1
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
2
|
Bukin YS, Bondaryuk AN, Kulakova NV, Balakhonov SV, Dzhioev YP, Zlobin VI. Phylogenetic reconstruction of the initial stages of the spread of the SARS-CoV-2 virus in the Eurasian and American continents by analyzing genomic data. Virus Res 2021; 305:198551. [PMID: 34454972 PMCID: PMC8388146 DOI: 10.1016/j.virusres.2021.198551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Samples from complete genomes of SARS-CoV-2 isolated during the first wave (December 2019–July 2020) of the global COVID-19 pandemic from 21 countries (Asia, Europe, Middle East and America) around the world, were analyzed using the phylogenetic method with molecular clock dating. Results showed that the first cases of COVID-19 in the human population appeared in the period between July and November 2019 in China. The spread of the virus into other countries of the world began in the autumn of 2019. In mid-February 2020, the virus appeared in all the countries we analyzed. During this time, the global population of SARS-CoV-2 was characterized by low levels of the genetic polymorphism, making it difficult to accurately assess the pathways of infection. The rate of evolution of the coding region of the SARS-CoV-2 genome equal to 7.3 × 10−4 (5.95 × 10−4–8.68 × 10−4) nucleotide substitutions per site per year is comparable to those of other human RNA viruses (Measles morbillivirus, Rubella virus, Enterovirus C). SARS-CoV-2 was separated from its known close relative, the bat coronavirus RaTG13 of the genus Betacoronavirus, approximately 15–43 years ago (the end of the 20th century).
Collapse
Affiliation(s)
- Yu S Bukin
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia.
| | - A N Bondaryuk
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia; Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser str., 78, Irkutsk 664047, Russia
| | - N V Kulakova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia
| | - S V Balakhonov
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser str., 78, Irkutsk 664047, Russia
| | - Y P Dzhioev
- Irkutsk State Medical University, Krasnogo Vosstaniya str., 1, Irkutsk 664003, Russia
| | - V I Zlobin
- Irkutsk State Medical University, Krasnogo Vosstaniya str., 1, Irkutsk 664003, Russia
| |
Collapse
|
3
|
Variation in Intra-individual Lentiviral Evolution Rates: a Systematic Review of Human, Nonhuman Primate, and Felid Species. J Virol 2019; 93:JVI.00538-19. [PMID: 31167917 DOI: 10.1128/jvi.00538-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
Lentiviral replication mediated by reverse transcriptase is considered to be highly error prone, leading to a high intra-individual evolution rate that promotes evasion of neutralization and persistent infection. Understanding lentiviral intra-individual evolutionary dynamics on a comparative basis can therefore inform research strategies to aid in studies of pathogenesis, vaccine design, and therapeutic intervention. We conducted a systematic review of intra-individual evolution rates for three species groups of lentiviruses-feline immunodeficiency virus (FIV), simian immunodeficiency virus (SIV), and human immunodeficiency virus (HIV). Overall, intra-individual rate estimates differed by virus but not by host, gene, or viral strain. Lentiviral infections in spillover (nonadapted) hosts approximated infections in primary (adapted) hosts. Our review consistently documents that FIV evolution rates within individuals are significantly lower than the rates recorded for HIV and SIV. FIV intra-individual evolution rates were noted to be equivalent to FIV interindividual rates. These findings document inherent differences in the evolution of FIV relative to that of primate lentiviruses, which may signal intrinsic difference of reverse transcriptase between these viral species or different host-viral interactions. Analysis of lentiviral evolutionary selection pressures at the individual versus population level is valuable for understanding transmission dynamics and the emergence of virulent and avirulent strains and provides novel insight for approaches to interrupt lentiviral infections.IMPORTANCE To the best of our knowledge, this is the first study that compares intra-individual evolution rates for FIV, SIV, and HIV following systematic review of the literature. Our findings have important implications for informing research strategies in the field of intra-individual virus dynamics for lentiviruses. We observed that FIV evolves more slowly than HIV and SIV at the intra-individual level and found that mutation rates may differ by gene sequence length but not by host, gene, strain, an experimental setting relative to a natural setting, or spillover host infection relative to primary host infection.
