1
|
Li Y, Xiu Z, Li S, Zhu Y, Li Y, Zhao R, Li Y, Yang X, Ge C, Li N, Jin N, Shang C, Li X, Han J. Human adenovirus type 7 virus-like particle vaccine induces Dendritic cell maturation through the TLR4/NF-κB pathway and is highly immunogenic. Antiviral Res 2023; 212:105559. [PMID: 36813181 DOI: 10.1016/j.antiviral.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Human adenovirus type 7 (HAdv-7) infection is the main cause of upper respiratory tract infection, bronchitis and pneumonia in children. At present, there are no anti-adenovirus drugs or preventive vaccines in the market. Therefore, it is necessary to develop a safe and effective anti-adenovirus type 7 vaccine. In this study, we designed a virus-like particle vaccine expressing the epitopes of hexon and penton of adenovirus type 7 with hepatitis B core protein (HBc) as the vector to induce high-level humoral and cellular immune responses. To evaluate the effectiveness of the vaccine, we first detected the expression of molecular markers on the surface of antigen presenting cells and the secretion of proinflammatory cytokines in vitro. We then measured the levels of neutralizing antibodies and T cell activation in vivo. The results showed that the HAdv-7 virus-like particles (VLPs) recombinant subunit vaccine could activate the innate immune response, including the TLR4/NF-κB pathway which upregulated the expression of MHC II, CD80, CD86, CD40 and cytokines. The vaccine also triggered a strong neutralizing antibody and cellular immune response and activated T lymphocytes. Therefore, the HAdv-7 VLPs promoted humoral and cellular immune responses, thereby potentially enhancing protection against HAdv-7 infection.
Collapse
Affiliation(s)
- Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Medical College, Yanbian University, Yanji, 133002, PR China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Shanzhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Yaru Li
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Renshuang Zhao
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Yue Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Xia Yang
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Chenchen Ge
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Medical College, Yanbian University, Yanji, 133002, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| |
Collapse
|
2
|
Li Q, Wang J, Islam H, Kirschning C, Lu H, Hoffmann D, Dittmer U, Lu M. Hepatitis B virus particles activate B cells through the TLR2-MyD88-mTOR axis. Cell Death Dis 2021; 12:34. [PMID: 33414473 PMCID: PMC7791069 DOI: 10.1038/s41419-020-03284-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Host immune control plays a pivotal role in resolving primary hepatitis-B-virus (HBV) infections. The complex interaction between HBV and host immune cells, however, remains unclear. In this study, the transcriptional profiling of specimens from animals infected with woodchuck hepatitis virus (WHV) indicated TLR2 mRNA accumulation as most strongly impacted during WHV infection resolution as compared to other mRNAs. Analysis of blood transcriptional modules demonstrated that monocytes and B-cells were the predominantly activated cell types in animals that showed resolution of infection, which was similar to the response of TLR2-stimulated PBMCs. Further investigation of TLR2-stimulated B-cells pointed at interactions between activated TLR signaling, Akt-mTOR, and glucose metabolic pathways. Moreover, analysis of B-cells from Tlr2-/-, Trif-/-, Myd88-/-, and Trif/Myd88-/- mice challenged with HBV particles indicated B-cell function and glucose metabolism alterations is TLR2-MyD88-mTOR axis dependent. Overall, our study implicates B-cell TLR2 activation in HBV infection resolution.
Collapse
Affiliation(s)
- Qian Li
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, Jiangsu, China.,Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Heba Islam
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Li Q, Wang J, Lu M, Qiu Y, Lu H. Acute-on-Chronic Liver Failure From Chronic-Hepatitis-B, Who Is the Behind Scenes. Front Microbiol 2020; 11:583423. [PMID: 33365018 PMCID: PMC7750191 DOI: 10.3389/fmicb.2020.583423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an acute syndrome accompanied with decompensation of cirrhosis, organ failure with high 28-day mortality rate. Systemic inflammation is the main feature of ACLF, and poor outcome is closely related with exacerbated systemic inflammatory responses. It is well known that severe systemic inflammation is an important event in chronic hepatitis B (CHB)-ACLF, which eventually leads to liver injury. However, the initial CHB-ACLF events are unclear; moreover, the effect of these events on host immunity as well as that of immune imbalance on CHB-ACLF progression are unknown. Here, we investigate the initial events of ACLF progression, discuss possible mechanisms underlying ACLF progression, and provide a new model for ACLF prediction and treatment. We review the characteristics of ACLF, and consider its plausible immune predictors and alternative treatment strategies.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuanwang Qiu
- Department of Hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
4
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
5
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Ma Z, Cao Q, Xiong Y, Zhang E, Lu M. Interaction between Hepatitis B Virus and Toll-Like Receptors: Current Status and Potential Therapeutic Use for Chronic Hepatitis B. Vaccines (Basel) 2018; 6:vaccines6010006. [PMID: 29337856 PMCID: PMC5874647 DOI: 10.3390/vaccines6010006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Immune defense against infection with the hepatitis B virus (HBV) is complex and involves both host innate and adaptive immune systems. It is well accepted that the development of sufficient HBV-specific T cell and B cell responses are required for controlling an HBV infection. However, the contribution of innate immunity to removing HBV has been explored in recent years. Toll-like receptors (TLRs) are recognized as the first line of antiviral immunity because they initiate intracellular signaling pathways to induce antiviral mediators such as interferons (IFNs) and other cytokines. Recent studies show that the activation of TLR-mediated signaling pathways results in a suppression of HBV replication in vitro and in vivo. However, HBV has also evolved strategies to counter TLR responses including the suppression of TLR expression and the blockage of downstream signaling pathways. Antiviral treatment in chronic HBV-infected patients leads to an upregulation of TLR expression and the restoration of its innate antiviral functions. Thus, TLR activation may serve as an additional immunotherapeutic option for treating chronic HBV infection in combination with antiviral treatment.
