1
|
Filhol T, Mac Kain A, Joffret ML, Jouvenet N, Caval V, Bessaud M. The use of sialic acids as attachment factors is a common feature of Enterovirus-D species. J Virol 2025:e0042925. [PMID: 40358210 DOI: 10.1128/jvi.00429-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Among the hundreds of enteroviruses (EVs) infecting humans, the members of the species EV-D (Enterovirus deconjuncti) display original traits. First, only five serotypes are known within this species, while other EV species have tens of serotypes each. Second, EV-Ds display a wide variety of tropisms: EV-D68s are respiratory viruses, EV-D70s have an ocular tropism, while EV-D94s, EV-D111s, and EV-D120s seem to be enteric viruses. Besides, while EV-D68s, EV-D70s, and EV-D94s have been detected in humans, EV-D120s were found exclusively in non-human primates, and the last virus type, EV-D111, was found in both. This and other observations have led to the hypothesis that EV-Ds could have a zoonotic origin. Previous studies have shown that EV-D68, EV-D70, and EV-D94 use sialic acids (Sias) as cellular attachment factors. We investigated the role of Sias in EV-D111 infection using sialidase treatments and loss-of-function experiments in human and simian cells. Assessing viral RNA yield by RT-qPCR analyses and infectious viral particle production by titration assays showed that the absence of Sias at the cell surface significantly slowed down EV-D111 infection kinetics without abolishing it. This suggests that Sia acts as an attachment factor. While EVs generally do not use Sias, EV-Ds seem to rely on them for optimal replication in cultured cells. Sia usage may therefore be an ancestral trait of this species. We also studied EV-B114, a simian enterovirus, and found that it does not use Sias. Our work provides new insight regarding an enterovirus that circulates in humans and exhibits unusual ecological traits.IMPORTANCEExcept for a few epidemics in the 1970s and 1980s, the impact of EV-Ds on human health remained modest until the 2010s. In 2014, EV-D68 was occasionally responsible for severe respiratory distress and fatal cases of muscular paralysis. EV-Ds have thus the ability to become pathogenic in humans, hence the importance of studying them. The recently discovered EV-D111, of which only a few isolates are available, has been detected in both human and simian samples, suggesting a potential zoonotic origin. We characterized the early steps of EV-D111 replication, with a focus on its ability to use Sias as attachment factors. We found that EV-D111, like other members of the EV-D species, but unlike most EVs, relies on Sia for optimal replication. Our work provides a better understanding of EV-D111 biology, which is essential to determine its tropism and its potential to emerge in humans.
Collapse
Affiliation(s)
- Typhaine Filhol
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Institut Pasteur, Paris, France
| | - Alice Mac Kain
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Institut Pasteur, Paris, France
| | - Marie-Line Joffret
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Institut Pasteur, Paris, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Maël Bessaud
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Sanni A, Hakim MA, Goli M, Adeniyi M, Talih F, Lanuzza B, Kobeissy F, Plazzi G, Moresco M, Mondello S, Ferri R, Mechref Y. Serum N-Glycan Profiling of Patients with Narcolepsy Type 1 Using LC-MS/MS. ACS OMEGA 2024; 9:32628-32638. [PMID: 39100283 PMCID: PMC11292663 DOI: 10.1021/acsomega.4c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 08/06/2024]
Abstract
The neurological condition known as narcolepsy type 1 (NT1) is an uncommon condition marked by extreme daytime sleepiness, cataplexy, sleep paralysis, hallucinations, disrupted nocturnal sleep, and low or undetectable levels of orexin in the CSF fluid. NT1 has been hypothesized to be an immunological disorder; its treatment is currently only symptomatic, and misdiagnosis is not uncommon. This study compares the N-glycome of NT1 patients with healthy controls in search of potential glycan biomarkers using LC-MS/MS. A total of 121 candidate N-glycans were identified, 55 of which were isomeric N-glycan structures and 65 were not. Seventeen N-glycan biomarker candidates showed significant differences between the NT1 and control cohorts. All of the candidate glycan biomarkers were isomeric except HexNAc6Hex7Fuc0NeuAc1 (6701) and HexNAc6Hex7Fuc1NeuAc2 (6712). Therefore, with isomeric and nonisomeric structures, a total of 20 candidate N-glycan biomarkers are reported in this study, and interestingly, all are either sialylated or sialylated-fucosylated and upregulated in NT1 relative to the control. The distribution levels of all the identified N-glycans show that the sialylated glycan type is the most abundant in NT1 and is majorly disialylated, although the trisialylated subtype is three-fold higher in NT1 compared to the healthy control. The first isomers of HexNAc5Hex6Fuc0NeuAc3 (5603), HexNAc6Hex7Fuc0NeuAc2 (6702), and HexNAc6Hex7Fuc1NeuAc4 (6714) expressed a high level of fold changes (FC) of 1.62, 2.19, and 2.98, respectively. These results suggest a different N-glycome profile of NT1 and a relationship between sialylated glycan isomers in NT1 disease development or progression. The revelation of N-glycan expression alterations in this study may improve NT1 diagnostic methods, understanding of NT1 pathology, and the development of new targeted therapeutics.
