1
|
Cui W, Wang H, Gao Y, Zhang X, Xin J, Li Z, Li G, Gao W, Zhang W. Deubiquitinase USP37 enhances the anti-HIV-2/SIV ability of the host restriction factor SAMHD1. J Virol 2025; 99:e0185824. [PMID: 39655951 PMCID: PMC11784012 DOI: 10.1128/jvi.01858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 02/01/2025] Open
Abstract
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains. Notably, USP37 deubiquitinates SAMHD1 by directly recognizing SAMHD1 rather than by targeting the E3 ubiquitin ligase. The deubiquitinase activity of USP37 and its ubiquitin interacting motifs are essential for the deubiquitination of SAMHD1, whereas the phosphorylation state of USP37 does not influence its activity. Additionally, USP37 enhances the suppression of the retrotransposition of LINE-1 elements by SAMHD1 via stabilizing SAMHD1. Our findings provide important evidence that enhancing the deubiquitinating activity of some DUBs results in the stability of the host restriction factor and might be a viable strategy against HIV/SIV infections.IMPORTANCESAMHD1 is a multifunctional protein, including restricting virus replication, maintaining genomic integrity through DNA repair, modulating the immune response by influencing the production of type I interferons and other cytokines, and affecting cancer cell proliferation and sensitivity to chemotherapy. However, HIV-2/simian immunodeficiency virus (SIV)-encoded Vpx and the host E3 ligase TRIM21 can induce the degradation of SAMHD1 via the ubiquitin-proteasome pathway. Therefore, it is necessary to find the strategy to stabilize SAMHD1. Our study demonstrates that the deubiquitinase USP37 reverses Vpx- and TRIM21-mediated degradation of SAMHD1, thereby inhibiting SIV replication and LINE-1 activity by stabilizing SAMHD1. Thus, we report a novel role of USP37, which represents a potentially useful target for the development of new drugs.
Collapse
Affiliation(s)
- Wenzhe Cui
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Hongfei Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jingguo Xin
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Gao W, Rui Y, Li G, Zhai C, Su J, Liu H, Zheng W, Zheng B, Zhang W, Yang Y, Hua S, Yu X. Specific Deubiquitinating Enzymes Promote Host Restriction Factors Against HIV/SIV Viruses. Front Immunol 2021; 12:740713. [PMID: 34630422 PMCID: PMC8492978 DOI: 10.3389/fimmu.2021.740713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hijacking host ubiquitin pathways is essential for the replication of diverse viruses. However, the role of deubiquitinating enzymes (DUBs) in the interplay between viruses and the host is poorly characterized. Here, we demonstrate that specific DUBs are potent inhibitors of viral proteins from HIVs/simian immunodeficiency viruses (SIVs) that are involved in viral evasion of host restriction factors and viral replication. In particular, we discovered that T cell-functioning ubiquitin-specific protease 8 (USP8) is a potent and specific inhibitor of HIV-1 virion infectivity factor (Vif)-mediated apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3)G (A3G) degradation. Ectopic expression of USP8 inhibited Vif-induced A3G degradation and suppressed wild-type HIV-1 infectivity even in the presence of Vif. In addition, specific DUBs repressed Vpr-, Vpu-, and Vpx-triggered host restriction factor degradation. Our study has revealed a previously unrecognized interplay between the host's DUBs and viral replication. Enhancing the antiviral activity of DUBs therefore represents an attractive strategy against HIVs/SIVs.
