1
|
Li Y, Gao P, Ye Y, Li Y, Sun Z, Li L, Zhou K, Wei Y, Yao Z, Lai Q. Transcriptome Analysis Reveals the Key Genes and Pathways for Growth, Ion Transport, and Oxidative Stress in Post-Larval Black Tiger Shrimp (Penaeus monodon) Under Acute Low Salt Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:34. [PMID: 39841286 DOI: 10.1007/s10126-025-10411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P. monodon were distributed in eight experimental tanks and exposed to 3 or 5 ppt salt concentrations for 96 h. Low salinity significantly reduced the survival rate of shrimp but simultaneously activated the activity of ion transporter enzymes Na+/K+-ATPase (NKA) and Ca2+/Mg2+-ATPase), the expression of NKA, galectin 10, and cytochrompe c peroxidase genes, and the activity and expression of antioxidant-related genes (superoxide dismutase, catalase, heat shock protein 60). Low salt stress activated the urea cycle but significantly inhibited glutathione metabolization-related indicators (glutamate dehydrogenase, glutaminase, glutamic acid). RNA-seq analysis identified 221 differentially expressed genes (78 up-regulated and 143 down-regulated). Quantitative real-time PCR and RNA-seq results of 11 of them were consistent, illustrating the validity of the transcriptomic predictions. Gene set enrichment analysis results showed that calcium ion transmembrane transport, calmodulin binding, the stress-activated protein kinase signaling cascade, and regulation of the cytosolic calcium ion concentration process were significantly enriched. These results showed that low salt stress activated the calcium-dominated ion transport pathway and promoted molting growth of P. monodon. They also indicate that there is potential for larval rearing shrimp under low salt conditions.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yan Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Longyi Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuxing Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
2
|
Benedetto A, Robotti E, Belay MH, Ghignone A, Fabbris A, Goggi E, Cerruti S, Manfredi M, Barberis E, Peletto S, Arillo A, Giaccio N, Masini MA, Brandi J, Cecconi D, Marengo E, Brizio P. Multi-Omics Approaches for Freshness Estimation and Detection of Illicit Conservation Treatments in Sea Bass ( Dicentrarchus Labrax): Data Fusion Applications. Int J Mol Sci 2024; 25:1509. [PMID: 38338789 PMCID: PMC10855268 DOI: 10.3390/ijms25031509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Fish freshness consists of complex endogenous and exogenous processes; therefore, the use of a few parameters to unravel illicit practices could be insufficient. Moreover, the development of strategies for the identification of such practices based on additives known to prevent and/or delay fish spoilage is still limited. The paper deals with the identification of the effect played by a Cafodos solution on the conservation state of sea bass at both short-term (3 h) and long-term (24 h). Controls and treated samples were characterized by a multi-omic approach involving proteomics, lipidomics, metabolomics, and metagenomics. Different parts of the fish samples were studied (muscle, skin, eye, and gills) and sampled through a non-invasive procedure based on EVA strips functionalized by ionic exchange resins. Data fusion methods were then applied to build models able to discriminate between controls and treated samples and identify the possible markers of the applied treatment. The approach was effective in the identification of the effect played by Cafodos that proved to be different in the short- and long-term and complex, involving proteins, lipids, and small molecules to a different extent.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
- Department of Chemistry, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Arianna Ghignone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Alessia Fabbris
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Eleonora Goggi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Cerruti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Alessandra Arillo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Nunzia Giaccio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Maria Angela Masini
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| |
Collapse
|
3
|
Chetty T, Nowak BF, Walker SP, Symonds JE, Anderson K. Molecular evidence for stress, inflammation and structural changes in non-specific ulcers in skin of farmed Chinook salmon (Oncorhynchus tshawytscha). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108739. [PMID: 37061071 DOI: 10.1016/j.fsi.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/22/2023]
Abstract
Fish skin is critical to physical defence against pathogens and there is a need to understand the physiological processes impacting ulcers and their healing. Ulcers have been reported in farmed Chinook salmon in New Zealand. This study investigated stress, immune and structural gene expression in farmed Chinook salmon skin with and without ulcers from two sites in New Zealand sampled from February (higher temperature, late summer) to May (lower temperature, late autumn). Skin samples taken adjacent to non-specific ulcers in May and control fish in February demonstrated upregulation of heat shock protein 70 relative to control fish in May. Anterior gradient 2 expression was upregulated in fish with ulcers relative to control fish (both February and May), suggesting increased mucous cell activity. Based on the results of this study, fish with non-specific ulcers showed evidence of stress, inflammation, re-epithelisation, and delayed healing near the ulcer site, elucidating the importance of these processes in the pathogenesis of non-specific ulcers in farmed chinook salmon.