Collapse
Affiliation(s)
- Akeem Sanni
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Md Abdul Hakim
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Moyinoluwa Adeniyi
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Farid Talih
- Department
of Psychiatry, Faculty of Medicine, American
University of Beirut, Beirut 1107 2020, Lebanon
| | - Bartolo Lanuzza
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers
(CNMB), Neuroscience Institute, Morehouse
School of Medicine (MSM), Atlanta, Georgia 30310-1458, United States
| | - Giuseppe Plazzi
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Monica Moresco
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
| | - Stefania Mondello
- Department
of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98122, Italy
| | - Raffaele Ferri
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Yehia Mechref
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Epidemiology of Enterovirus Genotypes in Association with Human Diseases. Viruses 2024; 16:1165. [PMID: 39066327 PMCID: PMC11281466 DOI: 10.3390/v16071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Enteroviruses (EVs) are well-known causes of a wide range of infectious diseases in infants and young children, ranging from mild illnesses to severe conditions, depending on the virus genotypes and the host's immunity. Recent advances in molecular surveillance and genotyping tools have identified over 116 different human EV genotypes from various types of clinical samples. However, the current knowledge about most of these genotypes, except for those of well-known genotypes like EV-A71 and EV-D68, is still limited due to a lack of comprehensive EV surveillance systems. This limited information makes it difficult to understand the true burden of EV-related diseases globally. Furthermore, the specific EV genotype associated with diseases varies according to country, population group, and study period. The same genotype can exhibit different epidemiological features in different areas. By integrating the data from established EV surveillance systems in the USA, Europe, Japan, and China, in combination with other EV infection studies, we can elaborate a better understanding of the distribution of prevalent EV genotypes and the diseases associated with EV. This review analyzed the data from various EV surveillance databases and explored the EV seroprevalence and the association of specific EV genotypes with human diseases.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Prajna NV, Prajna L, Teja V, Gunasekaran R, Chen C, Ruder K, Zhong L, Yu D, Liu D, Abraham T, Ao W, Deiner M, Hinterwirth A, Seitzman G, Doan T, Lietman T. Apollo Rising: Acute Conjunctivitis Outbreak in India, 2022. CORNEA OPEN 2023; 2:e0009. [PMID: 37719281 PMCID: PMC10501505 DOI: 10.1097/coa.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Purpose To identify pathogens associated with the 2022 conjunctivitis outbreak in Tamil Nadu, India. Methods This prospective study was conducted in November of 2022. Patients with presumed acute infectious conjunctivitis presenting to the Aravind Eye Clinic in Madurai, India were eligible. Anterior nares and conjunctival samples from participants were obtained and processed for metagenomic RNA deep sequencing (RNA-seq). Results Samples from 29 patients were sequenced. A pathogen was identified in 28/29 (97%) patients. Coxsackievirus A24v, a highly infectious RNA virus, was the predominant pathogen and detected in 23/29 patients. Human adenovirus D (HAdV-D), a DNA virus commonly associated with conjunctivitis outbreaks, was detected in the remaining patients (5/29). Hemorrhagic conjunctiva was documented in both HAdV-D and coxsackievirus A24v affected patients but was not the predominant clinical presentation. Phylogenetic analysis of coxsackievirus A24v revealed a recent divergence from the 2015 outbreak. Conclusions Coxsackievirus A24v and HAdV-D were co-circulating during the 2022 conjunctivitis outbreak in Tamil Nadu, India. Clinical findings were similar between patients with HAD-V and coxsackievirus A24v associated conjunctivitis. As high-throughput technologies become more readily accessible and cost-effective, unbiased pathogen surveillance may prove useful for outbreak surveillance and control.
Collapse
Affiliation(s)
| | | | | | | | - Cindi Chen
- Francis I. Proctor Foundation, San Francisco, United States
| | - Kevin Ruder
- Francis I. Proctor Foundation, San Francisco, United States
| | - Lina Zhong
- Francis I. Proctor Foundation, San Francisco, United States
| | - Danny Yu
- Francis I. Proctor Foundation, San Francisco, United States
| | - David Liu
- Francis I. Proctor Foundation, San Francisco, United States
| | - Thomas Abraham
- Francis I. Proctor Foundation, San Francisco, United States
| | - Wendy Ao
- Francis I. Proctor Foundation, San Francisco, United States
| | - Michael Deiner
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | | | - Gerami Seitzman
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Thuy Doan
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Thomas Lietman
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
5
|
Zhu R, Yu ZY, Han L. Insights on the possibility of SARS-CoV-2 transmission through the eyes. Int J Ophthalmol 2022; 15:1857-1863. [PMID: 36404966 PMCID: PMC9631193 DOI: 10.18240/ijo.2022.11.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 12/12/2022] Open
Abstract
A novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCOV), causing coronavirus disease 2019 (COVID-19), has rapidly spread to most countries and regions worldwide since it broke out at the end of 2019. Epidemic of the virus produces a tremendous pressure on the global health systems. With progressive insight into SARS-CoV-2, the role of eye tissue has attracted wide attention in the spread of COVID-19. Whether SARS-CoV-2 can enter the human body through eyes and cause infection? The fact that unprotected exposure of the eyes to 2019-nCoV might have allowed the virus to infect the body implies that 2019-nCOV can invade eye tissue and set foot in organism. Facing the severe challenge of preventing spread of the COVID-19, combined with the high-risk environment of ophthalmology, it is crucial to investigate ocular tropism of coronavirus. This paper explores the possibility of coronavirus transmission through the eye from aspects of probable mechanisms, clinical cases, detection of coronavirus; and puts forward precautions for ophthalmologists and nurses. Consequently, this review reveals our understanding of ocular tropism of coronavirus and contributes to determining risk of ocular transmission, raising awareness of necessary eye protection among medical workers and reducing further prevalence of SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Zi-Yan Yu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Lin Han
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| |
Collapse
|
6
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses 2022; 14:v14020330. [PMID: 35215921 PMCID: PMC8880561 DOI: 10.3390/v14020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.
Collapse
|
8
|
Johansson E, Caraballo R, Zocher G, Mistry N, Arnberg N, Stehle T, Elofsson M. Exploring divalent conjugates of 5- N-acetyl-neuraminic acid as inhibitors of coxsackievirus A24 variant (CVA24v) transduction. RSC Adv 2022; 12:2319-2331. [PMID: 35425270 PMCID: PMC8979015 DOI: 10.1039/d1ra08968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to cells by binding Neu5Ac-containing glycans on the surface of cells which facilitates entry. Previously, we have demonstrated that pentavalent Neu5Ac conjugates attenuate CVA24v infection of human corneal epithelial (HCE) cells. In this study, we report on the structure-based design of three classes of divalent Neu5Ac conjugates, with varying spacer lengths, and their effect on CVA24v transduction in HCE cells. In relative terms, the most efficient class of divalent Neu5Ac conjugates are more efficient than the pentavalent Neu5Ac conjugates previously reported.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen 72076 Tübingen Germany
| | - Nitesh Mistry
- Department of Clinical Microbiology, Umeå University SE90185 Umeå Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University SE90185 Umeå Sweden
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen 72076 Tübingen Germany
- Vanderbilt University School of Medicine Nashville Tennessee 37232 USA
| | - Mikael Elofsson
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| |
Collapse
|
9
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
10
|
Wang Y, Ze X, Rui B, Li X, Zeng N, Yuan J, Li W, Yan J, Li M. Studies and Application of Sialylated Milk Components on Regulating Neonatal Gut Microbiota and Health. Front Nutr 2021; 8:766606. [PMID: 34859034 PMCID: PMC8631720 DOI: 10.3389/fnut.2021.766606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Breast milk is rich in sialic acids (SA), which are commonly combined with milk oligosaccharides and glycoconjugates. As a functional nutrient component, SA-containing milk components have received increasing attention in recent years. Sialylated human milk oligosaccharides (HMOs) have been demonstrated to promote the growth and metabolism of beneficial gut microbiota in infants, bringing positive outcomes to intestinal health and immune function. They also exhibit antiviral and bacteriostatic activities in the intestinal mucosa of new-borns, thereby inhibiting the adhesion of pathogens to host cells. These properties play a pivotal role in regulating the intestinal microbial ecosystem and preventing the occurrence of neonatal inflammatory diseases. In addition, some recent studies also support the promoting effects of sialylated HMOs on neonatal bone and brain development. In addition to HMOs, sialylated glycoproteins and glycolipids are abundant in milk, and are also critical to neonatal health. This article reviews the current research progress in the regulation of sialylated milk oligosaccharides and glycoconjugates on neonatal gut microbiota and health.
