1
|
Majerciak V, Alvarado-Hernandez B, Ma Y, Duduskar S, Lobanov A, Cam M, Zheng ZM. A KSHV RNA-binding protein promotes FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation. mBio 2025; 16:e0317224. [PMID: 39655935 PMCID: PMC11708059 DOI: 10.1128/mbio.03172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an RNA-binding protein ORF57 in lytic infection. Using an optimized CLIP-seq in this report, we identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS RNA as one of the major ORF57-specific RNA targets. FOS dimerizes with JUN as a transcription factor AP-1 involved in cell proliferation, differentiation, and transformation. Knockout of the ORF57 gene from the KSHV genome led BAC16-iSLK cells incapable of FOS expression in KSHV lytic infection. The dysfunctional KSHV genome in FOS expression could be rescued by Lenti-ORF57 virus infection. ORF57 protein does not regulate FOS translation but binds to the 13-nt RNA motif near the FOS RNA 5' end and prolongs FOS mRNA half-life 7.7 times longer than it is in the absence of ORF57. This binding of ORF57 to FOS RNA is likely competitive to the binding of host nuclease AEN (ISG20L1) of which physiological RNase activity remains unknown. KSHV infection inhibits the expression of AEN, but not exosomal RNA helicase MTR4. FOS expression mediated by ORF57 inhibits AEN transcription through FOS binding to AEN promoter but transactivates RGS2, a regulator of G-protein-coupled receptors. FOS binds a conserved AP-1 site in the RGS2 promoter and enhances RGS2 expression to phosphorylate AKT. Altogether, we have discovered that KSHV ORF57 specifically binds and stabilizes FOS RNA to increase FOS expression, thereby disturbing host gene expression and inducing pathogenesis during KSHV lytic infection.IMPORTANCEWe discovered that FOS, a heterodimer component of oncogenic transcription factor AP-1, is highly elevated in KSHV-infected cells by expression of a viral lytic RNA-binding protein, ORF57, which binds a 13-nt RNA motif near the FOS RNA 5' end to prolong FOS RNA half-life. This binding of ORF57 to FOS RNA is competitive to the binding of host RNA destabilizer(s). KSHV infection inhibits expression of host nuclease AEN, but not MTR4. FOS inhibits AEN transcription by binding to the AEN promoter but transactivates RGS2 by binding to a conserved AP-1 site in the RGS2 promoter, thereby enhancing RGS2 expression and phosphorylation of AKT. Thus, KSHV lytic infection controls the expression of a subset of genes for signaling, cell cycle progression, and proliferation to potentially contribute to viral oncogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Shivalee Duduskar
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
2
|
Majerciak V, Alvarado-Hernandez B, Ma Y, Duduskar S, Lobanov A, Cam M, Zheng ZM. KSHV promotes oncogenic FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577582. [PMID: 38410462 PMCID: PMC10896338 DOI: 10.1101/2024.01.27.577582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is a lytic RNA-binding protein. We applied BCBL-1 cells in lytic KSHV infection and performed UV cross-linking immunoprecipitation (CLIP) followed by RNA-seq of the CLIPed RNA fragments (CLIP-seq). We identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS and CITED2 RNAs being two common ORF57-specific RNA targets. FOS dimerizes with JUN as a transcription factor AP-1 involved in cell proliferation, differentiation, and transformation. Knockout of the ORF57 gene from the KSHV genome led BAC16-iSLK cells incapable of FOS expression in KSHV lytic infection. The dysfunctional KSHV genome in FOS expression could be rescued by Lenti-ORF57 virus infection. ORF57 protein does not regulate FOS translation but binds to the 13-nt RNA motif near the FOS RNA 5' end and prolongs FOS mRNA half-life 7.7 times longer than it is in the absence of ORF57. This binding of ORF57 to FOS RNA is competitive to the binding of a host nuclease AEN (also referred to as ISG20L1). KSHV infection inhibits the expression of AEN, but not exosomal RNA helicase MTR4. FOS expression mediated by ORF57 inhibits AEN transcription, but transactivates RGS2, a regulator of G-protein coupled receptors. FOS binds a conserved AP-1 site in the RGS2 promoter and enhances RGS2 expression to phosphorylate AKT. Altogether, we have discovered that KSHV ORF57 specifically binds and stabilizes FOS RNA to increase FOS expression, thereby disturbing host gene expression and inducing pathogenesis during KSHV lytic infection.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Shivalee Duduskar
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, MD, 20892, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, MD, 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| |
Collapse
|
3