Collapse
Affiliation(s)
- Thaveshini Chetty
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Seumas P Walker
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Jane E Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Kelli Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Newnham, Tas, 7248, Australia
| |
Collapse
|
4
|
Maj-Paluch J, Wasiak M, Bocian Ł, Reichert M. Comparison of Selected Immune Parameters in a Single Infection and Co-Infection with Infectious Pancreatic Necrosis Virus with Other Viruses in Rainbow Trout. Pathogens 2022; 11:658. [PMID: 35745512 PMCID: PMC9231359 DOI: 10.3390/pathogens11060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) often occurs in an aquatic environment in co-infection with other viruses. In this study, we wanted to investigate the effect of this virus on the course of co-infection with other viruses in rainbow trout. For co-infection we used viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV) and salmonid alphavirus (SAV) field strains and infected rainbow trout divided into eight groups; I; IPNV, II; IHNV, III; VHSV, I; SAV, V; IPNV+IHNV, VI; IPNV+VHSV, VII; IPNV+SAV, and the control group. We assessed apoptosis in white blood cells and used a real time RT-PCR to analyze RNA obtained from the internal organs of the fish. During single infection and co-infection the level of expression of immune genes such as interferon and toll-like receptor 3 (TLR-3) was assessed. The highest mortality during the experiment was observed in group III infected by VHSV. The average percentage of apoptotic cells was higher in groups without co-infection, especially in groups II and III. Interferon expression was higher in singly infected groups, the highest being in the heart in group III, while expression of the TLR-3 gene was generally raised in all tested organs in all groups. We found that co-infection with IPNV had a positive impact on the course of infection with the viruses listed because it lowered mortality, reduced apoptosis in co-infected cells, and positively affected fish health.
Collapse
Affiliation(s)
- Joanna Maj-Paluch
- Department of Fish Diseases, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland;
| | - Magdalena Wasiak
- Department of Pathology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland;
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland;
| | - Michał Reichert
- Department of Fish Diseases, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland;
- Department of Pathology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland;
| |
Collapse
|
5
|
Zenke K, Okinaka Y. Establishing an effective gene knockdown system using cultured cells of the model fish medaka ( Oryzias latipes). Biol Methods Protoc 2022; 7:bpac011. [PMID: 35685404 PMCID: PMC9171500 DOI: 10.1093/biomethods/bpac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
In spite of the growing attention given to medaka (Oryzias latipes) as an excellent vertebrate model, an effective gene knockdown system has not yet been established using cultured cells of this fish species. In this study, a gene knockdown system using short interfering RNA (siRNA) in medaka cell lines was established through the optimization of transfection conditions. By extensive screening of several medaka cell lines and transfection reagents, OLHNI-2 cells and X-tremeGENE siRNA Transfection Reagent were selected as the best combination to achieve high transfection efficiency of siRNA without cytotoxic effect. Knockdown conditions were then refined using the endogenous heat shock protein 90 (Hsp90) genes as the siRNA targets. Among the parameters tested, cell density, serum concentration in the culture medium, and duration of transfection improved knockdown efficiency, where the target mRNA in cells transfected with each of the siRNAs was reduced from 12.0% to 26.7% of the control level. Our results indicate that the established knockdown system using siRNA is a promising tool for functional analysis of medaka genes in vitro.
Collapse
Affiliation(s)
- Kosuke Zenke
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
6
|
Anderson KC, Ghosh B, Chetty T, Walker SP, Symonds JE, Nowak BF. Transcriptomic characterisation of a common skin lesion in farmed chinook salmon. FISH & SHELLFISH IMMUNOLOGY 2022; 124:28-38. [PMID: 35367374 DOI: 10.1016/j.fsi.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1β and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.