Collapse
Affiliation(s)
- Yushuang Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaolei Ze
- Science and Technology Centre, By-Health Co., Ltd., Guangzhou, China
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xinke Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nina Zeng
- Science and Technology Centre, By-Health Co., Ltd., Guangzhou, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Computational Approach for Predicting Common Epitopes in the VP1 Structural Protein of Enterovirus Serotypes EV-D68, EV-D70, and EV-A71. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three human Enterovirus serotypes D-68, D-70, and A-71, are common pathogens that are transmitted by fecal-oral and aerosol routes. These positive RNA viruses were known to exhibit high levels of genetic diversity and variability. Currently, no vaccines are available to protect humans from these three serotypes. Therefore, efforts are needed for the development of a vaccine directed against heterologous viruses. In our study, an immunoinformatics approach is used to identify T- and B-cell epitopes that may help for the generation of a universal vaccine against EV-D70, EV-A71, and EV-D68. B and T cell epitopes were selected based on their length. As a result, 5 B cell epitopes and 18 T cell epitopes were predicted. Our B cell epitope prediction results showed that there are a number of linear regions. Position 150-170 was found to be the most immunogenic for the different strains. Regarding the epitopes of the T lymphocytes, the result of the interactions shows that 95% of the predicted epitopes are common between the 3 sequences and the 5 methods used. These results demonstrate the great immunogenic potential of these sequences and their capacities to trigger immune reactions in people with different HLA alleles. The “VFYDGFAGF” epitope is the most important and most immunogenic for triggering an immune response. Our study results allowed us to identify epitopes to be used in the development of cross-protection vaccines against the three Enterovirus serotypes. However, in vivo and in vitro studies are needed to assess the potential of the epitopes predicted by our study.
Collapse
|
12
|
Exploring the Effect of Structure-Based Scaffold Hopping on the Inhibition of Coxsackievirus A24v Transduction by Pentavalent N-Acetylneuraminic Acid Conjugates. Int J Mol Sci 2021; 22:ijms22168418. [PMID: 34445134 PMCID: PMC8395083 DOI: 10.3390/ijms22168418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.
Collapse
|
13
|
Hao W, Ma B, Li Z, Wang X, Gao X, Li Y, Qin B, Shang S, Cui S, Tan Z. Binding of the SARS-CoV-2 spike protein to glycans. Sci Bull (Beijing) 2021; 66:1205-1214. [PMID: 33495714 PMCID: PMC7816574 DOI: 10.1016/j.scib.2021.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2, SARS-CoV, and Middle East respiratory disease (MERS)-CoV to these glycans. Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected. Overall, this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells, and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.
Collapse
Affiliation(s)
- Wei Hao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder CO 80303, USA
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Jayawardena N, Miles LA, Burga LN, Rudin C, Wolf M, Poirier JT, Bostina M. N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses 2021; 13:v13050769. [PMID: 33924774 PMCID: PMC8145208 DOI: 10.3390/v13050769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023] Open
Abstract
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
| | - Charles Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - John T. Poirier
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Otago Micro and Nano Imaging Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| |
Collapse
|
15
|
Fonseca MC, Pupo-Meriño M, García-González LA, Muné M, Resik S, Norder H, Sarmiento L. Molecular Characterization of Coxsackievirus A24v from Feces and Conjunctiva Reveals Epidemiological Links. Microorganisms 2021; 9:531. [PMID: 33807540 PMCID: PMC7998715 DOI: 10.3390/microorganisms9030531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v), the main causative agent of acute hemorrhagic conjunctivitis (AHC), can be isolated from both the eyes and lower alimentary tract. However, the molecular features of CVA24v in feces is not well-documented. In this study, we compared the VP1 and 3C sequences of CVA24v strains isolated from feces during AHC epidemics in Cuba in 1997, 2003, and 2008-2009 with those obtained from conjunctival swabs during the same epidemic period. The sequence analyses of the 3C and VP1 region of stool isolates from the three epidemics showed a high degree of nucleotide identity (ranging from 97.3-100%) to the corresponding conjunctival isolates. The phylogenetic analysis showed that fecal CVA24v isolates from the 1997 and 2003 Cuban outbreaks formed a clade with CVA24v strains isolated from conjunctival swabs in Cuba and other countries during the same period. There were three amino acid changes (3C region) and one amino acid change (VP1 region) in seven CVA24v strains isolated sequentially over 20 days from fecal samples of one patient, suggesting viral replication in the intestine. Despite these substitutions, the virus from the conjunctival swab and fecal samples were genetically very similar. Therefore, fecal samples should be considered as a reliable alternative sample type for the routine molecular diagnosis and molecular epidemiology of CVA24v, also during outbreaks of AHC.
Collapse
Affiliation(s)
- Magilé C. Fonseca
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
| | - Luis A. García-González
- Centro de Estudios de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Mexico
| | - Mayra Muné
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Sonia Resik
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Luis Sarmiento
- Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 22185 Malmo, Sweden
| |
Collapse
|
16
|
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021; 13:v13020262. [PMID: 33567791 PMCID: PMC7915228 DOI: 10.3390/v13020262] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses.