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Intrinsic disorder in the open reading frame 2 of hepatitis E virus: a protein with multiple functions beyond viral capsid. J Genet Eng Biotechnol 2023; 21:33. [PMID: 36929465 PMCID: PMC10018590 DOI: 10.1186/s43141-023-00477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the cause of a liver disease hepatitis E. The translation product of HEV ORF2 has recently been demonstrated as a protein involved in multiple functions besides performing its major role of a viral capsid. As intrinsically disordered regions (IDRs) are linked to various essential roles in the virus's life cycle, we analyzed the disorder pattern distribution of the retrieved ORF2 protein sequences by employing different online predictors. Our findings might provide some clues on the disorder-based functions of ORF2 protein that possibly help us in understanding its behavior other than as a HEV capsid protein. RESULTS The modeled three dimensional (3D) structures of ORF2 showed the predominance of random coils or unstructured regions in addition to major secondary structure components (alpha helix and beta strand). After initial scrutinization, the predictors VLXT and VSL2 predicted ORF2 as a highly disordered protein while the predictors VL3 and DISOPRED3 predicted ORF2 as a moderately disordered protein, thus categorizing HEV-ORF2 into IDP (intrinsically disordered protein) or IDPR (intrinsically disordered protein region) respectively. Thus, our initial predicted disorderness in ORF2 protein 3D structures was in excellent agreement with their predicted disorder distribution patterns (evaluated through different predictors). The abundance of MoRFs (disorder-based protein binding sites) in ORF2 was observed that signified their interaction with binding partners which might further assist in viral infection. As IDPs/IDPRs are targets of regulation, we carried out the phosphorylation analysis to reveal the presence of post-translationally modified sites. Prevalence of several disordered-based phosphorylation sites further signified the involvement of ORF2 in diverse and significant biological processes. Furthermore, ORF2 structure-associated functions revealed its involvement in several crucial functions and biological processes like binding and catalytic activities. CONCLUSIONS The results predicted ORF2 as a protein with multiple functions besides its role as a capsid protein. Moreover, the occurrence of IDPR/IDP in ORF2 protein suggests that its disordered region might serve as novel drug targets via functioning as potential interacting domains. Our data collectively might provide significant implication in HEV vaccine search as disorderness in viral proteins is related to mechanisms involved in immune evasion.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Majerciak V, Alvarado-Hernandez B, Lobanov A, Cam M, Zheng ZM. Genome-wide regulation of KSHV RNA splicing by viral RNA-binding protein ORF57. PLoS Pathog 2022; 18:e1010311. [PMID: 35834586 PMCID: PMC9321434 DOI: 10.1371/journal.ppat.1010311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/26/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
RNA splicing plays an essential role in the expression of eukaryotic genes. We previously showed that KSHV ORF57 is a viral splicing factor promoting viral lytic gene expression. In this report, we compared the splicing profile of viral RNAs in BCBL-1 cells carrying a wild-type (WT) versus the cells containing an ORF57 knock-out (57KO) KSHV genome during viral lytic infection. Our analyses of viral RNA splice junctions from RNA-seq identified 269 RNA splicing events in the WT and 255 in the 57KO genome, including the splicing events spanning large parts of the viral genome and the production of vIRF4 circRNAs. No circRNA was detectable from the PAN region. We found that the 57KO alters the RNA splicing efficiency of targeted viral RNAs. Two most susceptible RNAs to ORF57 splicing regulation are the K15 RNA with eight exons and seven introns and the bicistronic RNA encoding both viral thymidylate synthase (ORF70) and membrane-associated E3-ubiquitin ligase (K3). ORF57 inhibits splicing of both K15 introns 1 and 2. ORF70/K3 RNA bears two introns, of which the first intron is within the ORF70 coding region as an alternative intron and the second intron in the intergenic region between the ORF70 and K3 as a constitutive intron. In the WT cells expressing ORF57, most ORF70/K3 transcripts retain the first intron to maintain an intact ORF70 coding region. In contrast, in the 57KO cells, the first intron is substantially spliced out. Using a minigene comprising of ORF70/K3 locus, we further confirmed ORF57 regulation of ORF70/K3 RNA splicing, independently of other viral factors. By monitoring protein expression, we showed that ORF57-mediated retention of the first intron leads to the expression of full-length ORF70 protein. The absence of ORF57 promotes the first intron splicing and expression of K3 protein. Altogether, we conclude that ORF57 regulates alternative splicing of ORF70/K3 bicistronic RNA to control K3-mediated immune evasion and ORF70 participation of viral DNA replication in viral lytic infection.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
- * E-mail: (VM); (Z-MZ)
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, Unites States of America
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, Unites States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research (CCR), National Cancer Institute, NIH, Frederick, Maryland, Unites States of America
- * E-mail: (VM); (Z-MZ)
| |
Collapse
|
5
|
Huang Y, Du Y, Zheng Y, Wen C, Zou H, Huang J, Zhou H, Zhao H, Wu L. Ct-OATP1B3 promotes high-grade serous ovarian cancer metastasis by regulation of fatty acid beta-oxidation and oxidative phosphorylation. Cell Death Dis 2022; 13:556. [PMID: 35717493 PMCID: PMC9206684 DOI: 10.1038/s41419-022-05014-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy mainly due to its extensive metastasis. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a newly discovered splice variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3), has been reported to be overexpressed in several types of cancer. However, the biological function of Ct-OATP1B3 remains largely unknown. Here, we reveal that Ct-OATP1B3 is overexpressed in HGSOC and promotes the metastasis of HGSOC in vivo and in vitro. Mechanically, Ct-OATP1B3 directly interacts with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein, which results in enhancement of the mRNA stability and expression of carnitine palmitoyltransferase 1A (CPT1A) and NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2), leading to increased mitochondrial fatty acid beta-oxidation (FAO) and oxidative phosphorylation (OXPHOS) activities. The increased FAO and OXPHOS activities further facilitate adenosine triphosphate (ATP) production and cellular lamellipodia formation, which is the initial step in the processes of tumor cell migration and invasion. Taken together, our study provides an insight into the function and underlying mechanism of Ct-OATP1B3 in HGSOC metastasis, and highlights Ct-OATP1B3 as a novel prognostic marker as well as therapeutic target in HGSOC.
Collapse
Affiliation(s)
- Yutang Huang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Yan Du
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China ,grid.8547.e0000 0001 0125 2443Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032 China
| | - Yujie Zheng
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Chunjie Wen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Hecun Zou
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Jiafeng Huang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Honghao Zhou
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China ,grid.216417.70000 0001 0379 7164Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410078 China
| | - Hongbo Zhao
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China ,grid.8547.e0000 0001 0125 2443Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032 China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Lanxiang Wu
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
6
|
Alvarado-Hernandez B, Ma Y, Sharma NR, Majerciak V, Lobanov A, Cam M, Zhu J, Zheng ZM. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. J Virol 2022; 96:e0178221. [PMID: 34787459 PMCID: PMC8826805 DOI: 10.1128/jvi.01782-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.
Collapse
Affiliation(s)
- Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Nishi R. Sharma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Genome Technology Laboratory, System Biology Center, NHLBI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
7
|
Sharma NR, Zheng ZM. RNA Granules in Antiviral Innate Immunity: A Kaposi's Sarcoma-Associated Herpesvirus Journey. Front Microbiol 2022; 12:794431. [PMID: 35069491 PMCID: PMC8767106 DOI: 10.3389/fmicb.2021.794431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
RNA granules are cytoplasmic, non-membranous ribonucleoprotein compartments that form ubiquitously and are often referred to as foci for post-transcriptional gene regulation. Recent research on RNA processing bodies (PB) and stress granules (SG) has shown wide implications of these cytoplasmic RNA granules and their components in suppression of RNA translation as host intracellular innate immunity against infecting viruses. Many RNA viruses either counteract or co-opt these RNA granules; however, many fundamental questions about DNA viruses with respect to their interaction with these two RNA granules remain elusive. Kaposi’s sarcoma-associated herpesvirus (KSHV), a tumor-causing DNA virus, exhibits two distinct phases of infection and encodes ∼90 viral gene products during the lytic phase of infection compared to only a few (∼5) during the latent phase. Thus, productive KSHV infection relies heavily on the host cell translational machinery, which often links to the formation of PB and SG. One major question is how KSHV counteracts the hostile environment of RNA granules for its productive infection. Recent studies demonstrated that KSHV copes with the translational suppression by cellular RNA granules, PB and SG, by expressing ORF57, a viral RNA-binding protein, during KSHV lytic infection. ORF57 interacts with Ago2 and GW182, two major components of PB, and prevents the scaffolding activity of GW182 at the initial stage of PB formation in the infected cells. ORF57 also interacts with protein kinase R (PKR) and PKR-activating protein (PACT) to block PKR dimerization and kinase activation, and thus inhibits eIF2α phosphorylation and SG formation. The homologous immediate-early regulatory protein ICP27 of herpes simplex virus type 1 (HSV-1), but not the EB2 protein of Epstein-Barr virus (EBV), shares this conserved inhibitory function with KSHV ORF57 on PB and SG. Through KSHV ORF57 studies, we have learned much about how a DNA virus in the infected cells is equipped to evade host antiviral immunity for its replication and productive infection. KSHV ORF57 would be an excellent viral target for development of anti-KSHV-specific therapy.
Collapse
Affiliation(s)
- Nishi R Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, New Delhi, India
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
8
|
Sharma NR, Gadhave K, Kumar P, Saif M, Khan MM, Sarkar DP, Uversky VN, Giri R. Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Sci Rep 2021; 11:13253. [PMID: 34168211 PMCID: PMC8225862 DOI: 10.1038/s41598-021-92581-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Chandipura virus (CHPV, a member of the Rhabdoviridae family) is an emerging pathogen that causes rapidly progressing influenza-like illness and acute encephalitis often leading to coma and death of the human host. Given several CHPV outbreaks in Indian sub-continent, recurring sporadic cases, neurological manifestation, and high mortality rate of this infection, CHPV is gaining global attention. The 'dark proteome' includes the whole proteome with special emphasis on intrinsically disordered proteins (IDP) and IDP regions (IDPR), which are proteins or protein regions that lack unique (or ordered) three-dimensional structures within the cellular milieu. These proteins/regions, however, play a number of vital roles in various biological processes, such as cell cycle regulation, control of signaling pathways, etc. and, therefore, are implicated in many human diseases. IDPs and IPPRs are also abundantly found in many viral proteins enabling their multifunctional roles in the viral life cycles and their capability to highjack various host systems. The unknown abundance of IDP and IDPR in CHPV, therefore, prompted us to analyze the dark proteome of this virus. Our analysis revealed a varying degree of disorder in all five CHPV proteins, with the maximum level of intrinsic disorder propensity being found in Phosphoprotein (P). We have also shown the flexibility of P protein using extensive molecular dynamics simulations up to 500 ns (ns). Furthermore, our analysis also showed the abundant presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs) in CHPV proteins. The identification of IDPs/IDPRs in CHPV proteins suggests that their disordered regions may function as potential interacting domains and may also serve as novel targets for disorder-based drug designs.
Collapse
Affiliation(s)
- Nishi R Sharma
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Mohammad Saif
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md M Khan
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Moscow, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
9
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
10
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
11
|
Kaposi's Sarcoma-Associated Herpesvirus Fine-Tunes the Temporal Expression of Late Genes by Manipulating a Host RNA Quality Control Pathway. J Virol 2020; 94:JVI.00287-20. [PMID: 32376621 DOI: 10.1128/jvi.00287-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic nuclear DNA virus that expresses its genes using the host cell transcription and RNA processing machinery. As a result, KSHV transcripts are subject to degradation by at least two host-mediated nuclear RNA decay pathways, the PABPN1- and poly(A) polymerase α/γ (PAPα/γ)-mediated RNA decay (PPD) pathway and an ARS2-dependent decay pathway. Here, we present global analyses of viral transcript levels to further understand the roles of these decay pathways in KSHV gene expression. Consistent with our recent report that the KSHV ORF57 protein increases viral transcript stability by impeding ARS2-dependent decay, ARS2 knockdown has only modest effects on viral gene expression 24 h after lytic reactivation of wild-type virus. In contrast, inactivation of PPD has more widespread effects, including premature accumulation of late transcripts. The upregulation of late transcripts does not require the primary late-gene-specific viral transactivation factor, suggesting that cryptic transcription produces the transcripts that then succumb to PPD. Remarkably, PPD inactivation has no effect on late transcripts at their proper time of expression. We show that this time-dependent PPD evasion by late transcripts requires the host factor nuclear RNAi-defective 2 (NRDE2), which has previously been reported to protect cellular RNAs by sequestering decay factors. From these studies, we conclude that KSHV uses PPD to fine-tune the temporal expression of its genes by preventing their premature accumulation.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that causes Kaposi's sarcoma and other lymphoproliferative disorders. Nuclear expression of KSHV genes results in exposure to at least two host-mediated nuclear RNA decay pathways, the PABPN1- and PAPα/γ-mediated RNA decay (PPD) pathway and an ARS2-mediated decay pathway. Perhaps unsurprisingly, we previously found that KSHV uses specific mechanisms to protect its transcripts from ARS2-mediated decay. In contrast, here we show that PPD is required to dampen the expression of viral late transcripts that are prematurely transcribed, presumably due to cryptic transcription early in infection. At the proper time for their expression, KSHV late transcripts evade PPD through the activity of the host factor NRDE2. We conclude that KSHV fine-tunes the temporal expression of its genes by modulating PPD activity. Thus, the virus both protects from and exploits the host nuclear RNA decay machinery for proper expression of its genes.
Collapse
|
12
|
Zhang P, Wang J, Zhang X, Wang X, Jiang L, Gu X. Identification of AIDS-Associated Kaposi Sarcoma: A Functional Genomics Approach. Front Genet 2020; 10:1376. [PMID: 32038721 PMCID: PMC6992650 DOI: 10.3389/fgene.2019.01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Kaposi sarcoma-associated herpes virus (KSHV) is one of the most common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The virus has gained attention over the past few decades due to its remarkable pathogenic mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as polycistronic mRNAs and the functions of ORF71 and ORF72 in KSHV are already reported in the literature. However, the function of ORF73 has remained a mystery. The aim of this study is to conduct comprehensive exploratory experiments to clarify the role of ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS by bioinformatic approaches. METHODS AND RESULTS We searched for homologues of ORF-73 and attempted to predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing Position-Specific Iterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to help us identify potential markers with predominant hits and interactions in the KEGG pathway associated with host apoptosis and cell arrest. The protein p53 is selected because it is an important tumor suppressor antigen. To identify the potential roles of the candidate markers at the molecular level, we used PSIPRED keeping the conserved domains as the major parameters to predict secondary structures. We based the FUGE interpretation consolidations of the sequence-structure comparisons on distance homology, where the score for the amino acids matching the insertion/deletion (indels) detected were based on structures compared to the FUGE database of structural profiles. We also calculated the compatibility scores of sequence alignments accordingly. Based on the PSI-BLAST homologues, we checked the disordered structures predicted using PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further applied these HMMs models based on the alignment of constructed 3D models between the known structure and the HMM of our sequence. Moreover, stable homology and structurally conserved domains confirmed that ORF-73 maybe an important prognostic marker for AIDS-associated KS. CONCLUSION Collectively, similar variants of ORF-73 markers involved in the immune response may interact with targeted host proteins as predicted by our computational analysis. This work also suggests the existence of potential conformational changes that need to be further explored to help elucidate the role of immune signaling during KS towards the development of therapeutic applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Public Health, Shanghai General Practice Medical Education and Research Center, Shanghai, China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhang
- Department of Implant Dentistry, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolan Wang
- College of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
13
|
Sharma NR, Majerciak V, Kruhlak MJ, Yu L, Kang JG, Yang A, Gu S, Fritzler MJ, Zheng ZM. KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Res 2019; 47:9368-9385. [PMID: 31400113 PMCID: PMC6755100 DOI: 10.1093/nar/gkz683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
Cellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57. The wild-type ORF57, but not its N-terminal dysfunctional mutant, inhibits PB formation by interacting with the N-terminal GW-domain of GW182 and the N-terminal domain of Ago2, two major components of PB. KSHV ORF57 also induces nuclear Ago2 speckles. Homologous HSV-1 ICP27, but not EBV EB2, shares this conserved inhibitory function with KSHV ORF57. By using time-lapse confocal microscopy of HeLa cells co-expressing GFP-tagged GW182, we demonstrated that viral ORF57 inhibits primarily the scaffolding of GW182 at the initial stage of PB formation. Consistently, KSHV-infected iSLK/Bac16 cells with reduced GW182 expression produced far fewer PB and SG, but 100-fold higher titer of infectious KSHV virions when compared to cells with normal GW182 expression. Altogether, our data provide the first evidence that a DNA virus evades host innate immunity by encoding an RNA-binding protein that promotes its replication by blocking PB formation.
Collapse
Affiliation(s)
- Nishi R Sharma
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jeong Gu Kang
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| |
Collapse
|
14
|
Wang X, Ji C, Zhang H, Shan Y, Ren Y, Hu Y, Shi L, Guo L, Zhu W, Xia Y, Liu B, Rong Z, Wu B, Ming Z, Ren X, Song J, Yang J, Zhang Y. Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents. J Biol Chem 2019; 294:10006-10017. [PMID: 31101655 PMCID: PMC6597808 DOI: 10.1074/jbc.ra119.007664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleus accumbens-associated protein-1 (NAC1) is a transcriptional repressor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and plays critical roles in tumor development, progression, and drug resistance. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. However, effective approaches for effective targeting of this nuclear protein remain elusive. In this study, we identified a core unit consisting of Met7 and Leu90 in NAC1's N-terminal domain (amino acids 1-130), which is critical for its homodimerization and stability. Furthermore, using a combination of computational analysis of the NAC1 dimerization interface and high-throughput screening (HTS) for small molecules that inhibit NAC1 homodimerization, we identified a compound (NIC3) that selectively binds to the conserved Leu-90 of NAC1 and prevents its homodimerization, leading to proteasomal NAC1 degradation. Moreover, we demonstrate that NIC3-mediated down-regulation of NAC1 protein sensitizes drug-resistant tumor cells to conventional chemotherapy and enhances the antimetastatic effect of the antiangiogenic agent bevacizumab both in vitro and in vivo These results suggest that small-molecule inhibitors of NAC1 homodimerization may effectively sensitize cancer cells to some anticancer agents and that NAC1 homodimerization could be further explored as a potential therapeutic target in the development of antineoplastic agents.
Collapse
Affiliation(s)
- XiaoHui Wang
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - Cheng Ji
- Department of Respiratory Medicine, First Affiliated Hospital, Soochow University, 215000 Suzhou, Jiangsu, China
| | - HongHan Zhang
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - Yu Shan
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, 210014 Nanjing, Jiangsu, China
| | - YiJie Ren
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - YanWei Hu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - LiangRong Shi
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - LingChuan Guo
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - WeiDong Zhu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - YuJuan Xia
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - BeiJia Liu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - ZiYun Rong
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - BiLian Wu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - ZhiJun Ming
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
| | - XingCong Ren
- Department of Cancer Biology and Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506
| | - JianXun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas 77843, and
| | - JinMing Yang
- Department of Cancer Biology and Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506
| | - Yi Zhang
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China,
| |
Collapse
|
15
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
16
|
Tunnicliffe RB, Levy C, Ruiz Nivia HD, Sandri-Goldin RM, Golovanov AP. Structural identification of conserved RNA binding sites in herpesvirus ORF57 homologs: implications for PAN RNA recognition. Nucleic Acids Res 2019; 47:1987-2001. [PMID: 30462297 PMCID: PMC6393246 DOI: 10.1093/nar/gky1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) transcribes a long noncoding polyadenylated nuclear (PAN) RNA, which promotes the latent to lytic transition by repressing host genes involved in antiviral responses as well as viral proteins that support the latent state. KSHV also expresses several early proteins including ORF57 (Mta), a member of the conserved multifunctional ICP27 protein family, which is essential for productive replication. ORF57/Mta interacts with PAN RNA via a region termed the Mta responsive element (MRE), stabilizing the transcript and supporting nuclear accumulation. Here, using a close homolog of KSHV ORF57 from herpesvirus saimiri (HVS), we determined the crystal structure of the globular domain in complex with a PAN RNA MRE, revealing a uracil specific binding site that is also conserved in KSHV. Using solution NMR, RNA binding was also mapped within the disordered N-terminal domain of KSHV ORF57, and showed specificity for an RNA fragment containing a GAAGRG motif previously known to bind a homologous region in HVS ORF57. Together these data located novel differential RNA recognition sites within neighboring domains of herpesvirus ORF57 homologs, and revealed high-resolution details of their interactions with PAN RNA, thus providing insight into interactions crucial to viral function.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Hilda D Ruiz Nivia
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-025, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
17
|
Ruiz JC, Hunter OV, Conrad NK. Kaposi's sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog 2019; 15:e1007596. [PMID: 30785952 PMCID: PMC6398867 DOI: 10.1371/journal.ppat.1007596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment. Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.
Collapse
Affiliation(s)
- Julio C. Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
- * E-mail:
| |
Collapse
|
18
|
Minute Virus of Canines NP1 Protein Interacts with the Cellular Factor CPSF6 To Regulate Viral Alternative RNA Processing. J Virol 2019; 93:JVI.01530-18. [PMID: 30355695 DOI: 10.1128/jvi.01530-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
The NP1 protein of minute virus of canines (MVC) governs production of the viral capsid proteins via its role in pre-mRNA processing. NP1 suppresses polyadenylation and cleavage at its internal site, termed the proximal polyadenylation (pA)p site, to allow accumulation of RNAs that extend into the capsid gene, and it enhances splicing of the upstream adjacent third intron, which is necessary to properly enter the capsid protein open reading frame. We find the (pA)p region to be complex. It contains redundant classical cis-acting signals necessary for the cleavage and polyadenylation reaction and splicing of the adjacent upstream third intron, as well as regions outside the classical motifs that are necessary for responding to NP1. NP1, but not processing mutants of NP1, bound to MVC RNA directly. The cellular RNA processing factor CPSF6 interacted with NP1 in transfected cells and participated with NP1 to modulate its effects. These experiments further characterize the role of NP1 in parvovirus gene expression.IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Unlike other parvoviruses, the bocavirus genus controls expression of its capsid proteins via alternative RNA processing, by both suppressing polyadenylation at an internal site, termed the proximal polyadenylation (pA)p site, and by facilitating splicing of an upstream adjacent intron. This regulation is mediated by a small genus-specific protein, NP1. Understanding the cis-acting targets of NP1, as well as the cellular factors with which it interacts, is necessary to more clearly understand this unique mode of parvovirus gene expression.
Collapse
|
19
|
Overlapping motifs on the herpes viral proteins ICP27 and ORF57 mediate interactions with the mRNA export adaptors ALYREF and UIF. Sci Rep 2018; 8:15005. [PMID: 30301920 PMCID: PMC6177440 DOI: 10.1038/s41598-018-33379-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
The TREX complex mediates the passage of bulk cellular mRNA export to the nuclear export factor TAP/NXF1 via the export adaptors ALYREF or UIF, which appear to act in a redundant manner. TREX complex recruitment to nascent RNA is coupled with 5′ capping, splicing and polyadenylation. Therefore to facilitate expression from their intronless genes, herpes viruses have evolved a mechanism to circumvent these cellular controls. Central to this process is a protein from the conserved ICP27 family, which binds viral transcripts and cellular TREX complex components including ALYREF. Here we have identified a novel interaction between HSV-1 ICP27 and an N-terminal domain of UIF in vivo, and used NMR spectroscopy to locate the UIF binding site within an intrinsically disordered region of ICP27. We also characterized the interaction sites of the ICP27 homolog ORF57 from KSHV with UIF and ALYREF using NMR, revealing previously unidentified binding motifs. In both ORF57 and ICP27 the interaction sites for ALYREF and UIF partially overlap, suggestive of mutually exclusive binding. The data provide a map of the binding sites responsible for promoting herpes virus mRNA export, enabling future studies to accurately probe these interactions and reveal the functional consequences for UIF and ALYREF redundancy.
Collapse
|
20
|
Yuan F, Gao ZQ, Majerciak V, Bai L, Hu ML, Lin XX, Zheng ZM, Dong YH, Lan K. The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathog 2018; 14:e1007232. [PMID: 30096191 PMCID: PMC6105031 DOI: 10.1371/journal.ppat.1007232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/22/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus closely associated with Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman disease. Open reading frame 57 (ORF57), a viral early protein of KSHV promotes splicing, stability and translation of viral mRNA and is essential for viral lytic replication. Previous studies demonstrated that dimerization of ORF57 stabilizes the protein, which is critical for its function. However, the detailed structural basis of dimerization was not elucidated. In this study, we report the crystal structures of the C-terminal domain (CTD) of ORF57 (ORF57-CTD) in both dimer at 3.5 Å and monomer at 3.0 Å. Both structures reveal that ORF57-CTD binds a single zinc ion through the consensus zinc-binding motif at the bottom of each monomer. In addition, the N-terminal residues 167-222 of ORF57-CTD protrudes a long "arm" and holds the globular domains of the neighboring monomer, while the C-terminal residues 445-454 are locked into the globular domain in cis and the globular domains interact in trans. In vitro crosslinking and nuclear translocation assays showed that either deletion of the "arm" region or substitution of key residues at the globular interface led to severe dimer dissociation. