthase Regulates Human Rhinovirus Replication in Human Bronchial Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:713-722. [PMID: 30084659 DOI: 10.1165/rcmb.2017-0438oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human rhinovirus (RV) infections are a significant risk factor for exacerbations of asthma and chronic obstructive pulmonary disease. Thus, approaches to prevent RV infection in such patients would give significant benefit. Through RNA interference library screening, we identified lanosterol synthase (LSS), a component of the cholesterol biosynthetic pathway, as a novel regulator of RV replication in primary normal human bronchial epithelial cells. Selective knock down of LSS mRNA with short interfering RNA inhibited RV2 replication in normal human bronchial epithelial cells. Small molecule inhibitors of LSS mimicked the effect of LSS mRNA knockdown in a concentration-dependent manner. We further demonstrated that the antiviral effect is not dependent on a reduction in total cellular cholesterol but requires a 24-hour preincubation with the LSS inhibitor. The rank order of antiviral potency of the LSS inhibitors used was consistent with LSS inhibition potency; however, all compounds showed remarkably higher potency against RV compared with the LSS enzyme potency. We showed that LSS inhibition led to an induction of 24(S),25 epoxycholesterol, an important regulator of the sterol pathway. We also demonstrated that LSS inhibition led to a profound increase in expression of the innate antiviral defense protein, IFN-β. We found LSS to be a novel regulator of RV replication and innate antiviral immunity and identified a potential molecular mechanism for this effect, via induction of 24(S),25 epoxycholesterol. Inhibition of LSS could therefore be a novel therapeutic target for prevention of RV-induced exacerbations.
Collapse
Affiliation(s)
- Christopher McCrae
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden.,2 Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, and
| | - Anatoly Dzgoev
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcus Ståhlman
- 3 Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Horndahl
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | | | - Nicola Williams
- 5 AstraZeneca Research and Development, Charnwood, Loughborough, United Kingdom
| | | | | | - Clive Jackson
- 5 AstraZeneca Research and Development, Charnwood, Loughborough, United Kingdom
| | - Anabel Guedán
- 7 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Roberto Solari
- 7 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Outi Vaarala
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maarten Kraan
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Madeleine Rådinger
- 2 Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, and
| |
Collapse
|
2
|
Tang Q, Liu P, Chen M, Qin Y. Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses 2019; 11:v11050438. [PMID: 31096557 PMCID: PMC6563303 DOI: 10.3390/v11050438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022] Open
Abstract
The matrix (M) proteins of paramyxoviruses bind to the nucleocapsids and cytoplasmic tails of glycoproteins, thus mediating the assembly and budding of virions. We first determined the budding characterization of the HPIV3 Fusion (F) protein to investigate the assembly mechanism of human parainfluenza virus type 3 (HPIV3). Our results show that expression of the HPIV3 F protein alone is sufficient to initiate the release of virus-like particles (VLPs), and the F protein can regulate the VLP-forming ability of the M protein. Furthermore, HPIV3F-Flag, which is a recombinant HPIV3 with a Flag tag at the C-terminus of the F protein, was constructed and recovered. We found that the M, F, and hemagglutinin-neuraminidase (HN) proteins and the viral genome can accumulate in lipid rafts in HPIV3F-Flag-infected cells, and the F protein mainly exists in the form of F1 in VLPs, lipid rafts, and purified virions. Furthermore, the function of cholesterol in the viral envelope and cell membrane was assessed via the elimination of cholesterol by methyl-β-cyclodextrin (MβCD). Our results suggest that the infectivity of HPIV3 was markedly reduced, due to defective internalization ability in the absence of cholesterol. These results reveal that HPIV3 might assemble in the lipid rafts to acquire cholesterol for the envelope of HPIV3, which suggests the that disruption of the cholesterol composition of HPIV3 virions might be a useful method for the design of anti-HPIV3 therapy.
Collapse
Affiliation(s)
- Qiaopeng Tang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Pengfei Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Kim J, Fukuto HS, Brown DA, Bliska JB, London E. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin. J Biol Chem 2017; 293:1466-1479. [PMID: 29197826 DOI: 10.1074/jbc.m117.811224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δinv, ΔyadA, and ΔinvΔyadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The ΔinvΔyadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis.
Collapse
Affiliation(s)
- JiHyun Kim
- From the Departments of Biochemistry and Cell Biology and
| | - Hana S Fukuto
- Molecular Genetics and Microbiology and.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | | | - James B Bliska
- Molecular Genetics and Microbiology and.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Erwin London
- From the Departments of Biochemistry and Cell Biology and
| |
Collapse
|
4
|
Amir D, Fessler DMT. Boots for Achilles: progesterone's reduction of cholesterol is a second-order adaptation. QUARTERLY REVIEW OF BIOLOGY 2013; 88:97-116. [PMID: 23909226 DOI: 10.1086/670528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Progesterone and cholesterol are both vital to pregnancy. Among other functions, progesterone downregulates inflammatory responses, allowing for maternal immune tolerance of the fetal allograft. Cholesterol a key component of cell membranes, is important in intracellular transport, cell signaling, nerve conduction, and metabolism Despite the importance of each substance in pregnancy, one exercises an antagonistic effect on the other, as periods of peak progesterone correspond with reductions in cholesterol availability, a consequence of progesterone's negative effects on cholesterol biosynthesis. This arrangement is understandable in light of the threat posed by pathogens early in pregnancy. Progesterone-induced immunomodulation entails increased vulnerability to infection, an acute problem in the first trimester, when fetal development is highly susceptible to insult. Many pathogens rely on cholesterol for cell entry, egress, and replication. Progesterone's antagonistic effects on cholesterol thus partially compensate for the costs entailed by progesterone-induced immunomodulation. Among pathogens to which the host's vulnerability is increased by progesterone's effects, approximately 90% utilize cholesterol, and this is notably true of pathogens that pose a risk during pregnancy. In addition to having a number of possible clinical applications, our approach highlights the potential importance of second-order adaptations, themselves a consequence of the lack of teleology in evolutionary processes.
Collapse
Affiliation(s)
- Dorsa Amir
- Center for Behavior, Evolution, and Culture, Department of Anthropology, University of California, Los Angeles Los Angeles, California 90095-1553, USA.
| | | |
Collapse
|
5
|
Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013; 174:78-87. [PMID: 23517753 DOI: 10.1016/j.virusres.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
Collapse
|
6
|
Huang R, Gao H, Zhang L, Jia J, Liu X, Zheng P, Ma L, Li W, Deng J, Wang X, Yang L, Wang M, Xie P. Borna disease virus infection perturbs energy metabolites and amino acids in cultured human oligodendroglia cells. PLoS One 2012; 7:e44665. [PMID: 22970281 PMCID: PMC3436876 DOI: 10.1371/journal.pone.0044665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Borna disease virus is a neurotropic, non-cytolytic virus that has been widely employed in neuroscientific research. Previous studies have revealed that metabolic perturbations are associated with Borna disease viral infection. However, the pathophysiological mechanism underlying its mode of action remains unclear. Methodology Human oligodendroglia cells infected with the human strain Borna disease virus Hu-H1 and non-infected matched control cells were cultured in vitro. At day 14 post-infection, a proton nuclear magnetic resonance-based metabonomic approach was used to differentiate the metabonomic profiles of 28 independent intracellular samples from Borna disease virus-infected cells (n = 14) and matched control cells (n = 14). Partial least squares discriminant analysis was performed to demonstrate that the whole metabonomic patterns enabled discrimination between the two groups, and further statistical testing was applied to determine which individual metabolites displayed significant differences between the two groups. Findings Metabonomic profiling revealed perturbations in 23 metabolites, 19 of which were deemed individually significant: nine energy metabolites (α-glucose, acetate, choline, creatine, formate, myo-inositol, nicotinamide adenine dinucleotide, pyruvate, succinate) and ten amino acids (aspartate, glutamate, glutamine, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine, valine). Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between the two groups. Conclusion Borna disease viral infection perturbs the metabonomic profiles of several metabolites in human oligodendroglia cells cultured in vitro. The findings suggest that Borna disease virus manipulates the host cell’s metabolic network to support viral replication and proliferation.