Collapse
|
17
|
Johansson E, Caraballo R, Mistry N, Zocher G, Qian W, Andersson CD, Hurdiss DL, Chandra N, Thompson R, Frängsmyr L, Stehle T, Arnberg N, Elofsson M. Pentavalent Sialic Acid Conjugates Block Coxsackievirus A24 Variant and Human Adenovirus Type 37-Viruses That Cause Highly Contagious Eye Infections. ACS Chem Biol 2020; 15:2683-2691. [PMID: 32845119 PMCID: PMC7586296 DOI: 10.1021/acschembio.0c00446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Coxsackievirus A24
variant (CVA24v) and human adenovirus 37 (HAdV-37)
are leading causative agents of the severe and highly contagious ocular
infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis,
respectively. Currently, neither vaccines nor antiviral agents are
available for treating these diseases, which affect millions of individuals
worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors
facilitating entry into host cells. Previously, we and others have
shown that derivatives based on sialic acid are effective in preventing
HAdV-37 binding and infection of cells. Here, we designed and synthesized
novel pentavalent sialic acid conjugates and studied their inhibitory
effect against CVA24v and HAdV-37 binding and infection of human corneal
epithelial cells. The pentavalent conjugates are the first reported
inhibitors of CVA24v infection and proved efficient in blocking HAdV-37
binding. Taken together, the pentavalent conjugates presented here
form a basis for the development of general inhibitors of these highly
contagious ocular pathogens.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | - Nitesh Mistry
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Weixing Qian
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | | | - Daniel L. Hurdiss
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands
| | - Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Rebecca Thompson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, SE90187 Umeå, Sweden
| |
Collapse
|
18
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Sriwilaijaroen N, Suzuki Y. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Methods Mol Biol 2020; 2132:483-545. [PMID: 32306355 PMCID: PMC7165297 DOI: 10.1007/978-1-0716-0430-4_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
On the cell sur "face", sialoglycoconjugates act as receptionists that have an important role in the first step of various cellular processes that bridge communication between the cell and its environment. Loss of Sia production can cause the developmental of defects and lethality in most animals; hence, animal cells are less prone to evolution of resistance to interactions by rapidly evolved Sia-binding viruses. Obligative intracellular viruses mostly have rapid evolution that allows escape from host immunity, leading to an epidemic variant, and that allows emergence of a novel strain, occasionally leading to pandemics that cause health-social-economic problems. Recently, much attention has been given to the mutual recognition systems via sialosugar chains between viruses and their host cells and there has been rapid growth of the research field "sialoglycovirology." In this chapter, the structural diversity of sialoglycoconjugates is overviewed, and enveloped and non-enveloped viruses that bind to Sia are reviewed. Also, interactions of viral lectins-host Sia receptors, which determine viral transmission, host range, and pathogenesis, are presented. The future direction of new therapeutic routes targeting viral lectins, development of easy-to-use detection methods for diagnosis and monitoring changes in virus binding specificity, and challenges in the development of suitable viruses to use in virus-based therapies for genetic disorders and cancer are discussed.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
20
|
Wen X, Sun D, Guo J, Elgner F, Wang M, Hildt E, Cheng A. Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiol 2019; 14:1147-1157. [PMID: 31368347 DOI: 10.2217/fmb-2019-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.,Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
21
|
Abstract
Sialic acid-based glycoconjugates cover the surfaces of many different cell types, defining key properties of the cell surface such as overall charge or likely interaction partners. Because of this prominence, sialic acids play prominent roles in mediating attachment and entry to viruses belonging to many different families. In this review, we first describe how interactions between viruses and sialic acid-based glycan structures can be identified and characterized using a range of techniques. We then highlight interactions between sialic acids and virus capsid proteins in four different viruses, and discuss what these interactions have taught us about sialic acid engagement and opportunities to interfere with binding.
Collapse
Affiliation(s)
- Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
22
|
Enfissi A, Joffret ML, Delaune D, Delpeyroux F, Rousset D, Bessaud M. Coxsackievirus A24 Variant Associated with Acute Haemorrhagic Conjunctivitis Cases, French Guiana, 2017. Intervirology 2018; 60:271-275. [DOI: 10.1159/000489339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
|
23
|
Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc Natl Acad Sci U S A 2017; 115:397-402. [PMID: 29284752 DOI: 10.1073/pnas.1713284115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute hemorrhagic conjunctivitis (AHC) is a painful, contagious eye disease, with millions of cases in the last decades. Coxsackievirus A24 (CV-A24) was not originally associated with human disease, but in 1970 a pathogenic "variant" (CV-A24v) emerged, which is now the main cause of AHC. Initially, this variant circulated only in Southeast Asia, but it later spread worldwide, accounting for numerous AHC outbreaks and two pandemics. While both CV-A24 variant and nonvariant strains still circulate in humans, only variant strains cause AHC for reasons that are yet unknown. Since receptors are important determinants of viral tropism, we set out to map the CV-A24 receptor repertoire and establish whether changes in receptor preference have led to the increased pathogenicity and rapid spread of CV-A24v. Here, we identify ICAM-1 as an essential receptor for both AHC-causing and non-AHC strains. We provide a high-resolution cryo-EM structure of a virus-ICAM-1 complex, which revealed critical ICAM-1-binding residues. These data could help identify a possible conserved mode of receptor engagement among ICAM-1-binding enteroviruses and rhinoviruses. Moreover, we identify a single capsid substitution that has been adopted by all pandemic CV-A24v strains and we reveal that this adaptation enhances the capacity of CV-A24v to bind sialic acid. Our data elucidate the CV-A24v receptor repertoire and point to a role of enhanced receptor engagement in the adaptation to the eye, possibly enabling pandemic spread.
Collapse
|
24
|
Human Adenovirus Type 37 Uses α Vβ 1 and α 3β 1 Integrins for Infection of Human Corneal Cells. J Virol 2017; 91:JVI.02019-16. [PMID: 27974569 PMCID: PMC5309963 DOI: 10.1128/jvi.02019-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVβ3, αVβ5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVβ5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, β1, and β4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, β3, or β5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVβ1 and α3β1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and β1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs. IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVβ5 in order to enter nonocular human cells. In this study, we found that αVβ5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin expression patterns on corneal tissue and corneal cells. Among the integrins identified, competition binding and infection experiments and biochemical assays pointed out αVβ1 and α3β1 to be of importance for HAdV-37 infection of corneal tissue. In the absence of a good animal model for EKC-causing HAdVs, we also developed an in vitro system with multilayer HCE cells and confirmed the relevance of the suggested integrins during HAdV-37 infection.
Collapse
|
25
|
Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016; 40:153-162. [PMID: 27792989 PMCID: PMC5526076 DOI: 10.1016/j.sbi.2016.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022]
Abstract
The surfaces of host cells and viruses are decorated by complex glycans, which play multifaceted roles in the dynamic interplay between the virus and the host including viral entry into host cell, modulation of proteolytic cleavage of viral proteins, recognition and neutralization of virus by host immune system. These roles are mediated by specific multivalent interactions of glycans with their cognate proteins (generally termed as glycan-binding proteins or GBPs or lectins). The advances in tools and technologies to chemically synthesize and structurally characterize glycans and glycan-GBP interactions have offered several insights into the role of glycan-GBP interactions in viral pathogenesis and have presented opportunities to target these interactions for novel antiviral therapeutic or vaccine strategies. This review covers aspects of role of host cell surface glycan receptors and viral surface glycans in viral pathogenesis and offers perspectives on how to employ various analytical tools to target glycan-GBP interactions.
Collapse
|
26
|
Fuzawa M, Ku KM, Palma-Salgado SP, Nagasaka K, Feng H, Juvik JA, Sano D, Shisler JL, Nguyen TH. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation. Appl Environ Microbiol 2016; 82:6214-6222. [PMID: 27520815 PMCID: PMC5068170 DOI: 10.1128/aem.01778-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/07/2016] [Indexed: 01/23/2023] Open
Abstract
The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular wax content and then treated with each sanitizer. The efficacy of the oxidant-based sanitizer correlated with leaf wax content as evidenced by the 1-log10 PRV disinfection on endive surfaces (low wax content) and 3-log10 disinfection of the cultivars with higher wax contents. In contrast, the surfactant-based sanitizer showed similar PRV disinfection efficacies (up to 3 log10) that were independent of leaf wax content. A statistical difference was observed with the disinfection efficacies of the oxidant-based sanitizer for suspended and attached PRV, while the surfactant-based sanitizer showed similar PRV disinfection efficacies. Significant reductions in the entry and replication of PRV were observed after treatment with either disinfectant. Moreover, the oxidant-based-sanitizer-treated PRV showed sialic acid-specific binding to the host cells, whereas the surfactant-based sanitizer increased the nonspecific binding of PRV to the host cells. These findings suggest that the surface properties of fresh produce may affect the efficacy of virus disinfection, implying that food sanitizers should be carefully selected for the different surface characteristics of fresh produce. IMPORTANCE Food sanitizer efficacies are affected by the surface properties of vegetables. This study evaluated the disinfection efficacies of two food sanitizers, an oxidant-based sanitizer and a surfactant-based sanitizer, on porcine rotavirus strain OSU adhering to the leaf epicuticular surfaces of high- and low-wax-content cultivars. The disinfection efficacy of the oxidant-based sanitizer was affected by the surface properties of the vegetables, while the surfactant-based sanitizer was effective for both high- and low-wax leafy vegetable cultivars. This study suggests that the surface properties of vegetables may be an important factor that interacts with disinfection with food sanitizers of rotaviruses adhering to fresh produce.