Collapse
Affiliation(s)
- Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyang Zhai
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wenwen Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baisong Zheng
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaofang Yu
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Gao W, Li G, Zhao S, Wang H, Huan C, Zheng B, Jiang C, Zhang W. Deubiquitinating Enzyme USP21 Inhibits HIV-1 Replication by Downregulating Tat Expression. J Virol 2021; 95:e0046021. [PMID: 33827943 PMCID: PMC8316079 DOI: 10.1128/jvi.00460-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Ubiquitination plays an important role in human immunodeficiency virus 1 (HIV-1) infection. HIV proteins such as Vif and Vpx mediate the degradation of the host proteins APOBEC3 and SAMHD1, respectively, through the proteasome pathway. However, whether deubiquitylating enzymes play an essential role in HIV-1 infection is largely unknown. Here, we demonstrate that the deubiquitinase USP21 potently inhibits HIV-1 production by indirectly downregulating the expression of HIV-1 transactivator of transcription (Tat), which is essential for transcriptional elongation in HIV-1. USP21 deubiquitylates Tat via its deubiquitinase activity, but a stronger ability to reduce Tat expression than a dominant-negative ubiquitin mutant (Ub-KO) showed that other mechanisms may contribute to USP21-mediated inhibition of Tat. Further investigation showed that USP21 downregulates cyclin T1 mRNA levels by increasing methylation of histone K9 in the promoter of cyclin T1, a subunit of the positive transcription elongation factor b (P-TEFb) that interacts with Tat and transactivation response element (TAR) and is required for transcription stimulation and Tat stability. Moreover, USP21 had no effect on the function of other HIV-1 accessory proteins, including Vif, Vpr, Vpx, and Vpu, indicating that USP21 was specific to Tat. These findings improve our understanding of USP21-mediated functional suppression of HIV-1 production. IMPORTANCE Ubiquitination plays an essential role in viral infection. Deubiquitinating enzymes (DUBs) reverse ubiquitination by cleaving ubiquitins from target proteins, thereby affecting viral infection. The role of the members of the USP family, which comprises the largest subfamily of DUBs, is largely unknown in HIV-1 infection. Here, we screened a series of USP members and found that USP21 inhibits HIV-1 production by specifically targeting Tat but not the other HIV-1 accessory proteins. Further investigations revealed that USP21 reduces Tat expression in two ways. First, USP21 deubiquitinates polyubiquitinated Tat, causing Tat instability, and second, USP21 reduces the mRNA levels of cyclin T1 (CycT1), an important component of P-TEFb, that leads to Tat downregulation. Thus, in this study, we report a novel role of the deubiquitinase, USP21, in HIV-1 infection. USP21 represents a potentially useful target for the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Wenying Gao
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Simin Zhao
- College of Life Science of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Chunlai Jiang
- College of Life Science of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang C, Meng L, Wang J, Zhang K, Duan S, Ren P, Wei Y, Fu X, Yu B, Wu J, Yu X. Role of Intracellular Distribution of Feline and Bovine SAMHD1 Proteins in Lentiviral Restriction. Virol Sin 2021; 36:981-996. [PMID: 33751400 DOI: 10.1007/s12250-021-00351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Human SAMHD1 (hSAM) restricts lentiviruses at the reverse transcription step through its dNTP triphosphohydrolase (dNTPase) activity. Besides humans, several mammalian species such as cats and cows that carry their own lentiviruses also express SAMHD1. However, the intracellular distribution of feline and bovine SAMHD1 (fSAM and bSAM) and its significance in their lentiviral restriction function is not known. Here, we demonstrated that fSAM and bSAM were both predominantly localized to the nucleus and nuclear localization signal (11KRPR14)-deleted fSAM and bSAM relocalized to the cytoplasm. Both cytoplasmic fSAM and bSAM retained the antiviral function against different lentiviruses and cytoplasmic fSAM could restrict Vpx-encoding SIV and HIV-2 more efficiently than its wild-type (WT) protein as cytoplasmic hSAM. Further investigation revealed that cytoplasmic fSAM was resistant to Vpx-induced degradation like cytoplasmic hSAM, while cytoplasmic bSAM was not, but they all demonstrated the same in vitro dNTPase activity and all could interact with Vpx as their WT proteins, indicating that cytoplasmic hSAM and fSAM can suppress more SIV and HIV-2 by being less sensitive to Vpx-mediated degradation. Our results suggested that fSAM- and bSAM-mediated lentiviral restriction does not require their nuclear localization and that fSAM shares more common features with hSAM. These findings may provide insights for the establishment of alternative animal models to study SAMHD1 in vivo.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,The First Hospital and Institute of Immunology, Jilin University, Changchun, 130012, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jialin Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Kaikai Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pengyu Ren
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingzhe Wei
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Li Z, Huan C, Wang H, Liu Y, Liu X, Su X, Yu J, Zhao Z, Yu X, Zheng B, Zhang W. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity. EMBO Rep 2020; 21:e47528. [PMID: 31797533 PMCID: PMC6944907 DOI: 10.15252/embr.201847528] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 possesses multiple functions, but whether cellular factors regulate SAMHD1 expression or its function remains not well characterized. Here, by investigating why cultured RD and HEK293T cells show different sensitivity to enterovirus 71 (EV71) infection, we demonstrate that SAMHD1 is a restriction factor for EV71. Importantly, we identify TRIM21, an E3 ubiquitin ligase, as a key regulator of SAMHD1, which specifically interacts and degrades SAMHD1 through the proteasomal pathway. However, TRIM21 has no effect on EV71 replication itself. Moreover, we prove that interferon production stimulated by EV71 infection induces increased TRIM21 and SAMHD1 expression, whereas increasing TRIM21 overrides SAMHD1 inhibition of EV71 in cells and in a neonatal mouse model. TRIM21-mediated degradation of SAMHD1 also affects SAMHD1-dependent restriction of HIV-1 and the regulation of interferon production. We further identify the functional domains in TRIM21 required for SAMHD1 binding and the ubiquitination site K622 in SAMHD1 and show that phosphorylation of SAMHD1 at T592 also blocks EV71 restriction. Our findings illuminate how EV71 overcomes SAMHD1 inhibition via the upregulation of TRIM21.