Collapse
Affiliation(s)
- Rongzhong Huang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Hongchang Gao
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jianmin Jia
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xia Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lihua Ma
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenjuan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiao Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Liu Yang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Mingju Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
7
|
Chattopadhyay A, Jafurulla M. Role of membrane cholesterol in leishmanial infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:201-13. [PMID: 22695847 DOI: 10.1007/978-1-4614-3381-1_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Abstract
Bornaviridae is an enveloped animal virus carrying an 8.9 kb non-segmented, negative-strand RNA genome. The genus bornavirus contains two members infecting vertebrates, Borna disease virus (BDV) and avian bornavirus (ABV), which could preferably infect the nervous systems. BDV causes classical Borna disease, a progressive meningoencephalomyelitis, in horses and sheep, and ABV is known to induce proventricular dilatation disease, a fatal disease characterized by a lymphocytic, plasmacytic inflammation of central and peripheral nervous tissues, in multiple avian species. Recent evidences have demonstrated that bornavirus is unique among RNA viruses as they not only establish a long-lasting, persistent infection in the nucleus, but also integrate their own DNA genome copy into the host chromosome. In this review, I outline the recent knowledge about the unique virological characteristics of bornaviruses, as well as the diseases caused by the infection of BDV and ABV.
Collapse
Affiliation(s)
- Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University
| |
Collapse
|
9
|
Chang TH, Segovia J, Sabbah A, Mgbemena V, Bose S. Cholesterol-rich lipid rafts are required for release of infectious human respiratory syncytial virus particles. Virology 2011; 422:205-13. [PMID: 22088217 DOI: 10.1016/j.virol.2011.10.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
Abstract
Cholesterol and sphingolipid enriched lipid raft micro-domains in the plasma membrane play an important role in the life-cycle of numerous enveloped viruses. Although human respiratory syncytial virus (RSV) proteins associate with the raft domains of infected cells and rafts are incorporated in RSV virion particles, the functional role of raft during RSV infection was unknown. In the current study we have identified rafts as an essential component of host cell that is required for RSV infection. Treatment of human lung epithelial cells with raft disrupting agent methyl-beta-cyclodextrin (MBCD) led to drastic loss of RSV infectivity due to diminished release of infectious progeny RSV virion particles from raft disrupted cells. RSV infection of raft deficient Niemann-Pick syndrome type C human fibroblasts and normal human embryonic lung fibroblasts revealed that during productive RSV infection, raft is required for release of infectious RSV particles.
Collapse
Affiliation(s)
- Te-Hung Chang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
10
|
Solbrig MV, Fan Y, Hermanowicz N, Morgese MG, Giuffrida A. A synthetic cannabinoid agonist promotes oligodendrogliogenesis during viral encephalitis in rats. Exp Neurol 2010; 226:231-41. [PMID: 20832403 PMCID: PMC2981070 DOI: 10.1016/j.expneurol.2010.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 08/07/2010] [Accepted: 09/01/2010] [Indexed: 12/15/2022]
Abstract
Chronic CNS infection by several families of viruses can produce deficits in prefrontal cortex (PFC) and striatal function. Cannabinoid drugs have been long known for their anti-inflammatory properties and their ability to modulate adult neuro and gliogenesis. Therefore, we explored the effects of systemic administration of the cannabinoid agonist WIN55,212-2(WIN) on prefrontal cortex (PFC) and striatal cytogenesis in a viral model of CNS injury and inflammation based on Borna Disease (BD) virus encephalitis. Active BrdU(+) progenitor populations were significantly decreased 1 week after BrdU labeling in BD rats [p<0.001 compared to uninfected (NL) controls] while less than 5% of BrdU(+) cells colabeled for BDV protein. Systemic WIN (1mg/kg i.p. twice daily×7 days) increased the survival of BrdU(+) cells in striatum (p<0.001) and PFC of BD rats, with differential regulation of labeled oligodendroglia precursors vs microglia/macrophages. WIN increased the percentage of BrdU(+) oligodendrocyte precursor cells and decreased BrdU(+) ED-1-labeled phagocytic cells, without producing pro- or antiviral effects. BDV infection decreased the levels of the endocannabinoid anandamide (AEA) in striatum (p<0.05 compared to NL rats), whereas 2-AG levels were unchanged. Our findings indicate that: 1) viral infection is accompanied by alterations of AEA transmission in the striatum, but new cell protection by WIN appears independent of its effect on endocannabinoid levels; and 2) chronic WIN treatment alters the gliogenic cascades associated with CNS injury, promoting oligodendrocyte survival. Limiting reactive gliogenesis and macrophage activity in favor of oliogodendroglia development has significance for demyelinating diseases. Moreover, the ability of cannabinoids to promote the development of biologically supportive or symbiotic oligodendroglia may generalize to other microglia-driven neurodegenerative syndromes including NeuroAIDS and diseases of aging.