Collapse
Affiliation(s)
- Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Thaveshini Chetty
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Seumas P Walker
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Jane E Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| |
Collapse
|
7
|
Hoare R, Shahin K, McLean K, Adams A, K. D. Thompson. Skin mucus proteins of rainbow trout (Oncorhynchus mykiss) in response to mucosal vaccination and challenge with Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2022; 45:491-495. [PMID: 34905629 PMCID: PMC9299601 DOI: 10.1111/jfd.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/07/2023]
Affiliation(s)
- R. Hoare
- Institute of AquacultureUniversity of StirlingStirlingUK
| | - K. Shahin
- Institute of AquacultureUniversity of StirlingStirlingUK
- Aquatic Animal Diseases LaboratoryAquaculture DivisionNational Institute of Oceanography and FisheriesSuezEgypt
| | - K. McLean
- Moredun Research InstitutePenicuikUK
| | - A. Adams
- Institute of AquacultureUniversity of StirlingStirlingUK
| | | |
Collapse
|
8
|
Sanhueza N, Fuentes R, Aguilar A, Carnicero B, Vega K, Muñoz D, Contreras D, Moreno N, Troncoso E, Mercado L, Morales-Lange B, Boltana S. Behavioural Fever Promotes an Inflammatory Reflex Circuit in Ectotherms. Int J Mol Sci 2021; 22:ijms22168860. [PMID: 34445566 PMCID: PMC8396262 DOI: 10.3390/ijms22168860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The communication between the brain and the immune system is a cornerstone in animal physiology. This interaction is mediated by immune factors acting in both health and pathogenesis, but it is unclear how these systems molecularly and mechanistically communicate under changing environmental conditions. Behavioural fever is a well-conserved immune response that promotes dramatic changes in gene expression patterns during ectotherms’ thermoregulatory adaptation, including those orchestrating inflammation. However, the molecular regulators activating the inflammatory reflex in ectotherms remain unidentified. Methods: We revisited behavioural fever by providing groups of fish a thermal gradient environment during infection. Our novel experimental setup created temperature ranges in which fish freely moved between different thermal gradients: (1) wide thermoregulatory range; T° = 6.4 °C; and (2) restricted thermoregulatory range; T° = 1.4 °C. The fish behaviour was investigated during 5-days post-viral infection. Blood, spleen, and brain samples were collected to determine plasmatic pro- and anti-inflammatory cytokine levels. To characterize genes’ functioning during behavioural fever, we performed a transcriptomic profiling of the fish spleen. We also measured the activity of neurotransmitters such as norepinephrine and acetylcholine in brain and peripheral tissues. Results: We describe the first set of the neural components that control inflammatory modulation during behavioural fever. We identified a neuro-immune crosstalk as a potential mechanism promoting the fine regulation of inflammation. The development of behavioural fever upon viral infection triggers a robust inflammatory response in vivo, establishing an activation threshold after infection in several organs, including the brain. Thus, temperature shifts strongly impact on neural tissue, specifically on the inflammatory reflex network activation. At the molecular level, behavioural fever causes a significant increase in cholinergic neurotransmitters and their receptors’ activity and key anti-inflammatory factors such as cytokine Il10 and Tgfβ in target tissues. Conclusion: These results reveal a cholinergic neuronal-based mechanism underlying anti-inflammatory responses under induced fever. We performed the first molecular characterization of the behavioural fever response and inflammatory reflex activation in mobile ectotherms, identifying the role of key regulators of these processes. These findings provide genetic entry points for functional studies of the neural–immune adaptation to infection and its protective relevance in ectotherm organisms.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Andrea Aguilar
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Beatriz Carnicero
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Karina Vega
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - David Muñoz
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - David Contreras
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Nataly Moreno
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Eduardo Troncoso
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (L.M.); (B.M.-L.)