Collapse
Affiliation(s)
- Zhaolong Li
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Chen Huan
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Hong Wang
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Yue Liu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xin Liu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xing Su
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Jinghua Yu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Zhilei Zhao
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Xiao‐Fang Yu
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education)Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Baisong Zheng
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| | - Wenyan Zhang
- The First Hospital of Jilin UniversityInstitute of Virology and AIDS ResearchChangchunChina
| |
Collapse
|
6
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
7
|
Landsberg CD, Megger DA, Hotter D, Rückborn MU, Eilbrecht M, Rashidi-Alavijeh J, Howe S, Heinrichs S, Sauter D, Sitek B, Le-Trilling VTK, Trilling M. A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-κB Inhibitory Activity of the HIV-2-Encoded Vpx. Front Immunol 2018; 9:2978. [PMID: 30619335 PMCID: PMC6305766 DOI: 10.3389/fimmu.2018.02978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Viruses and hosts are situated in a molecular arms race. To avoid morbidity and mortality, hosts evolved antiviral restriction factors. These restriction factors exert selection pressure on the viruses and drive viral evolution toward increasingly efficient immune antagonists. Numerous viruses exploit cellular DNA damage-binding protein 1 (DDB1)-containing Cullin RocA ubiquitin ligases (CRLs) to induce the ubiquitination and subsequent proteasomal degradation of antiviral factors expressed by their hosts. To establish a comprehensive understanding of the underlying protein interaction networks, we performed immuno-affinity precipitations for a panel of DDB1-interacting proteins derived from viruses such as mouse cytomegalovirus (MCMV, Murid herpesvirus [MuHV] 1), rat cytomegalovirus Maastricht MuHV2, rat cytomegalovirus English MuHV8, human cytomegalovirus (HCMV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Cellular interaction partners were identified and quantified by mass spectrometry (MS) and validated by classical biochemistry. The comparative approach enabled us to separate unspecific interactions from specific binding partners and revealed remarkable differences in the strength of interaction with DDB1. Our analysis confirmed several previously described interactions like the interaction of the MCMV-encoded interferon antagonist pM27 with STAT2. We extended known interactions to paralogous proteins like the interaction of the HBV-encoded HBx with different Spindlin proteins and documented interactions for the first time, which explain functional data like the interaction of the HIV-2-encoded Vpr with Bax. Additionally, several novel interactions were identified, such as the association of the HIV-2-encoded Vpx with the transcription factor RelA (also called p65). For the latter interaction, we documented a functional relevance in antagonizing NF-κB-driven gene expression. The mutation of the DDB1 binding interface of Vpx significantly impaired NF-κB inhibition, indicating that Vpx counteracts NF-κB signaling by a DDB1- and CRL-dependent mechanism. In summary, our findings improve the understanding of how viral pathogens hijack cellular DDB1 and CRLs to ensure efficient replication despite the expression of host restriction factors.