Collapse
|
4
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Low Postseroconversion CD4 + T-cell Level Is Associated with Faster Disease Progression and Higher Viral Evolutionary Rate in HIV-2 Infection. mBio 2019; 10:mBio.01245-18. [PMID: 30622192 PMCID: PMC6325243 DOI: 10.1128/mbio.01245-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between HIV evolution and disease progression is fundamental to our understanding of HIV immune control and vaccine design. There are no clear definitions for faster and slower HIV-2 disease progression and for the relationship of the rate of progression with HIV-2 evolution. To address the hypothesis that viral evolution is correlated with disease progression in HIV-2 infection, we determined faster and slower disease progression based on follow-up data from a prospective cohort of police officers in Guinea-Bissau. The analysis showed that although the CD4+ T-cell level and the decline in the level were independently associated with progression to AIDS, only the CD4+ T-cell level or a combined CD4+ T-cell level/decline stratification was associated with the rate of HIV-2 evolution. The HIV-2 evolutionary rate was almost twice as high among the faster progressors as among the slower progressors. Importantly, this report defines previously unknown characteristics linking HIV-2 disease progression with virus evolution. A positive correlation between virus evolutionary rate and disease progression has been shown for human immunodeficiency virus type 1 (HIV-1) infection. Much less is known about HIV-2, the second causative agent of AIDS. We analyzed 528 HIV-2 env V1-C3 sequences generated from longitudinal plasma samples that were collected from 16 study participants during a median observation time of 7.9 years (interquartile range [IQR], 5.2 to 14.0 years). Study participants were classified as faster or slower disease progressors based on longitudinal CD4+ T-cell data. The HIV-2 evolutionary rate was significantly associated with CD4+ T-cell levels and was almost twice as high among the faster progressors as among the slower progressors. Higher evolutionary rates were accounted for by both synonymous and nonsynonymous nucleotide substitutions. Moreover, slow disease progression was associated with stronger positive selection on HIV-2/SIVsm (simian immunodeficiency virus infecting sooty mangabey) surface-exposed conserved residues. This study demonstrated a number of previously unknown characteristics linking HIV-2 disease progression with virus evolution. Some of these findings distinguish HIV-2 from HIV-1 and may contribute to the understanding of differences in pathogenesis.
Collapse
|
6
|
HLA-associated polymorphisms in the HIV-2 capsid highlight key differences between HIV-1 and HIV-2 immune adaptation. AIDS 2018; 32:709-714. [PMID: 29369160 PMCID: PMC5895130 DOI: 10.1097/qad.0000000000001753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV-1 frequently adapts in response to immune pressure from cytotoxic T-lymphocytes (CTL). Many HIV-2 infected individuals have robust capsid-specific CTL responses associated with viral control. Despite this CTL pressure, adaptive changes in this key immunogenic HIV-2 protein have not previously been described. We sought to compare selective pressure on HIV-1 and HIV-2 capsids and identify HLA-associated viral polymorphisms in HIV-2. DESIGN AND METHODS Bioinformatic algorithms to identify sites under positive and negative selective pressure and a statistical model of evolution to identify HLA-associated polymorphisms in HIV-2 was applied to sequences from a community cohort in Guinea-Bissau. IFN-γ ELISpots were used to compare T-cell responses to wild-type and variant epitopes. RESULTS We identified greater purifying selection and less sites under positive selective pressure in HIV-2 compared with HIV-1. Five HIV-2 codons with HLA-associated polymorphisms were detected all within or around known or predicted CTL epitopes. One site was within the HLA-B58 SuperType (ST)-restricted epitope (TSTVEEQIQW), the HIV-2 equivalent of the HIV-1 TW10 epitope. In contrast to HIV-1, where a T→N mutation at position 3 is associated with resulting loss of CTL control, an E→D mutation at position 5 was observed in HIV-2. Robust CTL responses to the variant HIV-2 epitope were seen, suggesting that HIV-2 adaptation may be at the level of T-cell receptor recognition. CONCLUSION Greater constraints on evolution may exist in HIV-2, resulting in more purifying selection and different immune adaptation pathways in HIV-1 and HIV-2 capsids. This may allow CTL responses to persist in HIV-2.