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (L.M.); (B.M.-L.)
| | - Sebastian Boltana
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
- Correspondence: ; Fax: +56-41-266-16-17
| |
Collapse
|
9
|
Djordjevic B, Morales-Lange B, McLean Press C, Olson J, Lagos L, Mercado L, Øverland M. Comparison of Circulating Markers and Mucosal Immune Parameters from Skin and Distal Intestine of Atlantic Salmon in Two Models of Acute Stress. Int J Mol Sci 2021; 22:ijms22031028. [PMID: 33494146 PMCID: PMC7864346 DOI: 10.3390/ijms22031028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/13/2023] Open
Abstract
Ensuring salmon health and welfare is crucial to maximize production in recirculation aquaculture systems. Healthy and robust mucosal surfaces of the skin and intestine are essential to achieve this goal because they are the first immunological defenses and are constantly exposed to multistressor conditions, such as infectious diseases, suboptimal nutrition, and environmental and handling stress. In this work, Atlantic salmon, split from a single cohort, were subjected to acute hypoxia stress or 15-min crowding stress and observed over a 24-h recovery period. Samples were collected from fish at 0, 1, 3, 6, 12 and 24 h post-stress to analyze plasma-circulating markers of endocrine function (cortisol), oxidative stress (glutathione peroxidase) and immune function (interleukin 10 (IL-10), annexin A1). In addition, mucosal barrier function parameters were measured in the skin mucus (Muc-like protein and lysozyme) and distal intestine (simple folds, goblet cell size and goblet cell area). The results showed that both acute stress models induced increases of circulating cortisol in plasma (1 h post-stress), which then returned to baseline values (initial control) at 24 h post-stress. Moreover, the hypoxia stress was mostly related to increased oxidative stress and IL-10 production, whereas the crowding stress was associated with a higher production of Muc-like protein and lysozyme in the skin mucus. Interestingly, in the distal intestine, smaller goblet cells were detected immediately and one hour after post-hypoxia stress, which could be related to rapid release of the cellular content to protect this organ. Finally, the correlation of different markers in the hypoxic stress model showed that the circulating levels of cortisol and IL-10 were directly proportional, while the availability of Muc-like proteins was inversely proportional to the size of the goblet cells. On the other hand, in the crowding stress model, a proportional relationship was established between plasma cortisol levels and skin mucus lysozyme. Our results suggest key differences in energy partitioning between the two acute stress models and support the need for further investigation into the interplay of multistressor conditions and strategies to modulate immunological aspects of mucosal surfaces.
Collapse
Affiliation(s)
- Brankica Djordjevic
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Jake Olson
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, 2950 Valparaíso, Chile;
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| |
Collapse
|
10
|
Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019; 10:302. [PMID: 31001125 PMCID: PMC6457337 DOI: 10.3389/fphys.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and Tomato chlorosis virus (ToCV) are two of the most devastating cultivated tomato viruses, causing significant crop losses worldwide. As the vector of both TYLCV and ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread and mixed infection of TYLCV and ToCV in China. However, little is known concerning B. tabaci MED's molecular response to TYLCV and ToCV infection or their co-infection. We determined the transcriptional responses of the whitefly MED to TYLCV infection, ToCV infection, and TYLCV&ToCV co-infection using Illumina sequencing. In all, 78, 221, and 60 differentially expressed genes (DEGs) were identified in TYLCV-infected, ToCV-infected, and TYLCV&ToCV co-infected whiteflies, respectively, compared with non-viruliferous whiteflies. Differentially regulated genes were sorted according to their roles in detoxification, stress response, immune response, transport, primary metabolism, cell function, and total fitness in whiteflies after feeding on virus-infected tomato plants. Alterations in the transcription profiles of genes involved in transport and energy metabolism occurred between TYLCV&ToCV co-infection and single infection with TYLCV or ToCV; this may be associated with the adaptation of the insect vector upon co-infection of the two viruses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses demonstrated that the single infection with TYLCV or ToCV and the TYLCV&ToCV co-infection could perturb metabolic processes and metabolic pathways. Taken together, our results provide basis for further exploration of the molecular mechanisms of the response to TYLCV, ToCV single infection, and TYLCV&ToCV co-infection in B. tabaci MED, which will add to our knowledge of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Tian-Bo Ding
