1
|
Jia W, Wang G, Sun S, Chen X, Xiang S, Zhang B, Huang Z. PA2G4 in health and disease: An underestimated multifunctional regulator. J Adv Res 2025:S2090-1232(25)00074-8. [PMID: 39923993 DOI: 10.1016/j.jare.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Proliferation-associated protein 2G4 (PA2G4), also known as ErbB3-binding protein 1 (EBP1), is an evolutionarily conserved, ubiquitously expressed, multifunctional factor in health and disease. In recent decades, its role as a sophisticated regulator in a broad range of biological processes has drawn widespread attention from researchers. AIM OF REVIEW We introduce the molecular structure, functional modules, and post-translational modifications of PA2G4. We further elaborate on its role and function in immune microenvironment modulation, cell growth, neural homeostasis and embryonic development. In particular, we summarize its relevance to tumorigenesis and cancer progression and describe its molecular mechanisms in regulating the hallmarks of cancers. This review aims to provide a comprehensive blueprint of PA2G4 functions and to inspire further basic and translational studies. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to its versatile domains and motifs, PA2G4 regulates a variety of molecular processes, including transcription, translation, proteostasis and epigenetic modulation, suggesting its critical roles in maintaining homeostasis. There are two isoforms of the PA2G4 protein: PA2G4-p42 and PA2G4-p48. While both isoforms regulate cellular activities, they often exert distinct or even contradictory effects. Dysfunction and aberrant expression of PA2G4 isoforms lead to the occurrence and progression of various diseases, indicating their role as predictive markers or therapeutic targets.
Collapse
Affiliation(s)
- Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocheng Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Bren I, Tal A, Strauss C, Schlesinger S. The role of Smarcad1 in retroviral repression in mouse embryonic stem cells. Mob DNA 2024; 15:4. [PMID: 38468276 DOI: 10.1186/s13100-024-00314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Moloney murine leukemia virus (MLV) replication is suppressed in mouse embryonic stem cells (ESCs) by the Trim28-SETDB1 complex. The chromatin remodeler Smarcad1 interacts with Trim28 and was suggested to allow the deposition of the histone variant H3.3. However, the role of Trim28, H3.3, and Smarcad1 in MLV repression in ESCs still needs to be fully understood. RESULTS In this study, we used MLV to explore the role of Smarcad1 in retroviral silencing in ESCs. We show that Smarcad1 is immediately recruited to the MLV provirus. Based on the repression dynamics of a GFP-reporter MLV, our findings suggest that Smarcad1 plays a critical role in the establishment and maintenance of MLV repression, as well as other Trim28-targeted genomic loci. Furthermore, Smarcad1 is important for stabilizing and strengthening Trim28 binding to the provirus over time, and its presence around the provirus is needed for proper deposition of H3.3 on the provirus. Surprisingly, the combined depletion of Smarcad1 and Trim28 results in enhanced MLV derepression, suggesting that these two proteins may also function independently to maintain repressive chromatin states. CONCLUSIONS Overall, the results of this study provide evidence for the crucial role of Smarcad1 in the silencing of retroviral elements in embryonic stem cells. Further research is needed to fully understand how Smarcad1 and Trim28 cooperate and their implications for gene expression and genomic stability.
Collapse
Affiliation(s)
- Igor Bren
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ayellet Tal
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carmit Strauss
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathog 2020; 16:e1008834. [PMID: 32956422 PMCID: PMC7529202 DOI: 10.1371/journal.ppat.1008834] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the widespread use of anti-retroviral therapy, human immunodeficiency virus (HIV) still persists in an infected cell reservoir that harbors transcriptionally silent yet replication-competent proviruses. While significant progress has been made in understanding how the HIV reservoir is established, transcription repression mechanisms that are enforced on the integrated viral promoter have not been fully revealed. In this study, we performed a whole-genome CRISPR knockout screen in HIV infected T cells to identify host genes that potentially promote HIV latency. Of several top candidates, the KRAB-containing zinc finger protein, ZNF304, was identified as the top hit. ZNF304 silences HIV gene transcription through associating with TRIM28 and recruiting to the viral promoter heterochromatin-inducing methyltransferases, including the polycomb repression complex (PRC) and SETB1. Depletion of ZNF304 expression reduced levels of H3K9me3, H3K27me3 and H2AK119ub repressive histone marks on the HIV promoter as well as SETB1 and TRIM28, ultimately enhancing HIV gene transcription. Significantly, ZNF304 also promoted HIV latency, as its depletion delayed the entry of HIV infected cells into latency. In primary CD4+ cells, ectopic expression of ZNF304 silenced viral transcription. We conclude that by associating with TRIM28 and recruiting host transcriptional repressive complexes, SETB1 and PRC, to the HIV promoter, ZNF304 silences HIV gene transcription and promotes viral latency. Antiretroviral therapy has significantly decreased the morbidity and mortality associated with HIV infection. However, a complete cure remains out of reach, as HIV persists in a cell reservoir that is highly stable in the face of therapy. While developing novel therapeutic strategies to eliminate the reservoir is a well-recognized goal, knowledge of the molecular events that establish HIV latency is still not complete. To obtain insights into the silencing mechanisms of HIV gene transcription and the establishment of viral latency, a genome-wide CRISPR screen was employed to identify host factors that control viral latency. We identified zinc-finger protein 304 (ZNF304) and showed that through association with TRIM28, it recruits the histone methyltransferases SETB1 and PRC to deposit repressive marks on chromatin of the HIV promoter, thereby facilitating the silencing of viral gene transcription. Moreover, we found that depletion of ZNF304 expression activated HIV gene expression, while ZNF304 overexpression repressed viral gene transcription both in a T cell line and in primary CD4+ cells. Finally, our study showed that ZNF304 is also involved in modulating HIV latency, as its depletion delayed entry of the virus into a latency state. Our results offer an additional mechanistic explanation for how host histone repression complexes are tethered to the HIV promoter to promote chromatin compaction, thereby defining a potentially new target for perturbing the establishment of the viral reservoir.
Collapse
|
4
|
Trim24 and Trim33 Play a Role in Epigenetic Silencing of Retroviruses in Embryonic Stem Cells. Viruses 2020; 12:v12091015. [PMID: 32932986 PMCID: PMC7551373 DOI: 10.3390/v12091015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESC) have the ability to epigenetically silence endogenous and exogenous retroviral sequences. Trim28 plays an important role in establishing this silencing, but less is known about the role other Trim proteins play. The Tif1 family is a sub-group of the Trim family, which possess histone binding ability in addition to the distinctive RING domain. Here, we have examined the interaction between three Tif1 family members, namely Trim24, Trim28 and Trim33, and their function in retroviral silencing. We identify a complex formed in ESC, comprised of these three proteins. We further show that when Trim33 is depleted, the complex collapses and silencing efficiency of both endogenous and exogenous sequences is reduced. Similar transcriptional activation takes place when Trim24 is depleted. Analysis of the H3K9me3 chromatin modification showed a decrease in this repressive mark, following both Trim24 and Trim33 depletion. As Trim28 is an identified binding partner of the H3K9 methyltransferase ESET, this further supports the involvement of Trim28 in the complex. The results presented here suggest that a complex of Tif1 family members, each of which possesses different specificity and efficiency, contributes to the silencing of retroviral sequences in ESC.
Collapse
|
5
|
Bui PL, Nishimura K, Seminario Mondejar G, Kumar A, Aizawa S, Murano K, Nagata K, Hayashi Y, Fukuda A, Onuma Y, Ito Y, Nakanishi M, Hisatake K. Template Activating Factor-I α Regulates Retroviral Silencing during Reprogramming. Cell Rep 2019; 29:1909-1922.e5. [DOI: 10.1016/j.celrep.2019.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
|
6
|
Investigating the role of Ebp1 in Chandipura virus infection. J Biosci 2019. [DOI: 10.1007/s12038-019-9847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Dey D, Honda A, Chattopadhyay D. Investigating the role of Ebp1 in Chandipura virus infection. J Biosci 2019; 44:31. [PMID: 31180044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ErbB-3 binding protein 1 (Ebp1) is a host protein which binds ErbB-3 receptor to induce signalling events for cell growth regulation. In addition, Ebp1 also interacts with ribonucleoprotein complexes. In recent times, Ebp1 was found to play an antagonistic role in viral infections caused by Influenza and Rinderpest viruses. In our present work we have tried to understand the role of Ebp1 in Chandipura virus (CHPV) infection. We have observed an induction in Ebp1 expression upon CHPV infection similar to other viruses. However, unlike other viruses an overexpressed Ebp1 only reduces viral protein expression, but does not affect its progeny formation. Additionally, this effect is being carried out in an indirect manner, as there is no interaction between Ebp1 and viral proteins. This is despite Ebp1's presence in viral inclusion bodies.
Collapse
Affiliation(s)
- Dhritiman Dey
- Department of Biotechnology, University of Calcutta, Calcutta, India
| | | | | |
Collapse
|
8
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
9
|
Kato M, Takemoto K, Shinkai Y. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing. Nat Commun 2018; 9:1683. [PMID: 29703894 PMCID: PMC5923290 DOI: 10.1038/s41467-018-04132-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Subsets of endogenous retroviruses (ERVs) are derepressed in mouse embryonic stem cells (mESCs) deficient for Setdb1, which catalyzes histone H3 lysine 9 trimethylation (H3K9me3). Most of those ERVs, including IAPs, remain silent if Setdb1 is deleted in differentiated embryonic cells; however they are derepressed when deficient for Dnmt1, suggesting that Setdb1 is dispensable for ERV silencing in somatic cells. However, H3K9me3 enrichment on ERVs is maintained in differentiated cells and is mostly diminished in mouse embryonic fibroblasts (MEFs) lacking Setdb1. Here we find that distinctive sets of ERVs are reactivated in different types of Setdb1-deficient somatic cells, including the VL30-class of ERVs in MEFs, whose derepression is dependent on cell-type-specific transcription factors (TFs). These data suggest a more general role for Setdb1 in ERV silencing, which provides an additional layer of epigenetic silencing through the H3K9me3 modification. Previous studies suggest that DNA methylation is the main mechanism to silence endogenous retroviruses (ERVs) in somatic cells. Here the authors provide evidence that distinctive sets of ERVs are silenced by Setdb1 in different types of somatic cells, suggesting a general function in ERV silencing.
Collapse
Affiliation(s)
- Masaki Kato
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Keiko Takemoto
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
Transcriptional Silencing of Moloney Murine Leukemia Virus in Human Embryonic Carcinoma Cells. J Virol 2016; 91:JVI.02075-16. [PMID: 27795446 DOI: 10.1128/jvi.02075-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022] Open
Abstract
Embryonic carcinoma (EC) cells are malignant counterparts of embryonic stem (ES) cells and serve as useful models for investigating cellular differentiation and human embryogenesis. Though the susceptibility of murine EC cells to retroviral infection has been extensively analyzed, few studies of retrovirus infection of human EC cells have been performed. We tested the susceptibility of human EC cells to transduction by retroviral vectors derived from three different retroviral genera. We show that human EC cells efficiently express reporter genes delivered by vectors based on human immunodeficiency virus type 1 (HIV-1) and Mason-Pfizer monkey virus (M-PMV) but not Moloney murine leukemia virus (MLV). In human EC cells, MLV integration occurs normally, but no viral gene expression is observed. The block to MLV expression of MLV genomes is relieved upon cellular differentiation. The lack of gene expression is correlated with transcriptional silencing of the MLV promoter through the deposition of repressive histone marks as well as DNA methylation. Moreover, depletion of SETDB1, a histone methyltransferase, resulted in a loss of transcriptional silencing and upregulation of MLV gene expression. Finally, we provide evidence showing that the lack of MLV gene expression may be attributed in part to the lack of MLV enhancer function in human EC cells. IMPORTANCE Human embryonic carcinoma (EC) cells are shown to restrict the expression of murine leukemia virus genomes but not retroviral genomes of the lentiviral or betaretroviral families. The block occurs at the level of transcription and is accompanied by the deposition of repressive histone marks and methylation of the integrated proviral DNA. The host machinery required for silencing in human EC cells is distinct from that in murine EC cell lines: the histone methyltransferase SETDB1 is required, but the widely utilized corepressor TRIM28/Kap1 is not. A transcriptional enhancer element from the Mason-Pfizer monkey virus can override the silencing and promote transcription of chimeric proviral DNAs. The findings reveal novel features of human EC gene regulation not present in their murine counterparts.
Collapse
|
11
|
Histones Are Rapidly Loaded onto Unintegrated Retroviral DNAs Soon after Nuclear Entry. Cell Host Microbe 2016; 20:798-809. [PMID: 27866901 DOI: 10.1016/j.chom.2016.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Chromosomal structure of nuclear DNA is usually maintained by insertion of nucleosomes into preexisting chromatin, both on newly synthesized DNA at replication forks and at sites of DNA damage. But during retrovirus infection, a histone-free DNA copy of the viral genome is synthesized that must be loaded with nucleosomes de novo. Here, we show that core histones are rapidly loaded onto unintegrated Moloney murine leukemia virus DNAs. Loading of nucleosomes requires nuclear entry, but does not require viral DNA integration. The histones associated with unintegrated DNAs become marked by covalent modifications, with a delay relative to the time of core histone loading. Expression from unintegrated DNA can be enhanced by modulation of the histone-modifying machinery. The data show that histone loading onto unintegrated DNAs occurs very rapidly after nuclear entry and does not require prior establishment of an integrated provirus.
Collapse
|
12
|
Griffin DO, Goff SP. Restriction of HIV-1-based lentiviral vectors in adult primary marrow-derived and peripheral mobilized human CD34+ hematopoietic stem and progenitor cells occurs prior to viral DNA integration. Retrovirology 2016; 13:14. [PMID: 26945863 PMCID: PMC4779582 DOI: 10.1186/s12977-016-0246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/18/2016] [Indexed: 01/10/2023] Open
Abstract
Background Gene therapy is currently being attempted using a number of delivery vehicles including lentiviral-based vectors. The delivery and insertion of a gene using lentiviral-based vectors involves multiple discrete steps, including reverse transcription of viral RNA into DNA, nuclear entry, integration of viral DNA into the host genome and expression of integrated genes. Transduction of murine stem cells by the murine leukemia viruses is inefficient because the expression of the integrated DNA is profoundly blocked. Transduction of human stem cells by lentivirus vectors is also inefficient, but the cause and specific part of the retroviral lifecycle where this block occurs is unknown. Results Here we demonstrate that the dominant point of restriction of an HIV-1-based lentiviral vector in adult human hematopoietic stem and progenitor cells (HSPCs) from bone marrow and also those obtained following peripheral mobilization is prior to viral DNA integration. We specifically show that restriction of HSPCs to an HIV-1-based lentiviral vector is prior to formation of nuclear DNA forms. Conclusions Murine restriction of MLV and human cellular restriction of HIV-1 are fundamentally different. While murine restriction of MLV occurs post integration, human restriction of HIV-1 occurs before integration.
Collapse
Affiliation(s)
- Daniel O Griffin
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Ichida Y, Utsunomiya Y, Onodera M. The third to fifth zinc fingers play an essential role in the binding of ZFP809 to the MLV-derived PBS. Biochem Biophys Res Commun 2016; 469:490-4. [DOI: 10.1016/j.bbrc.2015.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
|
14
|
Ichida Y, Utsunomiya Y, Yasuda T, Nakabayashi K, Sato T, Onodera M. Functional Domains of ZFP809 Essential for Nuclear Localization and Gene Silencing. PLoS One 2015; 10:e0139274. [PMID: 26417948 PMCID: PMC4587795 DOI: 10.1371/journal.pone.0139274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
Zinc finger protein 809 (ZFP809) is a member of the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family, and is highly expressed in mouse immature cells. ZFP809 is known to inhibit the expression of transduced genes driven by Moloney murine leukemia virus (MoMLV)-typed retroviral vectors by binding to the primer binding site (PBS) located downstream of the MLV-long terminal repeat (LTR) of the vectors and recruiting protein complexes that introduce epigenetic silencing marks such as histone modifications and DNA methylation at the MLV-LTR. However, it remains undetermined what domains of ZFP809 among the KRAB domain at N-terminus and the seven zinc fingers are critical for gene silencing. In this study, we assessed subcellular localization, gene silencing ability, and binding ability to the PBS of a series of truncated and mutated ZFP809 proteins. We revealed the essential role of the KRAB A box for all functions assessed, together with the accessory roles of a subset of zinc fingers. Our data also suggest that interaction between KAP1 and the KRAB A box of ZFP809 is critical in KAP1-dependent control of gene silencing for ZFP809 targets.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
15
|
Yang BX, El Farran CA, Guo HC, Yu T, Fang HT, Wang HF, Schlesinger S, Seah YFS, Goh GYL, Neo SP, Li Y, Lorincz MC, Tergaonkar V, Lim TM, Chen L, Gunaratne J, Collins JJ, Goff SP, Daley GQ, Li H, Bard FA, Loh YH. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell 2015; 163:230-45. [PMID: 26365490 DOI: 10.1016/j.cell.2015.08.037] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/07/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.
Collapse
Affiliation(s)
- Bin Xia Yang
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Chadi A El Farran
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hong Chao Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tao Yu
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hai Tong Fang
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Hao Fei Wang
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sharon Schlesinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Yu Fen Samantha Seah
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Germaine Yen Lin Goh
- Membrane Traffic Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Suat Peng Neo
- Quantitative Proteomics Group, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Tit-Meng Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - James J Collins
- Department of Biological Engineering, Synthetic Biology Center, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - George Q Daley
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic A Bard
- Membrane Traffic Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Abstract
Yin Yang 1 (YY1) is a member of the GLI-Krüppel class of DNA and RNA binding transcription factors that can either activate or repress gene expression during cell growth, differentiation, and embryogenesis. Although much is known about YY1 interacting proteins and the target promoters regulated by YY1, much less is known about YY1 regulation through post-translational modifications. In this study we show that YY1 is tyrosine-phosphorylated in multiple cell types. Using a combination of pharmacological inhibition, kinase overexpression, and kinase knock-out studies, we demonstrate that YY1 is a target of multiple Src family kinases in vitro and in vivo. Moreover, we have identified multiple sites of YY1 phosphorylation and analyzed the effect of phosphorylation on the activity of YY1-responsive retroviral and cellular promoters. Phosphorylation of tyrosine 383 interferes with DNA and RNA binding, leading to the down-regulation of YY1 activity. Finally, we provide the first evidence that YY1 is a downstream target of epidermal growth factor receptor signaling in vivo. Taken together, the identification of YY1 as a target of Src family kinases provide key insights into the inhibitory role of tyrosine kinases in modulating YY1 activity.
Collapse
Affiliation(s)
- Gary Z Wang
- From the Integrated Program in Cellular, Molecular, and Biophysical Studies, Medical Scientist Training Program, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Columbia University, New York, New York 10032 and
| |
Collapse
|
17
|
Robbez-Masson L, Rowe HM. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 2015; 12:45. [PMID: 26021318 PMCID: PMC4448215 DOI: 10.1186/s12977-015-0173-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/07/2015] [Indexed: 01/20/2023] Open
Abstract
Over half of our genome is composed of retrotransposons, which are mobile elements that can readily amplify their copy number by replicating through an RNA intermediate. Most of these elements are no longer mobile but still contain regulatory sequences that can serve as promoters, enhancers or repressors for cellular genes. Despite dominating our genetic content, little is known about the precise functions of retrotransposons, which include both endogenous retroviruses (ERVs) and non-LTR elements like long interspersed nuclear element 1 (LINE-1). However, a few recent cutting-edge publications have illustrated how retrotransposons shape species-specific stem cell gene expression by two opposing mechanisms, involving their recruitment of stem cell-enriched transcription factors (TFs): firstly, they can activate expression of genes linked to naïve pluripotency, and secondly, they can induce repression of proximal genes. The paradox that different retrotransposons are active or silent in embryonic stem cells (ESCs) can be explained by differences between retrotransposon families, between individual copies within the same family, and between subpopulations of ESCs. Since they have coevolved with their host genomes, some of them have been co-opted to perform species-specific beneficial functions, while others have been implicated in genetic disease. In this review, we will discuss retrotransposon functions in ESCs, focusing on recent mechanistic advances of how HERV-H has been adopted to preserve human naïve pluripotency and how particular LINE-1, SVA and ERV family members recruit species-specific transcriptional repressors. This review highlights the fine balance between activation and repression of retrotransposons that exists to harness their ability to drive evolution, while minimizing the risk they pose to genome integrity.
Collapse
Affiliation(s)
- Luisa Robbez-Masson
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| | - Helen M Rowe
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 2014; 35:770-7. [PMID: 25547290 DOI: 10.1128/mcb.01293-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps "noisy" control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks.
Collapse
|
19
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|