Collapse
|
7
|
Álvarez M, Sebastián-Martín A, García-Marquina G, Menéndez-Arias L. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases. Sci Rep 2017; 7:44834. [PMID: 28333133 PMCID: PMC5363063 DOI: 10.1038/srep44834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Guillermo García-Marquina
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
8
|
Döring M, Borrego P, Büch J, Martins A, Friedrich G, Camacho RJ, Eberle J, Kaiser R, Lengauer T, Taveira N, Pfeifer N. A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support. Retrovirology 2016; 13:85. [PMID: 27998283 PMCID: PMC5168878 DOI: 10.1186/s12977-016-0320-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Background CCR5-coreceptor antagonists can be used for treating HIV-2 infected individuals. Before initiating treatment with coreceptor antagonists, viral coreceptor usage should be determined to ensure that the virus can use only the CCR5 coreceptor (R5) and cannot evade the drug by using the CXCR4 coreceptor (X4-capable). However, until now, no online tool for the genotypic identification of HIV-2 coreceptor usage had been available. Furthermore, there is a lack of knowledge on the determinants of HIV-2 coreceptor usage. Therefore, we developed a data-driven web service for the prediction of HIV-2 coreceptor usage from the V3 loop of the HIV-2 glycoprotein and used the tool to identify novel discriminatory features of X4-capable variants. Results Using 10 runs of tenfold cross validation, we selected a linear support vector machine (SVM) as the model for geno2pheno[coreceptor-hiv2], because it outperformed the other SVMs with an area under the ROC curve (AUC) of 0.95. We found that SVMs were highly accurate in identifying HIV-2 coreceptor usage, attaining sensitivities of 73.5% and specificities of 96% during tenfold nested cross validation. The predictive performance of SVMs was not significantly different (p value 0.37) from an existing rules-based approach. Moreover, geno2pheno[coreceptor-hiv2] achieved a predictive accuracy of 100% and outperformed the existing approach on an independent data set containing nine new isolates with corresponding phenotypic measurements of coreceptor usage. geno2pheno[coreceptor-hiv2] could not only reproduce the established markers of CXCR4-usage, but also revealed novel markers: the substitutions 27K, 15G, and 8S were significantly predictive of CXCR4 usage. Furthermore, SVMs trained on the amino-acid sequences of the V1 and V2 loops were also quite accurate in predicting coreceptor usage (AUCs of 0.84 and 0.65, respectively). Conclusions In this study, we developed geno2pheno[coreceptor-hiv2], the first online tool for the prediction of HIV-2 coreceptor usage from the V3 loop. Using our method, we identified novel amino-acid markers of X4-capable variants in the V3 loop and found that HIV-2 coreceptor usage is also influenced by the V1/V2 region. The tool can aid clinicians in deciding whether coreceptor antagonists such as maraviroc are a treatment option and enables epidemiological studies investigating HIV-2 coreceptor usage. geno2pheno[coreceptor-hiv2] is freely available at http://coreceptor-hiv2.geno2pheno.org. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Döring
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany.
| | - Pedro Borrego
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP), University of Lisbon, Rua Almerindo Lessa, 1300-663, Lisbon, Portugal
| | - Joachim Büch
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Andreia Martins
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Georg Friedrich
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Ricardo Jorge Camacho
- Rega Institute for Medical Research, Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Minderbroedersstraat 10, 3000, Louvain, Belgium
| | - Josef Eberle
- Department of Virology, Max von Pettenkofer-Institut, Ludwig-Maximilians-University, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Rolf Kaiser
- Institute for Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Thomas Lengauer
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Instituto Superior de Ciências da Saúde Egas Moniz (ISCSEM), Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Nico Pfeifer
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany.
| |
Collapse
|
9
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
10
|
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12:60. [PMID: 26160407 PMCID: PMC4496919 DOI: 10.1186/s12977-015-0180-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically. RESULTS To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants. CONCLUSIONS Taken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Nicolás D, Ambrosioni J, Paredes R, Marcos MÁ, Manzardo C, Moreno A, Miró JM. Infection with human retroviruses other than HIV-1: HIV-2, HTLV-1, HTLV-2, HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2015; 13:947-63. [PMID: 26112187 DOI: 10.1586/14787210.2015.1056157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-1 is the most prevalent retrovirus, with over 30 million people infected worldwide. Nevertheless, infection caused by other human retroviruses like HIV-2, HTLV-1, HTLV-2, HTLV-3 and HTLV-4 is gaining importance. Initially confined to specific geographical areas, HIV-2, HTLV-1 and HTLV-2 are becoming a major concern in non-endemic countries due to international migration flows. Clinical manifestations of retroviruses range from asymptomatic carriers to life-threatening conditions, such as AIDS in HIV-2 infection or adult T-cell lymphoma/leukemia or tropical spastic paraparesis in HTLV-1 infection. HIV-2 is naturally resistant to some antiretrovirals frequently used to treat HIV-1 infection, but it does have effective antiretroviral therapy options. Unfortunately, HTLV still has limited therapeutic options. In this article, we will review the epidemiological, clinical, diagnostic, pathogenic and therapeutic aspects of infections caused by these human retroviruses.
