1
|
Çelik A, Çakar D, Derviş S, Morca AF, Akıllı Şimşek S, Romon-Ochoa P, Özer G. New Detection Methods for Cryphonectria Hypovirus 1 (CHV1) through SYBR Green-Based Real-Time PCR and Loop-Mediated Isothermal Amplification (LAMP). Viruses 2024; 16:1203. [PMID: 39205177 PMCID: PMC11360611 DOI: 10.3390/v16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Deniz Çakar
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Sibel Derviş
- Department of Plant Protection, Faculty of Kızıltepe Agricultural Sciences and Technologies, Mardin Artuklu University, Mardin 47000, Türkiye
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Türkiye
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Türkiye
| | - Seçil Akıllı Şimşek
- Department of Biology, Faculty of Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham GU10 4LH, UK
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| |
Collapse
|
2
|
Nobre SVA, de Andrade GAK, Metz GF, Lucini F, de Albuquerque MP, Victória FDC. Antarctica's hidden mycoviral treasures in fungi isolated from mosses: A first genomic approach. J Basic Microbiol 2024; 64:e2300671. [PMID: 38736205 DOI: 10.1002/jobm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
This study investigates the presence of mycoviruses in Antarctic fungi and elucidates their evolutionary relationships. To achieve this, we aligned mycoviral gene sequences with genomes of previously sequenced Antarctic endophytic fungi, made available by our research group and accessible via Joint Genome Institute. Our findings reveal that the most prevalent genetic regions in all endophytic fungi are homologous to Partitiviruses, Baculoviridae, and Phycodnaviridae. These regions display evidence of positive selection pressure, suggesting genetic diversity and the accumulation of nonsynonymous mutations. This phenomenon implies a crucial role for these regions in the adaptation and survival of these fungi in the challenging Antarctic ecosystems. The presence of mycoviruses in Antarctic endophytic fungi may indicate shared survival strategies between the virus and its host, shedding light on their evolutionary dynamics. This study underscores the significance of exploring mycoviruses within endophytic fungi and their contributions to genetic diversity. Future research avenues could delve into the functional implications of these conserved mycoviral genetic regions in Antarctic endophytic fungi, providing a comprehensive understanding of this intriguing association and genomic retention of viral region in fungi.
Collapse
Affiliation(s)
- Steffany V A Nobre
- Curso de Biotecnologia, Universidade Federal do Pampa, São Gabriel, Brazil
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
| | - Guilherme A K de Andrade
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
| | - Geferson F Metz
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
| | - Fabíola Lucini
- Programa Antártico Brasileiro, Brasilia-DF, Brazil
- Faculdade de Ciências da Saúde-FCS, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| | - Margéli P de Albuquerque
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- Programa Antártico Brasileiro, Brasilia-DF, Brazil
| | - Filipe de C Victória
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
- Faculdade de Ciências da Saúde-FCS, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| |
Collapse
|
3
|
Li S, Chen F, Wei X, Yuan L, Qin J, Li R, Chen B. CpSmt3, an ortholog of small ubiquitin-like modifier, is essential for growth, organelle function, virulence, and antiviral defense in Cryphonectria parasitica. Front Microbiol 2024; 15:1391855. [PMID: 38784801 PMCID: PMC11111931 DOI: 10.3389/fmicb.2024.1391855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction SUMOylation is an important post-translational modification that regulates the expression, localization, and activity of substrate proteins, thereby participating in various important cellular processes such as the cell cycle, cell metabolism, gene transcription, and antiviral activity. However, the function of SUMOylation in phytopathogenic fungi has not yet been adequately explored. Methods A comprehensive analysis composed of proteomics, affinity pull-down, molecular and cellular approaches was performed to explore the roles of SUMOylation in Cryphonectria parasitica, the fungal pathogen responsible for chestnut blight. Results and discussion CpSmt3, the gene encoding the SUMO protein CpSmt3 in C. parasitica was identified and characterized. Deletion of the CpSmt3 gene resulted in defects in mycelial growth and hyphal morphology, suppression of sporulation, attenuation of virulence, weakening of stress tolerance, and elevated accumulation of hypovirus dsRNA. The ΔCpSmt3 deletion mutant exhibited an increase in mitochondrial ROS, swollen mitochondria, excess autophagy, and thickened cell walls. About 500 putative SUMO substrate proteins were identified by affinity pull-down, among which many were implicated in the cell cycle, ribosome, translation, and virulence. Proteomics and SUMO substrate analyses further revealed that deletion of CpSmt3 reduced the accumulation of CpRho1, an important protein that is involved in TOR signal transduction. Silencing of CpRho1 resulted in a phenotype similar to that of ΔCpSmt3, while overexpression of CpRho1 could partly rescue some of the prominent defects in ΔCpSmt3. Together, these findings demonstrate that SUMOylation by CpSmt3 is vitally important and provide new insights into the SUMOylation-related regulatory mechanisms in C. parasitica.
Collapse
Affiliation(s)
- Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiayao Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Zhu JZ, Qiu ZL, Gao BD, Li XG, Zhong J. A novel partitivirus conferring hypovirulence by affecting vesicle transport in the fungus Colletotrichum. mBio 2024; 15:e0253023. [PMID: 38193704 PMCID: PMC10865989 DOI: 10.1128/mbio.02530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Colletotrichum spp. are economically important phytopathogenic fungi that cause anthracnose in a variety of plant species worldwide. Hypovirulence-associated mycoviruses provide new options for the biological control of plant fungal diseases. Here, we found a novel partitivirus from Colletotrichum alienum and named it Colletotrichum alienum partitivirus 1 (CaPV1). CaPV1 contained two dsRNA segments encoding an RNA-dependent RNA polymerase and a capsid protein and was classified under the genus Gammapartitivirus of the family Partitiviridae. CaPV1 significantly decreased host virulence, mycelial growth, appressorial development, and appressorium turgor but increased conidial production with abnormal morphology. In addition, CaPV1 could be successfully transfected into other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, and caused hypovirulence, indicating the broad application potential of this virus. CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum. Notably, some genes related to vesicle transport in the CaPV1-infected strain were downregulated, consistent with the impaired endocytosis pathway in this fungus. When the Rab gene CaRab7, which is associated with endocytosis in vesicle transport, was knocked out, the virulence of the mutants was reduced. Overall, our findings demonstrated that CaPV1 has the potential to control anthracnose caused by Colletotrichum, and the mechanism by which Colletotrichum induces hypovirulence is caused by affecting vesicle transport.IMPORTANCEColletotrichum is a kind of economically important phytopathogenic fungi that cause anthracnose disease in a variety of plant species worldwide. We found a novel mycovirus of the Gammapartitivirus genus and Partitiviridae family from the phytopathogenic fungus Colletotrichum alienum and named it CaPV1. This study revealed that CaPV1 infection significantly decreased host virulence and fitness by affecting mycelial growth, appressorial development, and appressorium turgor. In addition, CaPV1 could also infect other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, by viral particle transfection and resulting in hypovirulence of these Colletotrichum species. Transcriptomic analysis showed that CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum, especially the genes involved in vesicle transport. Moreover, endocytosis and gene knockout assays demonstrated that the mechanism underlying CaPV1-induced hypovirulence is, at least in part, caused by affecting the vesicle transport of the host fungus. This study provided insights into the mechanisms underlying the pathogenesis of Colletotrichum species and mycovirus-fungus interactions, linking the role of mycovirus and fungus vesicle transport systems in shaping fungal pathogenicity.