Collapse
Affiliation(s)
- Christine D Landsberg
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Meike U Rückborn
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mareike Eilbrecht
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jassin Rashidi-Alavijeh
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Howe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Barbara Sitek
- Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
The poly-proline tail of SIVmac Vpx provides gain of function for resistance to a cryptic proteasome-dependent degradation pathway. Virology 2017; 511:23-29. [PMID: 28803141 DOI: 10.1016/j.virol.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The lentiviral accessory protein Vpx is critical for viral infection of myeloid cells and acts by hijacking CRL4(DCAF1) E3 ubiquitin ligase to induce the degradation of the host restriction factor SAMHD1. It has been observed that the sequences from HIV-2 and SIVsmm/SIVmac Vpx contain a poly-proline tail which is distinct from other SIV Vpx proteins. However, the role of this region in Vpx function is controversial. Herein, we found proteasome-dependent degradation of a Vpx mutant lacking the poly-proline tail in the nucleus in a CRL4(DCAF1) E3 ligase-independent fashion. Unlike wild-type Vpx, the poly-proline tail mutant Vpx is partly defective in enhancing viral infection in macrophages. Our findings suggest that during Vpx evolution, Vpx of the HIV-2/SIVsm/SIVmac lineage is targeted by a CRL4(DCAF1) E3 ligase-independent ubiquitination pathway, and have gained this interesting region, allowing them to maintain nuclear accumulation as part of their adaptation to host cell regulation.
Collapse
|
9
|
Wang H, Guo H, Su J, Rui Y, Zheng W, Gao W, Zhang W, Li Z, Liu G, Markham RB, Wei W, Yu XF. Inhibition of Vpx-Mediated SAMHD1 and Vpr-Mediated Host Helicase Transcription Factor Degradation by Selective Disruption of Viral CRL4 (DCAF1) E3 Ubiquitin Ligase Assembly. J Virol 2017; 91:e00225-17. [PMID: 28202763 PMCID: PMC5391453 DOI: 10.1128/jvi.00225-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development.IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Science, Tianjin University, Tianjin, China
| | - Haoran Guo
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Jiaming Su
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yajuan Rui
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wenwen Zheng
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Wenying Gao
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Zhaolong Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Guanchen Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Richard B Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Xiao-Fang Yu
- School of Life Science, Tianjin University, Tianjin, China
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
HD domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step. Biochem Biophys Res Commun 2016; 470:690-696. [PMID: 26779819 DOI: 10.1016/j.bbrc.2016.01.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1GG) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1HS). Results regarding to SAMHD1HS and SAMHD1GG fusion proteins supported previous findings that the C-terminus of SAMHD1HS is essential for Vpx-induced degradation. Internal domain substitution, however, revealed that the HD domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation.
Collapse
|
11
|
Two tales (tails) of SAMHD1 destruction by Vpx. Cell Host Microbe 2016; 17:425-7. [PMID: 25856752 DOI: 10.1016/j.chom.2015.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lentivirus protein Vpx/Vpr recognizes the host restriction factor SAMHD1 at either its N- or C-terminal tail and targets it for destruction by the cellular protein degradation machinery. In this issue of Cell Host & Microbe, Schwefel et al. (2015) report the structural basis of SAMHD1 N-terminal targeting by Vpx.
Collapse
|
12
|
Wu Y, Koharudin LMI, Mehrens J, DeLucia M, Byeon CH, Byeon IJL, Calero G, Ahn J, Gronenborn AM. Structural Basis of Clade-specific Engagement of SAMHD1 (Sterile α Motif and Histidine/Aspartate-containing Protein 1) Restriction Factors by Lentiviral Viral Protein X (Vpx) Virulence Factors. J Biol Chem 2015; 290:17935-17945. [PMID: 26045556 DOI: 10.1074/jbc.m115.665513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
Sterile α motif (SAM) and histidine/aspartate (HD)-containing protein 1 (SAMHD1) restricts human/simian immunodeficiency virus infection in certain cell types and is counteracted by the virulence factor Vpx. Current evidence indicates that Vpx recruits SAMHD1 to the Cullin4-Ring Finger E3 ubiquitin ligase (CRL4) by facilitating an interaction between SAMHD1 and the substrate receptor DDB1- and Cullin4-associated factor 1 (DCAF1), thereby targeting SAMHD1 for proteasome-dependent down-regulation. Host-pathogen co-evolution and positive selection at the interfaces of host-pathogen complexes are associated with sequence divergence and varying functional consequences. Two alternative interaction interfaces are used by SAMHD1 and Vpx: the SAMHD1 N-terminal tail and the adjacent SAM domain or the C-terminal tail proceeding the HD domain are targeted by different Vpx variants in a unique fashion. In contrast, the C-terminal WD40 domain of DCAF1 interfaces similarly with the two above complexes. Comprehensive biochemical and structural biology approaches permitted us to delineate details of clade-specific recognition of SAMHD1 by lentiviral Vpx proteins. We show that not only the SAM domain but also the N-terminal tail engages in the DCAF1-Vpx interaction. Furthermore, we show that changing the single Ser-52 in human SAMHD1 to Phe, the residue found in SAMHD1 of Red-capped monkey and Mandrill, allows it to be recognized by Vpx proteins of simian viruses infecting those primate species, which normally does not target wild type human SAMHD1 for degradation.