Collapse
Affiliation(s)
- Marylou V Solbrig
- Department of Medicine (Neurology), University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | |
Collapse
|
11
|
Identification of host factors involved in borna disease virus cell entry through a small interfering RNA functional genetic screen. J Virol 2010; 84:3562-75. [PMID: 20071576 DOI: 10.1128/jvi.02274-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the prototypic member of the Bornaviridae family, within the order Mononegavirales, is highly neurotropic and constitutes an important model system for the study of viral persistence in the central nervous system (CNS) and associated disorders. The virus surface glycoprotein (G) has been shown to direct BDV cell entry via receptor-mediated endocytosis, but the mechanisms governing cell tropism and propagation of BDV within the CNS are unknown. We developed a small interfering RNA (siRNA)-based screening to identify cellular genes and pathways that specifically contribute to BDV G-mediated cell entry. Our screen relied on silencing-mediated increased survival of cells infected with rVSVDeltaG*/BDVG, a cytolytic recombinant vesicular stomatitis virus expressing BDV G that mimics the cell tropism and entry pathway of bona fide BDV. We identified 24 cellular genes involved in BDV G-mediated cell entry. Identified genes are known to participate in a broad range of distinct cellular functions, revealing a complex process associated with BDV cell entry. The siRNA-based screening strategy we have developed should be applicable to identify cellular genes contributing to cell entry mediated by surface G proteins of other viruses.
Collapse
|
12
|
Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication. J Virol 2009; 84:983-92. [PMID: 19889753 DOI: 10.1128/jvi.02039-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.
Collapse
|
13
|
Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J Virol 2009; 83:12622-5. [PMID: 19776128 DOI: 10.1128/jvi.01201-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Borna disease virus (BDV) is characterized by highly neurotropic infection. BDV enters its target cells using virus surface glycoprotein (G), but the cellular molecules mediating this process remain to be elucidated. We demonstrate here that the N-terminal product of G, GP1, interacts with the 78-kDa chaperone protein BiP. BiP was found at the surface of BDV-permissive cells, and anti-BiP antibody reduced BDV infection as well as GP1 binding to the cell surface. We also reveal that BiP localizes at the synapse of neurons. These results indicate that BiP may participate in the cell surface association of BDV.
Collapse
|
14
|
Cell entry of Borna disease virus follows a clathrin-mediated endocytosis pathway that requires Rab5 and microtubules. J Virol 2009; 83:10406-16. [PMID: 19656886 DOI: 10.1128/jvi.00990-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the prototypic member of the Bornaviridae family within the order Mononegavirales, exhibits high neurotropism and provides an important and unique experimental model system for studying virus-cell interactions within the central nervous system. BDV surface glycoprotein (G) plays a critical role in virus cell entry via receptor-mediated endocytosis, and therefore, G is a critical determinant of virus tissue and cell tropism. However, the specific cell pathways involved in BDV cell entry have not been determined. Here, we provide evidence that BDV uses a clathrin-mediated, caveola-independent cell entry pathway. We also show that BDV G-mediated fusion takes place at an optimal pH of 6.0 to 6.2, corresponding to an early-endosome compartment. Consistent with this finding, BDV cell entry was Rab5 dependent but Rab7 independent and exhibited rapid fusion kinetics. Our results also uncovered a key role for microtubules in BDV cell entry, whereas the integrity and dynamics of actin cytoskeleton were not required for efficient cell entry of BDV.
Collapse
|