Collapse
Affiliation(s)
- Miyu Fuzawa
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, West Virginia, USA
| | - Sindy Paola Palma-Salgado
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kenya Nagasaka
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John A Juvik
- Department of Crop Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daisuke Sano
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Yen YC, Chu PH, Lu PL, Lin YC, Shi YY, Chou LC, Wang CF, Lin YY, Su HJ, Lin CC, Zeng JY, Tyan YC, Ke GM, Chu PY. Phylodynamic Characterization of an Ocular-Tropism Coxsackievirus A24 Variant. PLoS One 2016; 11:e0160672. [PMID: 27529556 PMCID: PMC4987047 DOI: 10.1371/journal.pone.0160672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
Recent phylodynamic studies have focused on using tree topology patterns to elucidate interactions among the epidemiological, evolutionary, and demographic characteristics of infectious agents. However, because studies of viral phylodynamics tend to focus on epidemic outbreaks, tree topology signatures of tissue-tropism pathogens might not be clearly identified. Therefore, this study used a novel Bayesian evolutionary approach to analyze the A24 variant of coxsackievirus (CV-A24v), an ocular-tropism agent of acute hemorrhagic conjunctivitis. Analyses of the 915-nucleotide VP1 and 690-nt 3Dpol regions of 21 strains isolated in Taiwan and worldwide during 1985-2010 revealed a clear chronological trend in both the VP1 and 3Dpol phylogenetic trees: the emergence of a single dominant cluster in each outbreak. The VP1 sequences included three genotypes: GI (prototype), GIII (isolated 1985-1999), and GIV (isolated after 2000); no VP1 sequences from GII strains have been deposited in GenBank. Another five genotypes identified in the 3Dpol region had support values >0.9. Geographic and demographic transitions among CV-A24v clusters were clearly identified by Bayes algorithm. The transmission route was mapped from India to China and then to Taiwan, and each prevalent viral population declined before new clusters emerged. Notably, the VP1 and 3Dpol genes had high nucleotide sequence similarities (94.1% and 95.2%, respectively). The lack of co-circulating lineages and narrow tissue tropism affected the CV-A24v gene pool.
Collapse
Affiliation(s)
- Yung-Chang Yen
- Department of Ophthalmology, Chi Mei Medical Center, Liou-Ying, Tainan, Taiwan
- Department of Nursing, Min Hwei College of Health Care Management, Tainan, Taiwan
| | - Pei-Huan Chu
- Division of Cardiology, Department of Medicine, Wei Gong Memorial Hospital, Miaoli, Taiwan
| | - Po-Liang Lu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Cheng Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yong-Ying Shi
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Chiu Chou
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chu-Feng Wang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ying Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Ju Su
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Ching Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Yun Zeng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Pei-Yu Chu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Complete genome analysis of coxsackievirus A24 isolated in Yunnan, China, in 2013. Arch Virol 2016; 161:1705-9. [PMID: 26935916 DOI: 10.1007/s00705-016-2792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Human coxsackievirus A24 (CVA24) belongs to the species Enterovirus C, and variants of this virus frequently cause acute hemorrhagic conjunctivitis (AHC). The complete genome of the K282/YN/CHN/2013 strain, isolated from a healthy child in Yunnan, China, in 2013, is reported here for the first time. The strain showed 80.0 % and 79.9 % nucleotide sequence identity to CVA24 prototype strain Joseph and CVA24 variant prototype EH24, respectively. The K282/YN/CHN/2013 strain belongs to the CVA24 serotype. Twelve amino acid differences, most of which are in structural regions, were found between the CVA24 and CVA24v strains. In the whole-length genome sequence, only the structural region of K282/YN/CHN/2013 was similar to that of the CVA24 strains; the other genome regions were more similar to those of other members of the species Enterovirus C. Recombination analysis showed evidence of recombination with other viruses of the same species.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW There are over 100 serotypes of human enteroviruses, which cause a spectrum of illnesses, including meningitis, encephalitis, paralysis, myocarditis and rash. Increasing incidence of hand-foot-and-mouth disease in the Asia-Pacific region and recent outbreaks of enterovirus-associated disease, such as severe respiratory illness in the United States in 2014, highlight the threat of these viruses to human health. RECENT FINDINGS We describe recent outbreaks of human enteroviruses and summarize knowledge gaps regarding their burden, spectrum of diseases and epidemiology. SUMMARY Reported outbreaks of respiratory, neurological, skin and eye diseases associated with human enteroviruses have increased in frequency and size in recent years. Improved molecular diagnostics and genetic sequence analysis are beginning to reveal the complex dynamics of individual serotypes and genotypes, and their contribution to these outbreaks. However, the biological mechanisms underlying their emergence and transmission dynamics remain elusive. They are likely to involve changes in the virus, such as fitness, antigenicity, virulence or tropism, and in the human population, such as levels of sanitation and of homotypic and heterotypic immunity. Improvements in surveillance, serological surveys and detailed genetic and antigenic characterization of viral populations would help to elucidate these mechanisms. This will be important for the design of outbreak control and vaccine development strategies.
Collapse
|
30
|
Royston L, Tapparel C. Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC. Viruses 2016; 8:E16. [PMID: 26761027 PMCID: PMC4728576 DOI: 10.3390/v8010016] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| |
Collapse
|
31
|
Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun 2015; 6:8865. [PMID: 26563423 PMCID: PMC4660200 DOI: 10.1038/ncomms9865] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. The human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory infections, but despite its prevalence the exact mechanism mediating its cell entry have not been fully established. Here, the authors show how EV-D68 binds to sialic acid on the cell surface to initiate infection.
Collapse
|
32
|
Abstract
The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. Coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) are responsible for several outbreaks of a highly contagious eye disease called acute hemorrhagic conjunctivitis (AHC). These viruses represent a limited set of human picornaviruses that use glycan receptors for cell attachment. Until now no data has been available about the binding site of these glycan receptors. We therefore determined the structure of the entire virus capsid in its unbound state and also together with several glycan receptor mimics and could establish the structure of the receptor binding site. CVA24v recognizes the receptor at a solvent exposed site on the virus shell by interactions with a single capsid protein VP1. Moreover, we identified a glycan motif favoured for CVA24v binding and confirmed this preference biochemically and by in silico simulations. Our results form a solid basis for structure-based development of drugs to treat CVA24v-caused AHC.