Collapse
Affiliation(s)
- Ying Wu
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Leonardus M I Koharudin
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jennifer Mehrens
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Chang-Hyeok Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - In-Ja L Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Guillermo Calero
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
13
|
Li J, Xu F, Hu S, Zhou J, Mei S, Zhao X, Cen S, Jin Q, Liang C, Guo F. Characterization of the interactions between SIVrcm Vpx and red-capped mangabey SAMHD1. Biochem J 2015; 468:303-313. [PMID: 25791246 DOI: 10.1042/bj20141331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
SAMHD1 (SAM domain- and HD domain-containing protein 1) inhibits HIV-1 infection of myeloid cells and resting CD4+ T-cells. Two lineages of primate lentiviruses, the sooty mangabey SIV (simian immunodeficiency virus) (SIVsm)/macaque SIV (SIVmac)/HIV-2 lineage and the red-capped mangabey SIV (SIVrcm) lineage, carry a SAMHD1 antagonist called Vpx. Vpx recognizes SAMHD1 and recruits a ubiquitin E3 ligase complex that is composed of CUL4 (Cullin4), DDB1 (damaged DNA-binding protein 1) and a member of the DCAF (DDB1/CUL4-associated factor) family called DCAF1. This E3 ligase complex polyubiquitinates SAMHD1, which leads to proteasomal degradation of SAMHD1. As opposed to the well-characterized interaction of SIVmac Vpx with human SAMHD1 and DCAF1, SIVrcm Vpx adopts a different mode of interaction with SAMHD1 of red-capped mangabeys. In the present study, we have characterized the interactions that are essential for SIVrcm Vpx-mediated degradation of rcmSAMHD1 (red-capped mangabey SAMHD1). Using mutagenesis and molecular modelling, we have determined the key role of the W23LHR26 peptide of SIVrcm Vpx in recognizing rcmSAMHD1. The amino acids Phe15, Leu36, Phe52, Arg55 and Arg56 at the N-terminal domain (NtD) of rcmSAMHD1 are involved in interaction with Vpxrcm (red-capped mangabey Vpx). The molecular model of rcmSAMHD1-NtD, Vpxrcm and C-terminal domain (CtD) of DCAF1 (DCAF1-CtD) complex reveals further that rcmSAMHD1-NtD and Vpxrcm utilize an interaction interface that is different from that used by human SAMHD1-CtD and Vpxsm. These findings provide further insights into the different modes of interaction between Vpx and SAMHD1 as the result of the 'arms race' of virus and host cell.
Collapse
Affiliation(s)
- Jian Li
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fengwen Xu
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Siqi Hu
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Jinming Zhou
- †Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoxiao Zhao
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Cen
- †Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Qi Jin
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Chen Liang
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Guo
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
14
|
Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 2015; 17:489-99. [PMID: 25856754 PMCID: PMC4400269 DOI: 10.1016/j.chom.2015.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/31/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal "degron" sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication.