Collapse
Affiliation(s)
- David Nicolás
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Makvandi-Nejad S, Rowland-Jones S. How does the humoral response to HIV-2 infection differ from HIV-1 and can this explain the distinct natural history of infection with these two human retroviruses? Immunol Lett 2014; 163:69-75. [PMID: 25445493 DOI: 10.1016/j.imlet.2014.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
Abstract
A substantial proportion of people infected with HIV-2, the second causative agent of acquired immune deficiency syndrome (AIDS), behave as long-term non-progressors (LTNP) and are able to control the infection more effectively than most HIV-1-infected patients. A better understanding of the differences in the natural history of HIV-1 and HIV-2 infection, and how these relate to the relative immunogenicity and evolution of the two virus strains, could provide important insights into the mechanisms of protective immunity in HIV infection. One of the most striking differences is that most people infected with HIV-2 generate high titers of broadly neutralizing antibodies, whereas this is relatively uncommon in HIV-1 infection. In this review we compare the underlying structural differences of the envelope (Env) between HIV-1 and HIV-2, and examine how these might affect the antibody responses as well as their impact on Env evolution and control of viral replication.
Collapse
Affiliation(s)
- Shokouh Makvandi-Nejad
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, NDM Research Building, Old Road Campus, Headington, Oxford OX3 7FZ, United Kingdom.
| |
Collapse
|
13
|
Romero-Severson E, Skar H, Bulla I, Albert J, Leitner T. Timing and order of transmission events is not directly reflected in a pathogen phylogeny. Mol Biol Evol 2014; 31:2472-82. [PMID: 24874208 DOI: 10.1093/molbev/msu179] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters.
Collapse
Affiliation(s)
- Ethan Romero-Severson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Helena Skar
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Ingo Bulla
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, SwedenDepartment of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
14
|
Rocha C, Calado R, Borrego P, Marcelino JM, Bártolo I, Rosado L, Cavaco-Silva P, Gomes P, Família C, Quintas A, Skar H, Leitner T, Barroso H, Taveira N. Evolution of the human immunodeficiency virus type 2 envelope in the first years of infection is associated with the dynamics of the neutralizing antibody response. Retrovirology 2013; 10:110. [PMID: 24156513 PMCID: PMC4016255 DOI: 10.1186/1742-4690-10-110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/15/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Differently from HIV-1, HIV-2 disease progression usually takes decades without antiretroviral therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4⁺ T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected at birth. RESULTS CD4⁺ T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4+ T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. CONCLUSION Our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nuno Taveira
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal.