Collapse
|
33
|
A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 2014; 88:7806-17. [PMID: 24789779 DOI: 10.1128/jvi.00896-14] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. Importance: This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others.
Collapse
|
34
|
Abstract
UNLABELLED Increased detection of enterovirus 68 (EV68) among patients with acute respiratory infections has been reported from different parts of the world in the late 2000s since its first detection in pediatric patients with lower-respiratory-tract infections in 1962. However, the underlying molecular mechanisms for this trend are still unknown. We therefore aimed to study the antigenicity and receptor binding properties of EV68 detected in recent years in comparison to the prototype strain of EV68, the Fermon strain. We first performed neutralization (NT) and hemagglutination inhibition (HI) tests using antisera generated for EV68 strains detected in recent years. We found that the Fermon strain had lower HI and NT titers than recently detected EV68 strains. The HI and NT titers were also significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis. In glycan array analysis, all tested EV68 strains showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study demonstrates that emergence of strains with different antigenicity is the possible reason for the increased detection of EV68 in recent years. Additionally, we found that EV68 preferably binds to α2-6 SAs, which suggests that EV68 might have affinity for the upper respiratory tract. IMPORTANCE Numbers of cases of enterovirus 68 (EV68) infection in different parts of the world increased significantly in the late 2000s. We studied the antigenicity and receptor binding properties of recently detected EV68 strains in comparison to the prototype strain of EV68, Fermon. The hemagglutination inhibition (HI) and neutralization (NT) titers were significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis, which showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study suggested that the emergence of strains with different antigenicities was the possible reason for the increased detections of EV68 in recent years. Additionally, we revealed that EV68 preferably binds to α2-6 SAs. This is the first report describing the properties of EV68 receptor binding to the specific types of sialic acids.
Collapse
|
35
|
Liu Z, Zhao X, Mao H, Baxter PA, Huang Y, Yu L, Wadhwa L, Su JM, Adesina A, Perlaky L, Hurwitz M, Idamakanti N, Police SR, Hallenbeck PL, Hurwitz RL, Lau CC, Chintagumpala M, Blaney SM, Li XN. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol 2013; 15:1173-85. [PMID: 23658322 DOI: 10.1093/neuonc/not065] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Seneca Valley virus (SVV-001) is a nonpathogenic oncolytic virus that can be systemically administered and can pass through the blood-brain barrier. We examined its therapeutic efficacy and the mechanism of tumor cell infection in pediatric malignant gliomas. METHODS In vitro antitumor activities were examined in primary cultures, preformed neurospheres, and self-renewing glioma cells derived from 6 patient tumor orthotopic xenograft mouse models (1 anaplastic astrocytoma and 5 GBM). In vivo therapeutic efficacy was examined by systemic treatment of preformed xenografts in 3 permissive and 2 resistant models. The functional role of sialic acid in mediating SVV-001 infection was investigated using neuraminidase and lectins that cleave or competitively bind to linkage-specific sialic acids. RESULTS SVV-001 at a multiplicity of infection of 0.5 to 25 replicated in and effectively killed primary cultures, preformed neurospheres, and self-renewing stemlike single glioma cells derived from 4 of the 6 glioma models in vitro. A single i.v. injection of SVV-001 (5 × 10(12) viral particles/kg) led to the infection of orthotopic xenografts without harming normal mouse brain cells, resulting in significantly prolonged survival in all 3 permissive and 1 resistant mouse models (P < .05). Treatment with neuraminidase and competitive binding using lectins specific for α2,3-linked and/or α2,6-linked sialic acid significantly suppressed SVV-001 infectivity (P < .01). CONCLUSION SVV-001 possesses strong antitumor activity against pediatric malignant gliomas and utilizes α2,3-linked and α2,6-linked sialic acids as mediators of tumor cell infection. Our findings support the consideration of SVV-001 for clinical trials in children with malignant glioma.
Collapse
Affiliation(s)
- Zhigang Liu
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M. Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interface Sci 2013; 392:431-445. [DOI: 10.1016/j.jcis.2012.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 02/04/2023]
|
37
|
Su PY, Liu YT, Chang HY, Huang SW, Wang YF, Yu CK, Wang JR, Chang CF. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol 2012; 12:162. [PMID: 22853823 PMCID: PMC3478995 DOI: 10.1186/1471-2180-12-162] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. RESULTS We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. CONCLUSIONS In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells.
Collapse
Affiliation(s)
- Pei-Yi Su
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Yueh-Tung Liu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Blood Bank, Kaohsiung Veterans General Hospital, No. 386, Ta-Chung 1st Road, Kaohsiung 81362, Taiwan
| | - Hsin-Yueh Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Sheng-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Ya-Fang Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chun-Keung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- National Applied Research Laboratories, National Laboratory Animal Center, No. 128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| |
Collapse
|
38
|
Huang HI, Weng KF, Shih SR. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future Microbiol 2012; 7:467-79. [DOI: 10.2217/fmb.12.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia–Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- The Center for Molecular & Clinical Immunology, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
39
|
Nishimura Y, Shimizu H. Cellular receptors for human enterovirus species a. Front Microbiol 2012; 3:105. [PMID: 22470371 PMCID: PMC3313065 DOI: 10.3389/fmicb.2012.00105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/02/2012] [Indexed: 12/22/2022] Open
Abstract
Human enterovirus species A (HEV-A) is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are the major causative agents of hand, foot, and mouth disease (HFMD). Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis. Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1) and scavenger receptor class B, member 2 (SCARB2), were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases Musashimurayama-shi, Tokyo, Japan
| | | |
Collapse
|
40
|
De W, Huanying Z, Hui L, Corina M, Xue G, Leng L, Hanri Z, Ling F, Yanling M, Huiqiong Z, Huan Z, Jing K, Caiyun L, Yoshida H, Changwen K. Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong, China. Virol J 2012; 9:41. [PMID: 22336176 PMCID: PMC3305440 DOI: 10.1186/1743-422x-9-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 02/15/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acute hemorrhagic conjunctivitis is a common disease in China. As a notifiable disease, cases are registered by ophthalmologists on the AHC surveillance system. An AHC outbreak caused by CA24v was observed in Guangdong Province in 2007 by the National Disease Supervision Information Management System. Three years later, a larger outbreak occurred in Guangdong during the August-October period (2010). To characterize the outbreak and compare the genetic diversity of CA24v, which was determined to be the cause of the outbreak, the epidemiology and the molecular characterization of CA24v were analyzed in this study. RESULTS A total of 69,635 cases were reported in the outbreak. 73.5% of index cases originated from students, children in kindergarten and factory workers, with the ≦ 9 age group at the highest risk. The male to female ratio was 1.84:1 among 0-19 years. 56 conjunctival swabs were collected to identify the causative agent from five cities with the AHC outbreak. 30 virus strains were isolated, and two of the genomes had the highest identity values (95.8%) with CA24v genomes. Four CA24v genotypes were identified by phylogenetic analysis for the VP1 and 3C regions. CA24v which caused the outbreak belonged to genotype IV. Furthermore, full nucleotide sequences for four representative isolates in 2010 and 2007 were determined and compared. 20 aa mutations, two nt insertions and one nt deletion were observed in the open reading frame, with 5'- and 3'- UTR respectively between them. CONCLUSIONS CA24v was determined to be the pathogen causing the outbreak and belongs to genotype IV. VP1 is more informative than 3C(Pro) for describing molecular epidemiology and we hypothesize that accumulative mutations may have promoted the outbreak.