Collapse
Affiliation(s)
- David Schwefel
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Virginie C Boucherit
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Evangelos Christodoulou
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip A Walker
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jonathan P Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
15
|
Liu X, Guo H, Wang H, Markham R, Wei W, Yu XF. HIV-1 Vpr suppresses the cytomegalovirus promoter in a CRL4(DCAF1) E3 ligase independent manner. Biochem Biophys Res Commun 2015; 459:214-219. [PMID: 25704090 DOI: 10.1016/j.bbrc.2015.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 11/21/2022]
Abstract
Although the Vpr protein of human immunodeficiency virus type 1 (HIV-1) has been shown to act as a transcriptional activator of the HIV-1 LTR and certain host genes, the current study demonstrates that it can also function as a potent inhibitor of the cytomegalovirus (CMV) promoter. Previous studies have shown that the cell cycle arrest and apoptotic functions of Vpr required recruitment of the CRL4(DCAF1) E3 ligase, but this complex is shown not to be required for inhibition of the CMV promoter. We identified conserved sites (A30/V31) from diverse Vpr from HIV/SIV that were critical for blocking the CMV promoter activity. Interestingly, the Vpr mutant A30S/V31S protein also impaired the ability of Vpr to down-regulate transcription of the host UNG2 gene. Our findings shed light on the dual functions of Vpr on the transcription of HIV-1, other viruses and host genes which may contribute to viral replication and disease progression in vivo.
Collapse
Affiliation(s)
- Xianjun Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China
| | - Haoran Guo
- School of Life Sciences, Tianjin University, Tianjin 30072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hong Wang
- School of Life Sciences, Tianjin University, Tianjin 30072, China
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China; School of Life Sciences, Tianjin University, Tianjin 30072, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province 130061, China; School of Life Sciences, Tianjin University, Tianjin 30072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Degradation of SAMHD1 by Vpx Is Independent of Uncoating. J Virol 2015; 89:5701-13. [PMID: 25762741 DOI: 10.1128/jvi.03575-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid and resting T cells. Lentiviruses such as HIV-2 and some simian immunodeficiency viruses (SIVs) counteract the restriction by encoding Vpx or Vpr, accessory proteins that are packaged in virions and which, upon entry of the virus into the cytoplasm, induce the proteasomal degradation of SAMHD1. As a tool to study these mechanisms, we generated HeLa cell lines that express a fusion protein termed NLS.GFP.SAM595 in which the Vpx binding domain of SAMHD1 is fused to the carboxy terminus of green fluorescent protein (GFP) and a nuclear localization signal is fused to the amino terminus of GFP. Upon incubation of Vpx-containing virions with the cells, the NLS.GFP.SAM595 fusion protein was degraded over several hours and the levels remained low over 5 days as the result of continued targeting of the CRL4 E3 ubiquitin ligase. Degradation of the fusion protein required that it contain a nuclear localization sequence. Fusion to the cytoplasmic protein muNS rendered the protein resistant to Vpx-mediated degradation, confirming that SAMHD1 is targeted in the nucleus. Virions treated with protease inhibitors failed to release Vpx, indicating that Gag processing was required for Vpx release from the virion. Mutations in the capsid protein that altered the kinetics of virus uncoating and the Gag binding drug PF74 had no effect on the Vpx-mediated degradation. These results suggest that Vpx is released from virions without a need for uncoating of the capsid, allowing Vpx to transit to the nucleus rapidly upon entry into the cytoplasm. IMPORTANCE SAMHD1 restricts lentiviral replication in myeloid cells and resting T cells. Its importance is highlighted by the fact that viruses such as HIV-2 encode an accessory protein that is packaged in the virion and is dedicated to inducing SAMHD1 degradation. Vpx needs to act rapidly upon infection to allow reverse transcription to proceed. The limited number of Vpx molecules in a virion also needs to clear the cell of SAMHD1 over a prolonged period of time. Using an engineered HeLa cell line that expresses a green fluorescent protein (GFP)-SAMHD1 fusion protein, we showed that the Vpx-dependent degradation occurs without a need for viral capsid uncoating. In addition, the fusion protein was degraded only when it was localized to the nucleus, confirming that SAMHD1 is targeted in the nucleus and thus explaining why Vpx also localizes to the nucleus.
Collapse
|
17
|
White TE, Brandariz-Nuñez A, Valle-Casuso JC, Knowlton C, Kim B, Sawyer SL, Diaz-Griffero F. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology 2014; 460-461:34-44. [PMID: 25010268 DOI: 10.1016/j.virol.2014.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/11/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Jose Carlos Valle-Casuso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Caitlin Knowlton
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Baek Kim
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA.
| |
Collapse
|
18
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|