Collapse
Affiliation(s)
- Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Ze Lan Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang J, Quan R, He X, Fu Q, Tian S, Zhao L, Li S, Shi L, Li R, Chen B. Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus. Front Microbiol 2023; 14:1206603. [PMID: 37448575 PMCID: PMC10336323 DOI: 10.3389/fmicb.2023.1206603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The chestnut blight fungus, Cryphonectria parasitica, and hypovirus have been used as a model to probe the mechanism of virulence and regulation of traits important to the host fungus. Previous studies have indicated that mitochondria could be the primary target of the hypovirus. Methods In this study, we report a comprehensive and comparative study comprising mitochondrion quantification, reactive oxygen species (ROS) and respiratory efficiency, and quantitative mitochondrial proteomics of the wild-type and virus-infected strains of the chestnut blight fungus. Results and discussion Our data show that hypovirus infection increases the total number of mitochondria, lowers the general ROS level, and increases mitochondrial respiratory efficiency. Quantification of mitochondrial proteomes revealed that a set of proteins functioning in energy metabolism and mitochondrial morphogenesis, as well as virulence, were regulated by the virus. In addition, two viral proteins, p29 and p48, were found to co-fractionate with the mitochondrial membrane and matrix. These results suggest that hypovirus perturbs the host mitochondrial functions to result in hypovirulence.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xipu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Chiba S, Velasco L, Ayllón MA, Suzuki N, Lee-Marzano SY, Sun L, Sabanadzovic S, Turina M. ICTV Virus Taxonomy Profile: Hypoviridae 2023. J Gen Virol 2023; 104. [PMID: 37192093 DOI: 10.1099/jgv.0.001848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Hypoviridae is a family of capsidless viruses with positive-sense RNA genomes of 7.3-18.3 kb that possess either a single large open reading frame (ORF) or two ORFs. The ORFs appear to be translated from genomic RNA by non-canonical mechanisms, i.e. internal ribosome entry site- and stop/restart translation. This family includes the genera Alphahypovirus, Betahypovirus, Gammahypovirus, Deltahypovirus, Epsilonhypovirus, Zetahypovirus, Thetahypovirus and Etahypovirus. Hypovirids have been detected in ascomycetous and basidiomycetous filamentous fungi and are considered to replicate in host, Golgi apparatus-derived, lipid vesicles that contain virus dsRNA as the replicative form. Some hypovirids induce hypovirulence to host fungi, while others do not. This is a summary of the ICTV report on the family Hypoviridae, which is available at www.ictv.global/report/hypoviridae.
Collapse
Affiliation(s)
- Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0861, Japan
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Centro de Málaga, Almería, 290140 Malaga, Spain
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid Campus de Montegancedo Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, ETSI. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Shin-Yi Lee-Marzano
- Department of Agriculture, Agricultural Research Service, Application Technology Research Unit, Toledo, OH 43606, USA
| | - Lying Sun
- College of Plant Protection, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection-CNR, Torino 10135, Italy
| |
Collapse
|
7
|
Chun J, Ko YH, So KK, Cho SH, Kim DH. A fungal GPI-anchored protein gene functions as a virulence and antiviral factor. Cell Rep 2022; 41:111481. [DOI: 10.1016/j.celrep.2022.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022] Open
|
8
|
Das S, Hisano S, Eusebio-Cope A, Kondo H, Suzuki N. A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles. Viruses 2022; 14:v14081722. [PMID: 36016344 PMCID: PMC9413294 DOI: 10.3390/v14081722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 02/05/2023] Open
Abstract
A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis showed that the virus has a two open reading frame (ORF) genome of 9.6 kbp with the RNA-directed RNA polymerase domain encoded by ORF2. The N-terminal sequencing and peptide mass fingerprinting showed an N-terminally processed or degraded product (150 kDa) of the 5′-proximal ORF1-encoded protein (1462 amino acids) to make up the CcFGV1 spherical particles of ~40 nm in diameter. Interestingly, a portion of CcFGV1 dsRNA co-fractionated with a host protein of 70 kDa. The purified CcFGV1 particles were used to transfect protoplasts of JS13VF as well as the standard strain of an experimental model filamentous fungal host Cryphonectria parasitica. CcFGV1 was confirmed to be associated with asymptomatic infection of both fungi. RNA silencing was shown to target the virus in C. parasitica, resulting in reduced CcFGV1 accumulation by comparing the CcFGV1 content between RNA silencing-competent and -deficient strains. These results indicate the transfectability of spherical particles of a fusagravirus associated with asymptomatic infection.
Collapse
|
9
|
Li K, Liu D, Pan X, Yan S, Song J, Liu D, Wang Z, Xie Y, Dai J, Liu J, Li H, Zhang X, Gao F. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins (Basel) 2022; 14:toxins14070503. [PMID: 35878241 PMCID: PMC9324440 DOI: 10.3390/toxins14070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin widely detected in cereal products contaminated by Fusarium. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) is a double-stranded RNA virus infecting Fusarium pseudograminearum. In this study, it was revealed that the amount of DON in F. pseudograminearum was significantly suppressed by FpgMBV1 through a high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) assay. A total of 2564 differentially expressed genes were identified by comparative transcriptomic analysis between the FpgMBV1-containing F. pseudograminearum strain FC136-2A and the virus-free strain FC136-2A-V-. Among them, 1585 genes were up-regulated and 979 genes were down-regulated. Particularly, the expression of 12 genes (FpTRI1, FpTRI3, FpTRI4, FpTRI5, FpTRI6, FpTRI8, FpTRI10, FpTRI11, FpTRI12, FpTRI14, FpTRI15, and FpTRI101) in the trichothecene biosynthetic (TRI) gene cluster was significantly down-regulated. Specific metabolic and transport processes and pathways including amino acid and lipid metabolism, ergosterol metabolic and biosynthetic processes, carbohydrate metabolism, and biosynthesis were regulated. These results suggest an unrevealing mechanism underlying the repression of DON and TRI gene expression by the mycovirus FpgMBV1, which would provide new methods in the detoxification of DON and reducing the yield loss in wheat.