Collapse
Affiliation(s)
- Wu De
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Zheng Huanying
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Li Hui
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | | | - Guo Xue
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Liu Leng
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Zeng Hanri
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Fang Ling
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Mo Yanling
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Zhou Huiqiong
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Zhang Huan
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Kou Jing
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Long Caiyun
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| | - Hiromu Yoshida
- National Institute of Infectious Diseases Gakuen, Tokyo, 2080011, Japan
| | - Ke Changwen
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong, No.176, Xingang Road W, Guangzhou, Guangdong, 510300, People's Republic of China
| |
Collapse
|
41
|
Fonseca MC, Sarmiento L, Resik S, Pereda N, Rodríguez H, Kourí V, Martínez PA, Piñón A, Limonta D, Más P, Hung LH. Isolation of Coxsackievirus A24 variant from patients with hemorrhagic conjunctivitis in Cuba, 2008-2009. J Clin Virol 2011; 53:77-81. [PMID: 22074932 DOI: 10.1016/j.jcv.2011.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND An outbreak of acute hemorrhagic conjunctivitis occurred in Cuba in 2008 and 2009. OBJECTIVE To determinate the etiological agent associated with the Cuban outbreaks of acute hemorrhagic conjunctivitis during 2008 and 2009. STUDY DESIGN Conjunctival swabs and/or faecal samples from 382 patients with clinical diagnosis suggestive of acute hemorrhagic conjunctivitis were subject to viral culture in HEp-2 human laryngeal epidermoid carcinoma cells. Positive samples were identified by a specific Coxsackievirus A24 variant PCR and the 3C protease region of 16 isolates was sequenced for phylogenetic analysis. RESULTS Enterovirus cytopathic effect was observed in 138 cases (36%). A higher percent of CA24v was recovered from faecal samples, 19 out of 45 cases (42.2%), than from conjunctival swabs, 127 out of 355 samples (35.8%). All isolates were identified as Coxsackievirus A24 variant. Phylogenetic analysis revealed that 2008 and 2009 Cuban outbreaks were caused by the same virus strains and that isolates were closely related to those from Taiwan (2006-2007), China (2007-2008) and Singapore (2005) with a bootstrap value of 71%. CONCLUSIONS Outbreaks of acute hemorrhagic conjunctivitis occurred in Cuba in 2008 and 2009 were caused by Coxsackievirus A24 variant. The faecal-oral route is another mode of transmission of CA24v in the acute hemorrhagic conjunctivitis outbreaks. Phylogenetic analysis of Cuban CA24v strains involved in an acute hemorrhagic conjunctivitis outbreak in 2008 and 2009 confirms a new introduction of the CA24 variant into the Americas from South-east Asia.
Collapse
Affiliation(s)
- Magilé C Fonseca
- Department of Virology, Pedro Kourí Tropical Medicine Institute (IPK), Autopista Novia del Mediodía km. 6 1/2, Marianao 13, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hwang JY, Jun EJ, Seo I, Won M, Ahn J, Kim YK, Lee H. Characterization of infections of human leukocytes by non-polio enteroviruses. Intervirology 2011; 55:333-41. [PMID: 22057046 DOI: 10.1159/000329987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
To elucidate the detailed susceptibilities of leukocytes to clinically important non-polio enteroviruses (EVs), primary monocytes and various human leukocyte cell lines were infected with coxsackievirus A24 (CVA24), coxsackievirus B3 (CVB3), and enterovirus 70 (EV70). The permissiveness was then assessed by determining virus replication and resultant cytopathic effects. Different EVs varied markedly in their ability to infect leukocyte cell lines. CVB3 replicated effectively in leukocytes of B-cell, T-cell, and monocyte origin, CVA24 in leukocytes of B-cell and monocyte origin, and EV70 in leukocytes of monocyte origin. Primary monocytes, as well as monocyte-derived U-937 cells, were permissive to all three EVs. We observed a positive correlation between cytotoxicity and active virus replication, except in CVB3-infected monocytes. U-937 cells efficiently generated CVB3 progeny virus without severe cellular damage, including cell death. Moreover, infectivity on leukocytes was not absolutely associated with the availability of viral receptors. These findings suggest that the susceptibility of human leukocytes to non-polio EVs may be responsible for virus transport during the viremic phase, particularly to secondary target organs, and that active replication of CVB3 in all human leukocyte lineages leads to greater dissemination, in agreement with the ability of CVB to cause systemic diseases.
Collapse
|
43
|
Viruses and sialic acids: rules of engagement. Curr Opin Struct Biol 2011; 21:610-8. [PMID: 21917445 PMCID: PMC3189341 DOI: 10.1016/j.sbi.2011.08.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/08/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Viral infections are initiated by specific attachment of a virus particle to receptors at the surface of the host cell. For many viruses, these receptors are glycans that are linked to either a protein or a lipid. Glycans terminating in sialic acid and its derivatives serve as receptors for a large number of viruses, including several human pathogens. In combination with glycan array analyses, structural analyses of complexes of viruses with sialylated oligosaccharides have provided insights into the parameters that underlie each interaction. Here, we compare the currently available structural data on viral attachment proteins in complex with sialic acid and its variants. The objective is to define common parameters of recognition and to provide a platform for understanding the determinants of specificity. This information could be of use for the prediction of the location of sialic acid binding sites in viruses for which structural information is still lacking. An improved understanding of the principles that govern the recognition of sialic acid and sialylated oligosaccharides would also advance efforts to develop efficient antiviral agents.