Collapse
Affiliation(s)
- Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qian Cao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ejuan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany.
| |
Collapse
|
7
|
Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts. Viruses 2017; 9:v9050095. [PMID: 28452930 PMCID: PMC5454408 DOI: 10.3390/v9050095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes, which are the main cell type composing a human liver. However, the liver is enriched with immune cells, particularly innate cells (e.g., myeloid cells, natural killer and natural killer T-cells (NK/NKT), dendritic cells (DCs)), in resting condition. Hence, the study of the interaction between HBV and innate immune cells is instrumental to: (1) better understand the conditions of establishment and maintenance of HBV infections in this secondary lymphoid organ; (2) define the role of these innate immune cells in treatment failure and pathogenesis; and (3) design novel immune-therapeutic concepts based on the activation/restoration of innate cell functions and/or innate effectors. This review will summarize and discuss the current knowledge we have on this interplay between HBV and liver innate immunity.
Collapse
|
8
|
Ma Z, Zhang E, Yang D, Lu M. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol 2014; 12:273-82. [PMID: 25418467 DOI: 10.1038/cmi.2014.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022] Open
Abstract
It is well accepted that adaptive immunity plays a key role in the control of hepatitis B virus (HBV) infection. In contrast, the contribution of innate immunity has only received attention in recent years. Toll-like receptors (TLRs) sense pathogen-associated molecule patterns and activate antiviral mechanisms, including intracellular antiviral pathways and the production of antiviral effector interferons (IFNs) and pro-inflammatory cytokines. Experimental results from in vitro and in vivo models have demonstrated that TLRs mediate the activation of cellular signaling pathways and the production of antiviral cytokines, resulting in a suppression of HBV replication. However, HBV infection is associated with downregulation of TLR expression on host cells and blockade of the activation of downstream signaling pathways. In primary HBV infection, TLRs may slow down HBV infection, but contribute only indirectly to viral clearance. Importantly, TLRs may modulate HBV-specific T- and B-cell responses in vivo, which are essential for the termination of HBV infection. Thus, TLR agonists are promising candidates to act as immunomodulators for the treatment of chronic HBV infection. Antiviral treatment may recover TLR expression and function in chronic HBV infection and may increase the efficacy of therapeutic approaches based on TLR activation. A combined therapeutic strategy with antiviral treatment and TLR activation could facilitate the restoration of HBV-specific immune responses and thereby, achieve viral clearance in chronically infected HBV patients.
Collapse
Affiliation(s)
- Zhiyong Ma
- 1] Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany [2] Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ejuan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Roose K, De Baets S, Schepens B, Saelens X. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 2013; 12:183-98. [PMID: 23414409 DOI: 10.1586/erv.12.150] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the first effort to recombinantly express the hepatitis B core protein (HBc) in bacteria, the remarkable virion-like structure has fuelled interest in unraveling the structural and antigenic properties of this protein. Initial studies proved HBc virus-like particles to possess strong immunogenic properties, which can be conveyed to linked antigens. More than 35 years later, numerous studies have been performed using HBc as a carrier protein for antigens derived from over a dozen different pathogens and diseases. In this review, the authors highlight the intriguing features of HBc as carrier and antigen, illustrated by some examples and experimental results that underscore the value of HBc as an antigen-presenting platform. Two of these HBc fusions, targeting influenza A and malaria, have even progressed into clinical testing. In the future, the HBc-based virus-like particles platform will probably continue to be used for the display of poorly immunogenic antigens, mainly because virus-like particle formation by HBc capsomers is compatible with nearly any available recombinant gene expression system.