Collapse
Affiliation(s)
- Ke Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongmei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Xin Pan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Shuwei Yan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jiaqing Song
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongwei Liu
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Zhifang Wang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Yuan Xie
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Junli Dai
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Honglian Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Xiaoting Zhang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| | - Fei Gao
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| |
Collapse
|
10
|
A Novel Heptasegmented Positive-Sense Single-Stranded RNA Virus from the Phytopathogenic Fungus Colletotrichum fructicola. J Virol 2022; 96:e0031822. [PMID: 35435725 DOI: 10.1128/jvi.00318-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.
Collapse
|
11
|
Chun J, So KK, Ko YH, Kim DH. Molecular characteristics of a novel hypovirus from Trichoderma harzianum. Arch Virol 2021; 167:233-238. [PMID: 34674011 DOI: 10.1007/s00705-021-05253-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3' end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus "Alphahypovirus" of the family Hypoviridae. We accordingly designated this novel mycovirus "Trichoderma harzianum hypovirus 2" (ThHV2).
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Kum-Kang So
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea.
| |
Collapse
|
12
|
Sato Y, Jamal A, Kondo H, Suzuki N. Molecular Characterization of a Novel Polymycovirus From Penicillium janthinellum With a Focus on Its Genome-Associated PASrp. Front Microbiol 2020; 11:592789. [PMID: 33193262 PMCID: PMC7606342 DOI: 10.3389/fmicb.2020.592789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Polymycovirus of the family Polymycoviridae accommodates fungal RNA viruses with different genomic segment numbers (four, five, or eight). It is suggested that four members form no true capsids and one forms filamentous virus particles enclosing double-stranded RNA (dsRNA). In both cases, viral dsRNA is associated with a viral protein termed “proline-alanine-serine-rich protein” (PASrp). These forms are assumed to be the infectious entity. However, the detailed molecular characteristics of PASrps remain unclear. Here, we identified a novel five-segmented polymycovirus, Penicillium janthinellum polymycovirus 1 (PjPmV1), and characterized its purified fraction form in detail. The PjPmV1 had five dsRNA segments associated with PASrp. Density gradient ultracentrifugation of the PASrp-associated PjPmV1 dsRNA revealed its uneven structure and a broad fractionation profile distinct from that of typical encapsidated viruses. Moreover, PjPmV1-PASrp interacted in vitro with various nucleic acids in a sequence-non-specific manner. These PjPmV1 features are discussed in view of the diversification of genomic segment numbers of the genus Polymycovirus.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
13
|
Sutela S, Forgia M, Vainio EJ, Chiapello M, Daghino S, Vallino M, Martino E, Girlanda M, Perotto S, Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol 2020; 6:veaa076. [PMID: 33324490 PMCID: PMC7724248 DOI: 10.1093/ve/veaa076] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Elena Martino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Mariangela Girlanda
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Silvia Perotto
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| |
Collapse
|
14
|
Sato Y, Shamsi W, Jamal A, Bhatti MF, Kondo H, Suzuki N. Hadaka Virus 1: a Capsidless Eleven-Segmented Positive-Sense Single-Stranded RNA Virus from a Phytopathogenic Fungus, Fusarium oxysporum. mBio 2020; 11:e00450-20. [PMID: 32457242 PMCID: PMC7251205 DOI: 10.1128/mbio.00450-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms.IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wajeeha Shamsi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
15
|
Yao Z, Zou C, Peng N, Zhu Y, Bao Y, Zhou Q, Wu Q, Chen B, Zhang M. Virome Identification and Characterization of Fusarium sacchari and F. andiyazi: Causative Agents of Pokkah Boeng Disease in Sugarcane. Front Microbiol 2020; 11:240. [PMID: 32140150 PMCID: PMC7042383 DOI: 10.3389/fmicb.2020.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Fusarium sacchari and Fusarium andiyazi are two devastating sugarcane pathogens that cause pokkah boeng disease (PBD) in China. RNA_Seq was conducted to identify mycoviruses in F. sacchari and F. andiyazi isolates collected from PBD symptom-showing sugarcane plants across China. Fifteen isolates with a normal, debilitated, or abnormal phenotype in colony morphology were screened out for the existence of dsRNA from 104 Fusarium isolates. By sequencing the mixed pool of dsRNA from these Fusarium isolates, a total of 26 contigs representing complete or partial genome sequences of ten mycoviruses and their strains were identified, including one virus belonging to Hypoviridae, two mitoviruses with seven strains belonging to Narnaviridae, one virus of Chrysoviridae, and one alphavirus-like virus. RT-PCR amplification with primers specific to individual mycoviruses revealed that mitoviruses were the most prevalent and the alphavirus-like virus and chrysovirus were the least prevalent. In terms of host preference, more mitoviruses were found in F. andiyazi than in F. sacchari. Fusarium sacchari hypovirus 1 with a 13.9 kb genome and a defective genome of 12.2 kb, shares 54% identity at the amino acid level to the Wuhan insect virus 14, which is an unclassified hypovirus identified from insect meta-transcriptomics. The alphavirus-like virus, Fusarium sacchari alphavirus-like virus 1 (FsALV1), seemed to hold a distinct status amid fungal alphavirus-like viruses, with the highest identity of 27% at the amino acid level to Sclerotium rolfsii alphavirus-like virus 3 and 29% to a hepevirus, Ferret hepatitis E virus. While six of the seven mitoviruses shared 72-94% identities to known mitoviruses, Fusarium andiyazi mitovirus 2 was most similar to Alternaria brassicicola mitovirus with an identity of only 49% between the two viruses. Transmission of FsALV1 and Fusarium sacchari chrysovirus 1 (FsCV1) from F. sacharri to F. commune was observed and the characterization of the four-segment dsRNA chrysovirus was performed with aid of electron microscopy and analysis of the encapsidated RNAs. These findings provide insight into the diversity and spectrum of mycoviruses in PBD pathogens and should be useful for exploring agents to control the disease.