Collapse
|
44
|
Coxsackievirus A24 variant uses sialic acid-containing O-linked glycoconjugates as cellular receptors on human ocular cells. J Virol 2011; 85:11283-90. [PMID: 21880775 DOI: 10.1128/jvi.05597-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is a main causative agent of acute hemorrhagic conjunctivitis (AHC), which is a highly contagious eye infection. Previously it has been suggested that CVA24v uses sialic acid-containing glycoconjugates as attachment receptors on corneal cells, but the nature of these receptors is poorly described. Here, we set out to characterize and identify the cellular components serving as receptors for CVA24v. Binding and infection experiments using corneal cells treated with deglycosylating enzymes or metabolic inhibitors of de novo glycosylation suggested that the receptor(s) used by CVA24v are constituted by sialylated O-linked glycans that are linked to one or more cell surface proteins but not to lipids. CVA24v bound better to mouse L929 cells overexpressing human P-selectin glycoprotein ligand-1 (PSGL-1) than to mock-transfected cells, suggesting that PSGL-1 is a candidate receptor for CVA24v. Finally, binding competition experiments using a library of mono- and oligosaccharides mimicking known PSGL-1 glycans suggested that CVA24v binds to Neu5Acα2,3Gal disaccharides (Neu5Ac is N-acetylneuraminic acid). These results provide further insights into the early steps of the CVA24v life cycle.
Collapse
|
45
|
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011; 37:313-27. [PMID: 21651436 DOI: 10.3109/1040841x.2011.580723] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications and even death. Current large outbreaks of EV71 make this virus being a major public health issue. Intense effort has been made to address its underlying pathogenesis and to develop effective means for combating EV71 infections. Here, we aimed to provide an overview of cellular mechanisms underlying EV71 infection and to assess potential agents for prevention and treatment of EV71 infections.
Collapse
Affiliation(s)
- Lina Yi
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
46
|
Renois F, Hong SS, Le Naour R, Gafa V, Talmud D, Andréoletti L, Lévêque N. Development of a recombinant CHO cell model for the investigation of CAR and DAF role during early steps of echovirus 6 infection. Virus Res 2011; 158:46-54. [PMID: 21420451 DOI: 10.1016/j.virusres.2011.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/08/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
The early steps of echovirus 6 (E6) infection remain poorly understood and the only described receptor for haemagglutinating E6 strains is the decay accelerating factor (DAF). There is, however, accumulating evidence suggesting that E6 interaction with DAF is necessary but not sufficient for infection. In this report, we investigated the role of the coxsackie-adenovirus-receptor (CAR) as a potential DAF co-receptor during E6 infection. Using stably transfected Chinese Hamster Ovary (CHO) cells expressing CAR and DAF receptors, we found that DAF expression allowed attachment of both haemagglutinating and non-haemagglutinating E6 strains but was not sufficient for promoting E6 cell entry. Interestingly, the co-expression of DAF and CAR rendered 0.1-0.2% of cells permissive to some E6 strains' infection. Although our results did not show a major role of the CAR/DAF cooperation for E6 infection, it nevertheless indicated the use of CAR in the cell entry step of some minor E6 quasispecies. Moreover, the present report validates the use of recombinant CHO cells as valuable cellular model for the further characterisation of E6 receptors.
Collapse
Affiliation(s)
- Fanny Renois
- Unité de Virologie Médicale et Moléculaire, Centre Hospitalier Universitaire de Reims, Reims, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Several new enterovirus serotypes and a new human rhinovirus species have been characterized in the Enterovirus genus recently, raising a question about the origin of the new viruses. In this article we attempt to outline the general patterns of enterovirus evolution, ultimately leading to the emergence of new serotypes or species. Different evolutionary and epidemiological patterns can be deduced between different enterovirus species, between entero- and rhino-viruses and between different serotypes within a species. This article presents a hypothesis that the divergent evolution leading to a new serotype is likely to involve adaptation to a new ecological niche either within a single host species or due to interspecies transmission. By contrast, evolution within a serotype appears to occur primarily by genetic drift.
Collapse
Affiliation(s)
| | - Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
48
|
[Enteroviruses responsible for acute hemorrhagic conjunctivitis]. Med Mal Infect 2010; 40:212-8. [PMID: 19836177 DOI: 10.1016/j.medmal.2009.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/03/2009] [Accepted: 09/09/2009] [Indexed: 11/23/2022]
Abstract
Acute hemorrhagic conjunctivitis (AHC) is an epidemic form of highly contagious conjunctivitis, characterized by conjunctival hemorrhages. The first AHC outbreak was described in 1969 in Ghana, West Africa, and was called Apollo disease, from the Apollo landing on the moon. This outbreak was caused by Enterovirus 70 (EV70) together with a Coxsackievirus A24 (CVA24v) variant, which are the major etiological agents involved in AHC outbreaks worldwide. AHC is known to be directly transmitted by close person-to-person contact or indirectly through soiled ophthalmological materials or unsafe recreational water. Recently, a possible airborne virus spread was suggested which could explain the high transmission rate of the disease. In the absence of a specific antiviral therapy, a rapid diagnosis of the causative agent is required to distinguish AHC due to enteroviruses from other ocular infectious diseases, for there are active drugs, or to quickly implement proper public health measures to limit the extension of the outbreak. However, virus identification remains difficult and time-consuming. Moreover, virological diagnosis is difficult to implement in developing countries where AHC has recently become a major problem for public health.
Collapse
|
49
|
Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 2009; 6:141. [PMID: 19751532 PMCID: PMC2751754 DOI: 10.1186/1743-422x-6-141] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Many viruses recognize specific sugar residues, particularly sulfated or sialylated glycans, as the infection receptors. A change of sialic acid (2-6)-linked galactose (SA-α2,6Gal) to SA-α2,3Gal determines the receptor for avian flu infection. The receptor for enterovirus 71 (EV71) infection that frequently causes fatal encephalitis in Asian children remains unclear. Currently, there is no effective vaccine or anti-virus agent for EV71 infection. Using DLD-1 intestinal cells, this study investigated whether SA-linked glycan on DLD-1 intestinal cells was a receptor for EV71, and whether natural SA-linked sugars from human milk could block EV71 infection. Results EV71 specifically infected DLD-1 intestinal cells but not K562 myeloid cells. Depletion of O-linked glycans or glycolipids, but not N-linked glycans, significantly decreased EV71 infection of DLD-1 cells. Pretreatment of DLD-1 cells with sialidase (10 mU, 2 hours) significantly reduced 20-fold EV71 replication (p < 0.01). Taken together, these results suggest that SA-linked O-glycans and glycolipids, but not N-glycans, on DLD-1 cells were responsible for EV71 infection. Purified SA-α2,3Gal and SA-α2,6Gal from human milk significantly inhibited EV71 infection of DLD-1 cells, indicating terminal SA-linked glycans could be receptors and inhibitors of EV71 infection. Conclusion This is the first in the literature to demonstrate that EV71 uses SA-linked glycans as receptors for infection, and natural SA-linked glycans from human milk can protect intestinal cells from EV71 infection. Further studies will test how a SA-containing glycan can prevent EV71 in the future.
Collapse
Affiliation(s)
- Betsy Yang
- Kaohsiung American School, Taiwan, Republic of China
| | | | | |
Collapse
|
50
|
Abstract
Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.
Collapse
Affiliation(s)
- Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| | | |
Collapse
|