Collapse
Affiliation(s)
- Kenny Roose
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | | | | | | |
Collapse
|
10
|
Whitacre DC, Lee BO, Milich DR. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev Vaccines 2010; 8:1565-73. [PMID: 19863249 DOI: 10.1586/erv.09.121] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first virus-like particle to be tested for use as a vaccine carrier was based on the hepatitis B virus nucleocapsid protein. This viral subunit, while not infectious on its own, is a 36-nm particle that is highly immunogenic during a natural infection. The self-assembly and high degree of immunogenicity is maintained when expressed as a recombinant protein and, moreover, can confer a high degree of immunogenicity on foreign antigens linked to the particle, either chemically or genetically. This review describes the current state of the hepadnaviral core protein as a vaccine carrier.
Collapse
Affiliation(s)
- David C Whitacre
- Vaccine Research Institute of San Diego, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
11
|
Lee BO, Tucker A, Frelin L, Sallberg M, Jones J, Peters C, Hughes J, Whitacre D, Darsow B, Peterson DL, Milich DR. Interaction of the hepatitis B core antigen and the innate immune system. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6670-81. [PMID: 19454661 PMCID: PMC2685464 DOI: 10.4049/jimmunol.0803683] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that the primary APCs for the hepatitis B core Ag (HBcAg) were B cells and not dendritic cells (DC). We now report that splenic B1a and B1b cells more efficiently present soluble HBcAg to naive CD4(+) T cells than splenic B2 cells. This was demonstrated by direct HBcAg-biotin-binding studies and by HBcAg-specific T cell activation in vitro in cultures of naive HBcAg-specific T cells and resting B cell subpopulations. The inability of DC to function as APCs for exogenous HBcAg relates to lack of uptake of HBcAg, not to processing or presentation, because HBcAg/anti-HBc immune complexes can be efficiently presented by DC. Furthermore, HBcAg-specific CD4(+) and CD8(+) T cell priming with DNA encoding HBcAg does not require B cell APCs. TLR activation, another innate immune response, was also examined. Full-length (HBcAg(183)), truncated (HBcAg(149)), and the nonparticulate HBeAg were screened for TLR stimulation via NF-kappaB activation in HEK293 cells expressing human TLRs. None of the HBc/HBeAgs activated human TLRs. Therefore, the HBc/HBeAg proteins are not ligands for human TLRs. However, the ssRNA contained within HBcAg(183) does function as a TLR-7 ligand, as demonstrated at the T and B cell levels in TLR-7 knockout mice. Bacterial, yeast, and mammalian ssRNA encapsidated within HBcAg(183) all function as TLR-7 ligands. These studies indicate that innate immune mechanisms bridge to and enhance the adaptive immune response to HBcAg and have important implications for the use of hepadnavirus core proteins as vaccine carrier platforms.
Collapse
Affiliation(s)
- Byung O Lee
- Vaccine Research Institute of San Diego, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Comparison of serum humoral responses induced by oral immunization with the hepatitis B virus core antigen and the cholera toxin B subunit. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:852-8. [PMID: 18367580 DOI: 10.1128/cvi.00382-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The hepatitis B virus core (HBc) virus-like particle (VLP) is known as one of the most immunogenic antigens and carrier vehicles in different immunization strategies. Recent findings are suggesting the potential of the HBc VLPs as an oral immunogen. Here, we focus on the induction of serum humoral responses by oral administration of HBc VLPs in preparations substantially free of lipopolysaccharide and immunomodulating encapsidated RNA. The full-length HBc antigen was used, because the C-terminal arginine-rich tail may contribute to the immunogenicity of the antigen as the region is involved in cell surface heparan sulfate binding and internalization of the protein. Serum antibody levels and isotypes were determined following oral administration of the HBc VLPs with the perspective of using the HBc VLP as an immunostimulatory and carrier molecule for epitopes of blood-borne diseases in oral immunization vaccination strategies. Following oral administration of the HBc VLP preparations to mice, a strong serum humoral response was induced with mainly immunoglobulin G2a (IgG2a) antibodies, pointing toward a Th1 response which is essential in the control of intracellular pathogens. Intraperitoneal immunization with the HBc VLP induced a stronger, mixed Th1/Th2 response. Finally, a comparison was made with the induced serum humoral response following oral administration of the recombinant cholera toxin B pentamer, a commonly used oral immunogen. These immunizations, in contrast, induced predominantly antibodies of the IgG1 isotype, indicative of a Th2 response. These data suggest that the HBc VLP can be an interesting carrier molecule in oral vaccine development.
Collapse
|