Collapse
Affiliation(s)
- Ziting Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Chengwu Zou
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Na Peng
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Yu Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Qiujuan Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Bian R, Andika IB, Pang T, Lian Z, Wei S, Niu E, Wu Y, Kondo H, Liu X, Sun L. Facilitative and synergistic interactions between fungal and plant viruses. Proc Natl Acad Sci U S A 2020; 117:3779-3788. [PMID: 32015104 PMCID: PMC7035501 DOI: 10.1073/pnas.1915996117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.
Collapse
Affiliation(s)
- Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, 710-0046 Kurashiki, Japan
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| |
Collapse
|
17
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
18
|
Shi L, Wang J, Quan R, Yang F, Shang J, Chen B. CpATG8, a Homolog of Yeast Autophagy Protein ATG8, Is Required for Pathogenesis and Hypovirus Accumulation in the Chest Blight Fungus. Front Cell Infect Microbiol 2019; 9:222. [PMID: 31355148 PMCID: PMC6635641 DOI: 10.3389/fcimb.2019.00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a degradation system in the cell, involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. Autophagy is induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. In this study, by using electron microscopy, we observed that hypovirus CHV1-EP713 infection of Cryphonectria parasitica, the causative agent of chestnut blight disease, caused proliferation of autophagic-like vesicles. This phenomenon could be mimicked by treating the wild-type strain of the fungus EP155 with the autophagy induction drug rapamycin. Some of the hypovirulence-associated traits, including reduced pigmentation and conidiation, were also observed in the rapamycin-treated EP155. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that genes involved in autophagy were up-regulated in expression. Deletion of cpatg8, a gene encoding a homolog of ATG8 in Saccharomyces cerevisiae, resulted in attenuation of virulence and reduction in sporulation, as well as accumulation of the double-stranded viral RNA. Furthermore, virus-encoded p29 protein was found to co-localize with CpATG8, implying that the viral protein may interfere with the function of CpATG8. Taken together, these findings show that cpatg8 can be regulated by the hypovirus and is required for virulence and development of the fungus and accumulation of viral dsRNA in chestnut blight fungus.
Collapse
Affiliation(s)
- Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Feng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinjie Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Wei S, Bian R, Andika IB, Niu E, Liu Q, Kondo H, Yang L, Zhou H, Pang T, Lian Z, Liu X, Wu Y, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc Natl Acad Sci U S A 2019; 116:13042-13050. [PMID: 31182602 PMCID: PMC6600922 DOI: 10.1073/pnas.1900762116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.
Collapse
Affiliation(s)
- Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 710-0046 Kurashiki, Japan
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
| |
Collapse
|
20
|
Nerva L, Varese GC, Falk BW, Turina M. Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Sci Rep 2017; 7:1908. [PMID: 28507331 PMCID: PMC5432518 DOI: 10.1038/s41598-017-02017-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/05/2017] [Indexed: 01/18/2023] Open
Abstract
So far there is no record of a specific virus able to infect both fungal and plant hosts in nature. However, experimental evidence shows that some plant virus RdRPs are able to perform replication in trans of genomic or DI RNAs in the yeast Saccharomyces cerevisiae. Furthermore, tobacco mosaic virus was recently shown to replicate in a filamentous ascomycetous fungus. Thus, at least experimentally, some plant viruses can infect some fungi. Endophytic fungi have been reported from many plants and several of these fungi have been shown to contain viruses. Here we tested if mycoviruses derived from a marine plant endophyte can replicate in plant cells. For this purpose, we used partially purified viral particles from isolate MUT4330 of Penicillium aurantiogriseum var. viridicatum which harbors six virus species, some having dsRNA and some positive-strand ssRNA genomes. These were transfected into three distinct plant protoplast cell systems. Time-course analysis of absolute RNA accumulation provided for the first time evidence that viruses of two species belonging to the Partitiviridae and Totiviridae families, can replicate in plant cells without evidence of host adaptation, i.e, changes in their nucleotide sequence.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
- Plant Pathology Department, University of California Davis, Davis, CA, 95616, USA
| | - G C Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - B W Falk
- Plant Pathology Department, University of California Davis, Davis, CA, 95616, USA
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
21
|
Zhong J, Chen D, Zhu HJ, Gao BD, Zhou Q. Hypovirulence of Sclerotium rolfsii Caused by Associated RNA Mycovirus. Front Microbiol 2016; 7:1798. [PMID: 27891121 PMCID: PMC5103162 DOI: 10.3389/fmicb.2016.01798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Mycoviruses associated with hypovirulence are potential biological control agents and could be useful to study the pathogenesis of fungal host pathogens. Sclerotium rolfsii, a pathogenic fungus, causes southern blight in a wide variety of crops. In this study, we isolated a series of dsRNAs from a debilitated S. rolfsii strain, BLH-1, which had pronounced phenotypic aberrations including reduced pathogenicity, mycelial growth and deficient sclerotia production. Virus-curing and horizontal transmission experiments that eliminated or transmitted, respectively, all dsRNA elements showed that the dsRNAs were involved in the hypovirulent traits of BLH-1. Ultrastructure examination also showed hyphae fracture and cytoplasm or organelle degeneration in BLH-1 hyphal cells compared to the virus-free strain. Three assembled cDNA contigs generated from the cDNA library cloned from the purified dsRNA indicated that strain BLH-1 was infected by at least three novel mycoviruses. One has similarity to the hypovirulence-associated Sclerotinia sclerotiorum hypovirus 2 (SsHV2) in the family Hypoviridae, and the other two are related to two different unclassified dsRNA mycovirus families. To our knowledge, this is the first report of S. rolfsii hypovirulence that was correlated with its associated dsRNA.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Dan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Hong J Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Bi D Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| |
Collapse
|
22
|
Turina M, Rossi M, Moretti M. Investigation on the partial resistance of Cpkk2 knock out strain of Cryphonectria parasitica to Cryphonectria hypovirus 1 infection in presence of Geneticin and Geneticin resistance gene. Virus Res 2016; 219:58-61. [PMID: 26643512 DOI: 10.1016/j.virusres.2015.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022]
Abstract
We have recently characterized the central components of the three MAP kinase cascades present in Cryphonectria parasitica : the MEK genes cpkk1, cpkk2 and cpkk3. When we attempted to infect through anastomosis the three knock out strains with Cryphonectria hypovirus 1 (CHV1), only the deletion strain of Cpkk2, the yeast Ste7 homologue, involved in mating and filamentous growth, could not be infected. We then proceeded to attempt virus infection through transformation of Δcpkk2 protoplasts using an infectious cDNA clone able to establish virus infection through transformation. In this case, a very limited number of strains could be recovered as stable transformants compared to the efficiency of control transformations with plasmid carrying only the antibiotic marker. Furthermore, transformants carrying actively replicating virus could be isolated only if the selection marker Geneticin was used during the very initial selection process, and not maintained throughout the growth of the colonies. Moreover, Δcpkk2 isolates that maintained the virus lost Geneticin resistance. We therefore unveiled a specific negative interaction among virus infection, presence of Geneticin in the growth media, and lack of Cpkk2 MEK in the fungal host.