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Villalba M, Pérez V, Herrera L, Stepke C, Maldonado N, Fredericksen F, Yáñez A, Olavarría VH. Infectious pancreatic necrosis virus infection of fish cell lines: Preliminary analysis of gene expressions related to extracellular matrix remodeling and immunity. Vet Immunol Immunopathol 2017; 193-194:10-17. [PMID: 29129223 DOI: 10.1016/j.vetimm.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/30/2022]
Abstract
The pathogenic infectious pancreatic necrosis virus (IPNV) causes high economic losses in fish farming. This virus can modulate several cellular processes during infection, but little is known about the infection mechanism. To investigate gene activation in response to IPNV, CHSE/F and SHK-1 cell line were infected with a cytopathic Sp field isolate of IPNV, and the expression profiles of proinflammatory, antiviral cytokine, and extracellular matrix markers were analyzed. IPNV induced the production of perlecan, fibulin-1, matrix metalloproteinase-2, 14-3-3β, interleukin-1β, Mx1, and interferon regulatory factors-1, -3, and -9. Interestingly, IPNV-mediated activity was blocked by pharmacological inhibitors of the NF-κB signaling pathway. These results, together with in silico analyses showing the presence of several regulatory consensus-target motifs, suggest that IPNV regulates gene expressions in fish through the activation of several key transcription factors. Collectively, these data indicate that IPNV is a viral regulator of expression for extracellular-matrix and immune markers, even during early infection. Finally, this is the first report in fish to find IPNV modulating the activation of interleukin-1β production primarily through the NF-κB pathway.
Collapse
Affiliation(s)
- Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Valeria Pérez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Laura Herrera
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Cristopher Stepke
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
12
|
Kuehnl A, Musiol A, Raabe CA, Rescher U. Emerging functions as host cell factors - an encyclopedia of annexin-pathogen interactions. Biol Chem 2017; 397:949-59. [PMID: 27366904 DOI: 10.1515/hsz-2016-0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Emerging infectious diseases and drug-resistant infectious agents call for the development of innovative antimicrobial strategies. With pathogenicity now considered to arise from the complex and bi-directional interplay between a microbe and the host, host cell factor targeting has emerged as a promising approach that might overcome the limitations of classical antimicrobial drug development and could open up novel and efficient therapeutic strategies. Interaction with and modulation of host cell membranes is a recurrent theme in the host-microbe relationship. In this review, we provide an overview of what is currently known about the role of the Ca2+ dependent, membrane-binding annexin protein family in pathogen-host interactions, and discuss their emerging functions as host cell derived auxiliary proteins in microbe-host interactions and host cell targets.
Collapse
|
13
|
Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2013; 34:729-743. [PMID: 23276883 DOI: 10.1016/j.fsi.2012.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Aquatic animal diseases are one of the most significant constraints to the development and management of aquaculture worldwide. As a result, measures to combat diseases of fish and shellfish have assumed a high priority in many aquaculture-producing countries. RNA interference (RNAi), a natural mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as a powerful tool not only to investigate the function of specific genes, but also to suppress infection or replication of many pathogens that cause severe economic losses in aquaculture. However, despite the enormous potential as a novel therapeutical approach, many obstacles must still be overcome before RNAi therapy finds practical application in aquaculture, largely due to the potential for off-target effects and the difficulties in providing safe and effective delivery of RNAi molecules in vivo. In the present review, we discuss the current knowledge of RNAi as an experimental tool, as well as the concerns and challenges ahead for the application of such technology to combat infectious disease of farmed aquatic animals.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Marine and Atmospheric Research, C/-CSIRO Livestock Industries, QBP, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
14
|
Zheng J, Tan BH, Sugrue R, Tang K. Current approaches on viral infection: proteomics and functional validations. Front Microbiol 2012; 3:393. [PMID: 23162545 PMCID: PMC3499792 DOI: 10.3389/fmicb.2012.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022] Open
Abstract