| |
Collapse
|
15
|
Mild M, Gray RR, Kvist A, Lemey P, Goodenow MM, Fenyö EM, Albert J, Salemi M, Esbjörnsson J, Medstrand P. High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch. INFECTION GENETICS AND EVOLUTION 2013; 19:369-77. [PMID: 23672855 DOI: 10.1016/j.meegid.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Abstract
In approximately 70% of individuals infected with HIV-1 subtype B, the virus switches coreceptor use from exclusively CCR5 use (R5 virus) to either inclusion of or exclusively CXCR4 use (X4 virus) during infection. This switch is associated with an accelerated loss of CD4(+) T-cells and a faster progression to AIDS. Despite intensive research, the mechanisms responsible for coreceptor switch remains elusive. In the present study, we investigated associations between viral evolutionary rate and selection pressure versus viral coreceptor use and rate of disease progression in eight patients with longitudinally sampled HIV-1 env V1-V3 sequences. By employing a Bayesian hierarchical phylogenetic model, we found that the HIV-1 evolutionary rate was more strongly associated with coreceptor switch than with rate of disease progression in terms of CD4(+)T-cell decline. Phylogenetic analyses showed that X4 variants evolved from R5 populations. In addition, coreceptor switch was associated with higher evolutionary rates on both the synonymous and non-synonymous substitution level, but not with dN/dS ratio rates. Our findings suggest that X4 viruses evolved from pre-existing R5 viral populations and that the evolution of coreceptor switch is governed by high replication rates rather than by selective pressure. Furthermore, the association of viral evolutionary rate was more strongly associated with coreceptor switch than disease progression. This adds to the understanding of the complex virus-host interplay that influences the evolutionary dynamics of HIV-1 coreceptor use.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pleguezuelos O, Stoloff GA, Caparrós-Wanderley W. Synthetic immunotherapy induces HIV virus specific Th1 cytotoxic response and death of an HIV-1 infected human cell line through classic complement activation. Virol J 2013; 10:107. [PMID: 23557359 PMCID: PMC3626621 DOI: 10.1186/1743-422x-10-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background This manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins. Immunogenicity and cytotoxicity of HIV-v are discussed. Methods Short conserved T-cell multi-epitope regions were identified in silico in the HIV proteome. The immunogenicity of the identified HIV-v polypeptides was assessed in vivo by immunisation of C57BLK6 mice transgenic for HLA-A*0201. Splenocytes from immunised animals were exposed in vitro to soluble HIV-v polypeptides or to syngeneic (T1) or allogeneic (Jurkat) cells transfected with these polypeptides. Specific T-cell reactivity was assessed by cell-based IFN-γ ELISA. Virus specific CD3 + CD8+ IFN-γ+ recall responses were also determined by flow cytometry following in vitro exposure of splenocytes from immunised mice to syngeneic (T1) and allogeneic (H9) cells infected with HIV-1 strain IIIB. HIV-v specific antibodies were quantified by ELISA whilst antibody mediated anti-viral immunotherapeutic effect on T1 cells infected with a laboratory adapted and a primary isolate of the HIV-1 virus was assessed in a LDH-based complement mediated lysis assay. Results HIV-v elicited antigen-specific IgG and IFN−γ responses against the synthetic polypeptides in the formulation. HIV-v specific T cells recognised polypeptides presented either as soluble antigen or complexed to HLA-A*0201 following natural processing and presentation by syngeneic human T1 cells. Moreover, the CD3 + CD8+ component of the response recognised syngeneic T1 cells naturally infected with HIV-1 in a virus-specific and MHC restricted-manner. The HIV-v specific IgG response was also able to recognise human T1 cells naturally infected with HIV-1 and induce cell death through classic activation of complement. Conclusions HIV-v induces a vaccine-specific type I immune response characterised by activation of effector CD8+ T cell and antibody responses that recognise and kill human cell lines naturally infected with a laboratory adapted and a primary isolate of the HIV-1 virus. The data supports the hypothesis that alternative HIV protein targets can be effectively used to prime both cellular and antibody immune responses of clinical value in the prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Olga Pleguezuelos
- Research and Development, SEEK, 45 Beech Street, London, EC2Y 8AD, UK.
| | | | | |
Collapse
|
17
|
Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 2013; 23:221-40. [PMID: 23444290 DOI: 10.1002/rmv.1739] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022]
Abstract
HIV-1 and HIV-2 share many similarities including their basic gene arrangement, modes of transmission, intracellular replication pathways and clinical consequences: both result in AIDS. However, HIV-2 is characterised by lower transmissibility and reduced likelihood of progression to AIDS. The underlying mechanistic differences between these two infections illuminate broader issues of retroviral pathogenesis, which remain incompletely understood. Comparisons between these two infections from epidemiological, clinical, virologic and immunologic viewpoints provide a basis for hypothesis generation and testing in this 'natural experiment' in viral pathogenesis. In terms of epidemiology, HIV-2 remains largely confined to West Africa, whereas HIV-1 extends worldwide. Clinically, HIV-2 infected individuals seem to dichotomise, most remaining long-term non-progressors, whereas most HIV-1 infected individuals progress. When clinical progression occurs, both diseases demonstrate very similar pathological processes, although progression in HIV-2 occurs at higher CD4 counts. Plasma viral loads are consistently lower in HIV-2, as are average levels of immune activation. Significant differences exist between the two infections in all components of the immune system. For example, cellular responses to HIV-2 tend to be more polyfunctional and produce more IL-2; humoral responses appear broader with lower magnitude intratype neutralisation responses; innate responses appear more robust, possibly through differential effects of tripartite motif protein isoform 5 alpha. Overall, the immune response to HIV-2 appears more protective against disease progression suggesting that pivotal immune factors limit viral pathology. If such immune responses could be replicated or induced in HIV-1 infected patients, they might extend survival and reduce requirements for antiretroviral therapy.