Collapse
Affiliation(s)
- Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| | - Marika Rossi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Marino Moretti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
23
|
Ratti C, Iotti M, Zambonelli A, Terlizzi F. Mycoviruses Infecting True Truffles. SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Ai YP, Zhong J, Chen CY, Zhu HJ, Gao BD. A novel single-stranded RNA virus isolated from the rice-pathogenic fungus Magnaporthe oryzae with similarity to members of the family Tombusviridae. Arch Virol 2015; 161:725-9. [PMID: 26650038 DOI: 10.1007/s00705-015-2683-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
Here, we report a novel virus isolated from rice blast fungus, Magnaporthe oryzae, an important plant pathogen. This virus has an RNA genome of 3246 nucleotides. Its genome possesses two in-frame open reading frames (ORFs). The smaller ORF1 encodes a protein with significant similarity to a protein encoded by the ssRNA mycovirus Diaporthe ambigua RNA virus 1 (DaRV1). The larger ORF2 encodes a protein with similarity to RNA-dependent RNA polymerases (RdRp) of DaRV1 and other plant viruses of the family Tombusviridae. In silico analysis and comparisons with DaRV1 genome expression suggest that ORF2 is translated via a readthrough mechanism together with ORF1. Based upon results of this study, this virus, for which the provisional name Magnaporthe oryzae virus A (MoVA) is proposed, belongs to a new virus species. Furthermore, MoVA along with DaRV1 belong to a new taxon of mycoviruses that are evolutionarily related to plant viruses belonging to the family Tombusviridae.
Collapse
Affiliation(s)
- Ye-Ping Ai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Chuan-Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hong-Jian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Bi-Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Eusebio-Cope A, Sun L, Tanaka T, Chiba S, Kasahara S, Suzuki N. The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host. Virology 2015; 477:164-175. [DOI: 10.1016/j.virol.2014.09.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 01/03/2023]
|
26
|
Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. INFECTION GENETICS AND EVOLUTION 2014; 28:78-86. [DOI: 10.1016/j.meegid.2014.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
|
27
|
Potgieter CA, Castillo A, Castro M, Cottet L, Morales A. A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits. Virol J 2013; 10:220. [PMID: 23816333 PMCID: PMC3701512 DOI: 10.1186/1743-422x-10-220] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/20/2013] [Indexed: 12/05/2022] Open
Abstract
Background Botrytis cinerea CCg378 is a wild-type strain infected with two types of double-stranded RNA (dsRNA) mycoviruses and which presents hypovirulence-associated traits. The objectives of the present study were to characterize the mycoviruses and investigate their relationship with the low virulence degree of the fungal host. Results B. cinerea CCg378 contains five dsRNA molecules that are associated with two different types of isometric viral particles of 32 and 23 nm in diameter, formed by structural polypeptides of 70-kDa and 48-kDa, respectively. The transfection of spheroplasts of a virus-free strain, B. cinerea CKg54, with viral particles purified from the CCg378 strain revealed that the 2.2-kbp dsRNAs have no dependency on the smaller molecules for its stable maintenance in the fungal cytoplasm, because a fungal clone that only contains the 2.2-kbp dsRNAs associated with the 32-nm particles was obtained, which we named B. cinerea CKg54vi378. One of the 2.2 kbpdsRNA segments (2219 bp) was sequenced and corresponds to the gene encoding the capsid protein of B. cinerea CCg378 virus 1 (Bc378V1), a putative new member of the Partitiviridae family. Furthermore, physiological parameters related to the degree of virulence of the fungus, such as the sporulation rate and laccase activity, were lower in B. cinerea CCg378 and B. cinerea CKg54vi378 than in B. cinerea CKg54. Additionally, bioassays performed on grapevine leaves showed that the CCg378 and CKg54vi378 strains presented a lower degree of invasiveness on the plant tissue than the CKg54 strain. Conclusions The results show that B. cinerea CCg378 is coinfected by two mycoviruses and that the 2.2-kbp dsRNAs correspond to the 32-nm mycovirus genome, which would be a new member of the Partitiviridae family as it has the typical pattern of partitiviruses. On the other hand, the results suggest that the hypovirulence of B. cinerea CCg378 could be conferred by both mycoviruses, since the fungal clone B. cinerea CKg54vi378 presents an intermediate virulence between the CKg54 and CCg378 strains. Therefore, the putative partitivirus would be partially contributing to the hypovirulence phenotype of the CCg378 strain.