Viruses could manipulate cellular machinery to ensure their continuous survival and thus become parasites of living organisms. Delineation of sophisticated host responses upon virus infection is a challenging task. It lies in identifying the repertoire of host factors actively involved in the viral infectious cycle and characterizing host responses qualitatively and quantitatively during viral pathogenesis. Mass spectrometry based proteomics could be used to efficiently study pathogen-host interactions and virus-hijacked cellular signaling pathways. Moreover, direct host and viral responses upon infection could be further investigated by activity-based functional validation studies. These approaches involve drug inhibition of secretory pathway, immunofluorescence staining, dominant negative mutant of protein target, real-time PCR, small interfering siRNA-mediated knockdown, and molecular cloning studies. In this way, functional validation could gain novel insights into the high-content proteomic dataset in an unbiased and comprehensive way.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University Singapore
| | | | | | | |
Collapse
|
15
|
Huang HL, Liu YT, Chen MC, Wu JL, Hong JR. Zebrafish anti-apoptotic gene Bcl-xL can prevent aquatic birnavirus-induced cell death in fish cells without affecting expression of viral proteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:970-977. [PMID: 21906684 DOI: 10.1016/j.fsi.2011.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/18/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The aquatic birnavirus induces mitochondria-mediated cell death in fish; however, the molecular mechanism remains unknown. In the present study, we demonstrated that aquatic birnavirus-induced mitochondria-mediated cell death is regulated by the anti-apoptotic Bcl-2 family member, zfBcl-xL, which is anti-apoptotic and enhances host cell viability. First, CHSE-214 cells carrying EGFP-zfBcl-xL fused genes were selected, established in culture, and used to examine the involvement of zfBcl-xL in host cell protection from the effects of viral infection. EGFP-zfBcl-xL was found to prevent infectious pancreatic necrosis virus (IPNV)-induced phosphatidylserine exposure up to 40% at 12 h and 24 h post-infection (p.i.), block IPNV-induced loss of mitochondrial membrane potential (ΔΨm), and enhance host viability at the middle and late replication stages. In addition, zfBcl-xL overexpression prevented IPNV-induced caspase-9 activation up to 25% and 85% at the middle (12 h p.i.) and late (24 h p.i.) replication stages without affecting expression of viral proteins such as VP3 (as a viral death protein) protein. In the present study, we demonstrated that aquatic birnavirus-induced cell death is prevented by the anti-apoptotic Bcl-2 family member, zfBcl-xL, which enhances host cell viability through blockage of mitochondrial disruption and caspase-9 activation.
Collapse
Affiliation(s)
- Hui-Ling Huang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Huang HL, Wu JL, Chen MHC, Hong JR. Aquatic birnavirus-induced ER stress-mediated death signaling contribute to downregulation of Bcl-2 family proteins in salmon embryo cells. PLoS One 2011; 6:e22935. [PMID: 21901118 PMCID: PMC3161983 DOI: 10.1371/journal.pone.0022935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/06/2011] [Indexed: 12/17/2022] Open
Abstract
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.
Collapse
Affiliation(s)
- Hui Ling Huang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jen Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mark Hung Chih Chen
- Bioluminescence in Life-image Laboratory, Institute of Biotechnology, Department of Biotechnology, Hungkuang University, Taichung, Taiwan
- * E-mail: (JRH); (MHCC)
| | - Jiann Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (JRH); (MHCC)
| |
Collapse
|
17
|
Ding T, Zhang W, Ma W, Ren J. Identification of a mutated BHK-21 cell line that became less susceptible to Japanese encephalitis virus infection. Virol J 2011; 8:115. [PMID: 21396132 PMCID: PMC3064645 DOI: 10.1186/1743-422x-8-115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 03/14/2011] [Indexed: 04/23/2025] Open
Abstract
The pathogenesis of Japanese encephalitis virus (JEV) is not definitely elucidated as the initial interaction between virus and host cell receptors required for JEV infection is not clearly defined yet. Here, in order to discover those membrane proteins that may be involved in JEV attachment to or entry into virus permissive BHK-21 cells, a chemically mutated cell line (designated 3A10-3F) that became less susceptible to JEV infection was preliminarily established and selected by repeated low moi JEV challenges and RT-PCR detection for viral RNA E gene fragment. The susceptibility to JEV of 3A10-3F cells was significantly weakened compared with parental BHK-21 cells, verified by indirect immunofluorescence assay, virus plague formation assay, and flow cytometry. Finally, two-dimensional electrophoresis (2-DE) coupled with LC-MS/MS was utilized to recognize the most differentially expressed proteins from membrane protein extracts of 3A10-3F and BHK-21 cells respectively. The noted discrepancy of membrane proteins included calcium binding proteins (annexin A1, annexin A2), and voltage-dependent anion channels proteins (VDAC 1, VDAC 2), suggesting that these molecules may affect JEV attachment to and/or entry into BHK-21 cells and worthy of further investigation.