Collapse
|
18
|
Balode D, Skar H, Mild M, Kolupajeva T, Ferdats A, Rozentale B, Leitner T, Albert J. Phylogenetic analysis of the Latvian HIV-1 epidemic. AIDS Res Hum Retroviruses 2012; 28:928-32. [PMID: 22049908 DOI: 10.1089/aid.2011.0310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
The Latvian HIV-1 outbreak among intravenous drug users (IDUs) in 1997-1998 involved subtype A1. To obtain a more complete picture of the Latvian HIV-1 epidemic, 315 HIV-1-infected patients diagnosed in 1990-2005 representing different transmission groups and geographic regions were phylogenetically characterized using env V3 and gag p17 sequences. Subtypes A1 and B infections were found in 76% and 22% of the patients, respectively. The subtype A1 sequences formed one large cluster, which also included sequences from other parts of the former Soviet Union (FSU), whereas most subtype B sequences formed three distinct clusters. We estimated that subtype A1 was introduced from FSU around 1997 and initially spread explosively among IDUs in Riga. A recent increase of heterosexually infected persons did not form a separate subepidemic, but had multiple interactions with the IDU epidemic. Subtype B was introduced before the collapse of the Soviet Union and primarily has spread among men who have sex with men.
Collapse
Affiliation(s)
- Dace Balode
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Helena Skar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Theoretical Biology and Biophysics, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Andris Ferdats
- HIV/AIDS Program Unit of the Infectology Centre of Latvia, Riga, Latvia
| | | | - Thomas Leitner
- Theoretical Biology and Biophysics, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
19
|
Evolutionary and structural features of the C2, V3 and C3 envelope regions underlying the differences in HIV-1 and HIV-2 biology and infection. PLoS One 2011; 6:e14548. [PMID: 21283793 PMCID: PMC3024314 DOI: 10.1371/journal.pone.0014548] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022] Open
Abstract
Background Unlike in HIV-1 infection, the majority of HIV-2 patients produce broadly reactive neutralizing antibodies, control viral replication and survive as elite controllers. The identification of the molecular, structural and evolutionary footprints underlying these very distinct immunological and clinical outcomes may lead to the development of new strategies for the prevention and treatment of HIV infection. Methodology/Principal Findings We performed a side-by-side molecular, evolutionary and structural comparison of the C2, V3 and C3 envelope regions from HIV-1 and HIV-2. These regions contain major antigenic targets and are important for receptor binding. In HIV-2, these regions also have immune modulatory properties. We found that these regions are significantly more variable in HIV-1 than in HIV-2. Within each virus, C3 is the most entropic region followed by either C2 (HIV-2) or V3 (HIV-1). The C3 region is well exposed in the HIV-2 envelope and is under strong diversifying selection suggesting that, like in HIV-1, it may harbour neutralizing epitopes. Notably, however, extreme diversification of C2 and C3 seems to be deleterious for HIV-2 and prevent its transmission. Computer modelling simulations showed that in HIV-2 the V3 loop is much less exposed than C2 and C3 and has a retractile conformation due to a physical interaction with both C2 and C3. The concealed and conserved nature of V3 in the HIV-2 is consistent with its lack of immunodominancy in vivo and with its role in preventing immune activation. In contrast, HIV-1 had an extended and accessible V3 loop that is consistent with its immunodominant and neutralizing nature. Conclusions/Significance We identify significant structural and functional constrains to the diversification and evolution of C2, V3 and C3 in the HIV-2 envelope but not in HIV-1. These studies highlight fundamental differences in the biology and infection of HIV-1 and HIV-2 and in their mode of interaction with the human immune system and may inform new vaccine and therapeutic interventions against these viruses.
Collapse
|