Collapse
|
28
|
Abstract
Rosellinia necatrix is a filamentous ascomycete that is pathogenic to a wide range of perennial plants worldwide. An extensive search for double-stranded RNA of a large collection of field isolates led to the detection of a variety of viruses. Since the first identification of a reovirus in this fungus in 2002, several novel viruses have been molecularly characterized that include members of at least five virus families. While some cause phenotypic alterations, many others show latent infections. Viruses attenuating the virulence of a host fungus to its plant hosts attract much attention as agents for virocontrol (biological control using viruses) of the fungus, one of which is currently being tested in experimental fields. Like the Cryphonectria parasitica/viruses, the R. necatrix/viruses have emerged as an amenable system for studying virus/host and virus/virus interactions. Several techniques have recently been developed that enhance the investigation of virus etiology, replication, and symptom induction in this mycovirus/fungal host system.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Chuou, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
29
|
Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J Virol 2012; 87:2330-41. [PMID: 23236074 DOI: 10.1128/jvi.02835-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel mycovirus termed Rosellinia necatrix partitivirus 2 (RnPV2), isolated from a phytopathogenic fungus, Rosellinina necatrix strain W57, was molecularly and biologically characterized in both natural and experimental host fungi. Three double-stranded RNA (dsRNA) segments, dsRNA1, dsRNA2, and defective interfering dsRNA1 (DI-dsRNA1), whose sizes were approximately 2.0, 1.8, and 1.7 kbp, respectively, were detected in W57. While the dsRNA2 sequence, encoding the coat protein, was reported previously, dsRNA1 and DI-dsRNA1 were shown to encode competent and defective (truncated) RNA-dependent RNA polymerase, respectively. Artificial introduction of RnPV2 into an RNA silencing-defective, Dicer-like 2 knockout mutant (Δdcl-2) of a nonnatural host, Cryphonectria parasitica (chestnut blight fungus), resulted in successful infection by the DI-dsRNA1-carrying and -free RnPV2. The DI-dsRNA1-free RnPV2 strain was characterized by a higher ratio of accumulation of the intact dsRNA1 to dsRNA2, enhanced replication and severer symptom expression, compared with the DI-carrying strain. These findings confirmed the nature of DI-dsRNA1 as a DI-RNA. Both viral strains replicated to higher levels in a Δdcl-2 mutant than in a wild-type C. parasitica fungal strain (EP155) and induced severe symptoms in the Δdcl-2 mutant but subtle symptoms in EP155, indicating that the host RNA silencing targets the partitivirus. No obvious phenotypic effects of infection by either virus strain were detected in the natural host fungus. These combined results represent the first example of a partitivirus with DI-RNA that alters viral symptom induction in a host-dependent manner.
Collapse
|
30
|
Wang J, Wang F, Feng Y, Mi K, Chen Q, Shang J, Chen B. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus. J Proteomics 2012; 78:221-30. [PMID: 22954595 DOI: 10.1016/j.jprot.2012.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/28/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The chestnut blight fungus (Cryphonectria parasitica) and hypovirus constitute a model system to study fungal pathogenesis and mycovirus-host interaction. Knowledge in this field has been gained largely from investigations at gene transcription level so far. Here we report a systematic analysis of the vesicle proteins of the host fungus with/without hypovirus infection. Thirty-three differentially expressed protein spots were identified in the purified vesicle protein samples by two-dimensional electrophoresis and mass spectrometry. Down-regulated proteins were mostly cargo proteins involved in primary metabolism and energy generation and up-regulated proteins were mostly vesicle associated proteins and ABC transporter. A virus-encoded protein p48 was found to have four forms with different molecular mass in vesicles from the virus-infected strain. While a few of the randomly selected differentially expressed proteins were in accordance with their transcription profiles, majority were not in agreement with their mRNA accumulation patterns, suggesting that an extensive post-transcriptional regulation may have occurred in the host fungus upon a hypovirus infection.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, Ministry of Education, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Boine B, Kingston RL, Pearson MN. Recombinant expression of the coat protein of Botrytis virus X and development of an immunofluorescence detection method to study its intracellular distribution in Botrytis cinerea. J Gen Virol 2012; 93:2502-2511. [PMID: 22855784 DOI: 10.1099/vir.0.043869-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Botrytis cinerea is infected by many mycoviruses with varying phenotypical effects on the fungal host, including Botrytis virus X (BVX), a mycovirus that has been found in several B. cinerea isolates worldwide with no obvious effects on growth. Here we present results from serological and immunofluorescence microscopy (IFM) studies using antiserum raised against the coat protein of BVX expressed in Escherichia coli fused to maltose-binding protein. Due to the high yield of recombinant protein it was possible to raise antibodies that recognized BVX particles. An indirect ELISA, using BVX antibodies, detected BVX in partially purified virus preparations from fungal isolates containing BVX alone and in mixed infection with Botrytis virus F. The BVX antiserum also proved suitable for IFM studies. Intensely fluorescing spots (presumed to be virus aggregates) were found to be localized in hyphal cell compartments and spores of natural and experimentally infected B. cinerea isolates using IFM. Immunofluorescently labelled sections through fungal tissue, as well as fixed mycelia grown on glass slides, showed aggregations of virions closely associated with fungal cell membranes and walls, next to septal pores, and in hyphal tips. Also, calcofluor white staining of mature cell walls of virus-transfected Botrytis clones revealed numerous cell wall areas with increased amounts of chitin/glycoproteins. Our results indicate that some BVX aggregates are closely associated with the fungal cell wall and raise the question of whether mycoviruses may be able to move through the wall and therefore not be totally dependent on intracellular routes of transmission.
Collapse
Affiliation(s)
- Barbara Boine
- Plant and Fungal Virology, School of Biological Sciences, The University of Auckland, New Zealand
| | - Richard L Kingston
- Structural Biology, School of Biological Sciences, The University of Auckland, New Zealand
| | - Michael N Pearson
- Plant and Fungal Virology, School of Biological Sciences, The University of Auckland, New Zealand
| |
Collapse
|
32
|
Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Front Microbiol 2012; 3:186. [PMID: 22675320 PMCID: PMC3365852 DOI: 10.3389/fmicb.2012.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
The family Reoviridae is one of the largest virus families with genomes composed of 9-12 double-stranded RNA segments. It includes members infecting organisms from protists to humans. It is well known that reovirus genomes are prone to various types of genome alterations including intragenic rearrangement and reassortment under laboratory and natural conditions. Recently distinct genetic alterations were reported for members of the genus Mycoreovirus, Mycoreovirus 1 (MyRV1), and MyRV3 with 11 (S1-S11) and 12 genome segments (S1-S12), respectively. While MyRV3 S8 is lost during subculturing of infected host fungal strains, MyRV1 rearrangements undergo alterations spontaneously and inducibly. The inducible MyRV1 rearrangements are different from any other previous examples of reovirus rearrangements in their dependence on an unrelated virus factor, a multifunctional protein, p29, encoded by a distinct virus Cryphonectria parasitica hypovirus 1 (CHV1). A total of 5 MyRV1 variants with genome rearranged segments (S1-S3, S6 and S10) are generated in the background of a single viral strain in the presence of CHV1 p29 supplied either transgenically or by coinfection. MyRV1 S4 and S10 are rearranged, albeit very infrequently, in a CHV1 p29 independent fashion. A variant of MyRV1 with substantial deletions in both S4 and S10, generated through a combined reassortment and rearrangement approach, shows comparable replication levels to the wild-type MyRV1. In vivo and in vitro interactions of CHV1 p29 and MyRV1 VP9 are implicated in the induction of MyRV1 rearrangements. However, the mechanism underlying p29-mediated rearrangements remains largely unknown. MyRV1 S4 rearrangements spontaneously occurred independently of CHV1 p29. In the absence of reverse genetics systems for mycoreoviruses, molecular and biological characterization of these MyRV1 and MyRV3 variants contribute to functional analyses of the protein products encoded by those rearranged segments.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University Kurashiki, Okayama, Japan