Collapse
Affiliation(s)
- Tianbing Ding
- Department of Microbiology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | | | | | | |
Collapse
|
18
|
Cao Z, Han Z, Shao Y, Geng H, Kong X, Liu S. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Sci 2011; 9:11. [PMID: 21385394 PMCID: PMC3060854 DOI: 10.1186/1477-5956-9-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 03/08/2011] [Indexed: 12/02/2022] Open
Abstract
Background Avian infectious bronchitis (IB) is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV). Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS). Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.
Collapse
Affiliation(s)
- Zhongzan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | | | | | | | | | | |
Collapse
|
19
|
Aquatic birnavirus capsid protein, VP3, induces apoptosis via the Bad-mediated mitochondria pathway in fish and mouse cells. Apoptosis 2010; 15:653-68. [DOI: 10.1007/s10495-010-0468-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Chen PC, Wu JL, Her GM, Hong JR. Aquatic birnavirus induces necrotic cell death via the mitochondria-mediated caspase pathway. FISH & SHELLFISH IMMUNOLOGY 2010; 28:344-353. [PMID: 19944168 DOI: 10.1016/j.fsi.2009.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 11/05/2009] [Accepted: 11/14/2009] [Indexed: 05/28/2023]
Abstract
Aquatic birnavirus induces necrotic cell death by an ill-understood process. Presently, we demonstrate that infectious pancreatic necrosis virus (IPNV) induces post-apoptotic necrotic cell death through loss of mitochondrial membrane potential (MMP) followed by caspase-3 activation in CHSE-214 cells. Progressive phosphatidylserine externalization was observed at 6 h post-infection (p.i.). This was followed by the development of bulb-like vesicles (bleb formation) at 8 h p.i. Progressive loss of MMP was also observed in IPNV-infected CHSE-214 cells beginning at 6 h p.i. At 8 h and 12 h p.i., IPNV-infected cells demonstrated a dramatic increase in MMP loss, rapid entry into necrotic cell death, and activation of caspase-9 and -3. Additionally, treatment with an inhibitor of MMP loss, bongkrekic acid, an adenine nucleotide translocase inhibitor, blocked IPNV-induced PS exposure and MMP loss, as well as reduced the activation of caspase-3. Taken together, our results suggest that IPNV induces apoptotic cell death via loss of MMP, thereby triggering secondary necrosis and caspases-3 activation. Furthermore, this death-signaling pathway is disrupted by bongkrekic acid in fish cells, indicating that this drug may serve to modulate IPNV-induced pathogenesis.
Collapse
Affiliation(s)
- Po-Chun Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
21
|
Narayan R, Gangadharan B, Hantz O, Antrobus R, García A, Dwek RA, Zitzmann N. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res 2009; 8:118-22. [PMID: 19053806 DOI: 10.1021/pr800562j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first proteomic characterization of the HepaRG cell line, the only cell line that is susceptible to hepatitis B virus (HBV) infection and supports a complete virus life cycle, is reported. Differential analysis of naive and HBV-infected HepaRG cells by two-dimensional gel electrophoresis revealed 19 differentially regulated features, 7 increasing and 12 decreasing with HBV infection. The proteins identified in these features were involved in various cellular pathways including apoptosis, DNA/RNA processing, and hepatocellular impairment. Similar expression changes in a number of the identified proteins have already been reported for other virus systems. Identification of these expression changes is a validation of the proteomics approach and contributes to an understanding of host cellular response to HBV infection.
Collapse
|