| | | | | | | |
Collapse
|
33
|
Kazmierczak P, McCabe P, Turina M, Jacob-Wilk D, Van Alfen NK. The mycovirus CHV1 disrupts secretion of a developmentally regulated protein in Cryphonectria parasitica. J Virol 2012; 86:6067-74. [PMID: 22438560 PMCID: PMC3372201 DOI: 10.1128/jvi.05756-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/14/2012] [Indexed: 11/20/2022] Open
Abstract
Infection of the chestnut blight fungus Cryphonectria parasitica with Cryphonectria hypovirus 1 (CHV1) causes disruption of virulence, pigmentation, and sporulation. Transcriptional downregulation of key developmentally regulated fungal genes occurs during infection, but vegetative growth is unaffected. Previous studies showed that CHV1 utilizes trans-Golgi network (TGN) secretory vesicles for replication. In this study, the fungal cell surface hydrophobin cryparin was chosen as a marker to follow secretion in virally infected and noninfected strains. Subcellular fractionation, cryparin-green fluorescent protein (GFP) fusion, and Western blot studies confirmed that vesicles containing cryparin copurify with the same fractions previously shown to contain elements of the viral replication complex and the TGN resident endoprotease Kex2. This vesicle fraction accumulated to a much greater concentration in the CHV1-infected strains than in noninfected strains. Pulse-chase analysis showed that the rates and amount of cryparin being secreted by the CHV1 containing strains was much lower than in noninfected strains, and the dwell time of cryparin within the cell after labeling was significantly greater in the CHV1-infected strains than in the noninfected ones. These results suggest that the virus perturbs a specific late TGN secretory pathway resulting in buildup of a key protein important for fungal development.
Collapse
|
34
|
Jacob-Wilk D, Moretti M, Turina M, Kazmierczak P, Van Alfen NK. Differential expression of the putative Kex2 processed and secreted aspartic proteinase gene family of Cryphonectria parasitica. Fungal Biol 2012; 116:363-78. [DOI: 10.1016/j.funbio.2011.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/12/2023]
|
35
|
Abstract
Viruses are widespread in all major groups of fungi. The transmission of fungal viruses occurs intracellularly during cell division, sporogenesis, and cell fusion. They apparently lack an extracellular route for infection. Recent searches of the collections of field fungal isolates have detected an increasing number of novel viruses and lead to discoveries of novel genome organizations, expression strategies and virion structures. Those findings enhanced our understanding of virus diversity and evolution. The majority of fungal viruses have dsRNA genomes packaged in spherical particles, while ssRNA mycoviruses, possessing or lacking the ability to form particles, have increasingly been reported. This review article discusses the current status of mycovirus studies and virocontrol (biocontrol) of phytopathogenic fungi using viruses that infect them and reduce their virulence. Selected examples of virocontrol-associated systems include the chestnut/chestnut blight/hypovirus and fruit trees/white root rot fungus/mycoviruses. Natural dissemination and artificial introduction of hypovirulent fungal strains efficiently contributed to virocontrol of chestnut blight in European forests. Attempts to control white root rot with hypovirulence-conferring mycoviruses are now being made in Japan.
Collapse
|
36
|
Characterization of a novel dsRNA element in the pine endophytic fungus Diplodia scrobiculata. Arch Virol 2011; 156:1199-208. [PMID: 21442227 DOI: 10.1007/s00705-011-0978-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Diplodia scrobiculata and Diplodia pinea are endophytic fungi associated with dieback and cankers of mainly Pinus spp. in many parts of the world. These two fungi are closely related and have, in the past, been considered to represent two morphological forms (A and B morphotypes) of D. pinea. dsRNA elements are known to occur in both D. scrobiculata and D. pinea. Two dsRNA elements from D. pinea, SsRV1 and SsRV2, have been characterized previously. The aim of this study was to characterize a third dsRNA element that is most commonly associated with D. scrobiculata and to determine its phylogenetic relationship to other mycoviruses. The 5018-bp genome of this element was sequenced, and it is referred to as D. scrobiculata RNA virus 1, or DsRV1. It has two open reading frames (ORFs), one of which codes for a putative polypeptide with a high degree of similarity to proteins of the vacuolar protein-sorting (VPS) machinery, and the other for an RNA-dependent RNA polymerase (RdRp). Phylogenetic comparisons based on amino acid sequence alignments of the RdRp revealed that DsRV1 is closely related to a dsRNA element isolated from Phlebiopsis gigantea (PgV2), and they grouped separately from virus families in which mycoviruses have previously been described. Although D. pinea and D. scrobiculata are closely related, DsRV1 does not share high sequence identity with SsRV1 or SsRV2, and they probably have different recent evolutionary origins.
Collapse
|
37
|
Popov AP, Belov AA, Ivanushkina NE, Tsvetkov IL, Konichev AS. Molecular genetic determinants of intraspecific polymorphism of the phytopathogenic fungus Cryphonectria parasitica. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch Virol 2010; 155:2075-8. [DOI: 10.1007/s00705-010-0824-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|
39
|
Jacob-Wilk D, Turina M, Kazmierczak P, Van Alfen NK. Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:211-221. [PMID: 19132873 DOI: 10.1094/mpmi-22-2-0211] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cryphonectria parasitica is the causal agent of chestnut blight. Infection of this ascomycete with Cryphonectria hypovirus 1 (CHV1) results in reduction of virulence and sporulation of the fungus. The virus affects fungal gene expression and several of the CHV1 downregulated genes encode secreted proteins that contain consensus Kex2 processing signals. Additionally, CHV1 has been shown to colocalize in infected cells primarily with fungal trans-Golgi network vesicles containing the Kex2 protease. We report here the cloning, analysis, and possible role of the C. parasitica Kex2 gene (CpKex2). CpKex2 gene sequence analysis showed high similarity to other ascomycete kexin-like proteins. Southern blot analyses of CpKex2 showed a single copy of this gene in the fungal genome. In order to monitor the expression and evaluate the function of CpKex2, antibodies were raised against expressed protein and Kex2-silenced mutants were generated. Western blots indicate that the Kex2 protein was constitutively expressed. Growth rate of the fungus was not significantly affected in Kex2-silenced strains; however, these strains showed reduced virulence, reduced sexual and asexual sporulation, and reductions in mating and fertility. The reduced virulence was correlated with reduced Kex2 enzymatic activity and reduced relative mRNA transcript levels as measured by real time reverse-transcriptase polymerase chain reaction. These results suggest that secreted proteins processed by Kex2 are important in fungal development and virulence.
Collapse
Affiliation(s)
- Debora Jacob-Wilk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
41
|
A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J Virol 2008; 83:1981-91. [PMID: 19073734 DOI: 10.1128/jvi.01897-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we reported that three double-stranded RNA (dsRNA) segments, designated L-, M-, and S-dsRNAs, were detected in Sclerotinia sclerotiorum strain Ep-1PN. Of these, the M-dsRNA segment was derived from the genomic RNA of a potexvirus-like positive-strand RNA virus, Sclerotinia sclerotiorum debilitation-associated RNA virus. Here, we present the complete nucleotide sequence of the L-dsRNA, which is 6,043 nucleotides in length, excluding the poly(A) tail. Sequence analysis revealed the presence of a single open reading frame (nucleotide positions 42 to 5936) that encodes a protein with significant similarity to the replicases of the "alphavirus-like" supergroup of positive-strand RNA viruses. A sequence comparison of the L-dsRNA-encoded putative replicase protein containing conserved methyltransferase, helicase, and RNA-dependent RNA polymerase motifs showed that it has significant sequence similarity to the replicase of Hepatitis E virus, a virus infecting humans. Furthermore, we present convincing evidence that the virus-like L-dsRNA could replicate independently with only a slight impact on growth and virulence of its host. Our results suggest that the L-dsRNA from strain Ep-1PN is derived from the genomic RNA of a positive-strand RNA virus, which we named Sclerotinia sclerotiorum RNA virus L (SsRV-L). As far as we know, this is the first report of a positive-strand RNA mycovirus that is related to a human virus. Phylogenetic and sequence analyses of the conserved motifs of the RNA replicase of SsRV-L showed that it clustered with the rubi-like viruses and that it is related to the plant clostero-, beny- and tobamoviruses and to the insect omegatetraviruses. Considering the fact that these related alphavirus-like positive-strand RNA viruses infect a wide variety of organisms, these findings suggest that the ancestral positive-strand RNA viruses might be of ancient origin and/or they might have radiated horizontally among vertebrates, insects, plants, and fungi.
Collapse
|
42
|
Sun L, Suzuki N. Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. RNA (NEW YORK, N.Y.) 2008; 14:2557-2571. [PMID: 18945807 PMCID: PMC2590959 DOI: 10.1261/rna.1125408] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 09/01/2008] [Indexed: 05/26/2023]
Abstract
Mycoreovirus 1 (MyRV1), a member of the Reoviridae family possessing a genome consisting of 11 dsRNA segments (S1-S11), and the prototype hypovirus (CHV1-EP713) of the Hypoviridae family, which is closely related to the monopartite picorna-like superfamily with a ssRNA genome, infect the chestnut blight fungus and cause virulence attenuation and distinct phenotypic alterations in the host. Here, we present evidence for reproducible induction of intragenic rearrangements of MyRV1 S6 and S10, mediated by the multifunctional protein p29 encoded by CHV1. S6 and S10 underwent an almost full-length ORF duplication (S6L) and an internal deletion of three-fourths of the ORF (S10ss). No significant influence on symptom induction in the fungal host was associated with the S6L rearrangement. In contrast, S10-encoded VP10, while nonessential for MyRV1 replication, was shown to contribute to virulence reduction and reduced growth of aerial mycelia. Furthermore, p29 was found to copurify with MyRV1 genomic RNA and bind to VP9 in vitro and in vivo, suggesting direct interactions of p29 with the MyRV1 replication machinery. This study provides the first example of a viral factor involved in RNA genome rearrangements of a different virus and shows its usefulness as a probe into the mechanism of replication and symptom expression of a heterologous virus.
Collapse
Affiliation(s)
- Liying Sun
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University Kurashiki, Okayama 710-0046, Japan
| | | |
Collapse
|
43
|
A host factor involved in hypovirus symptom expression in the chestnut blight fungus, Cryphonectria parasitica. J Virol 2007; 82:740-54. [PMID: 17977965 DOI: 10.1128/jvi.02015-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.
Collapse
|
44
|
Sun L, Nuss DL, Suzuki N. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 2006; 87:3703-3714. [PMID: 17098988 DOI: 10.1099/vir.0.82213-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection of the chestnut blight fungus, Cryphonectria parasitica, by the prototypic hypovirus Cryphonectria hypovirus 1-EP713 (CHV1-EP713) or by the type member, Mycoreovirus 1-Cp9B21 (MyRV1-Cp9B21), of a novel genus (Mycoreovirus) of the family Reoviridae results in hypovirulence, but with a different spectrum of phenotypic changes. The former virus depresses pigmentation and conidiation dramatically, whilst the latter virus has little effect on these processes. This study showed that double infection by the two viruses resulted in a phenotype similar to that of CHV1-EP713 singly infected colonies, but with further decreased levels of host conidiation and vegetative growth and increased levels of MyRV1-Cp9B21 genomic dsRNA accumulation (twofold) and vertical transmission (sixfold). In contrast, CHV1-EP713 RNA accumulation was not altered by MyRV1-Cp9B21 infection. It was also found that the papain-like cysteine protease p29, encoded by CHV1-EP713 ORF A, contributes to the phenotypic alterations and transactivation of MyRV1-Cp9B21 replication and transmission. Chromosomally expressed p29 was able to increase MyRV1-Cp9B21 vertical transmission by more than twofold and genomic RNA accumulation by 80 %. Transactivation was abolished by Cys-->Gly mutations at p29 residues 70 and 72 located within the previously identified symptom-determinant domain required for suppression of host pigmentation and sporulation and p29-mediated in trans enhancement of homologous Deltap29 mutant virus RNA replication. Transactivation was not altered by Ser substitutions at the p29 protease catalytic residue Cys(162). These results indicated a link between p29-mediated enhancement of heterologous virus accumulation and transmission and p29-mediated host symptom expression. The role of p29 as a suppressor of RNA silencing is discussed.
Collapse
Affiliation(s)
- Liying Sun
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Donald L Nuss
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, MD 20742, USA
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|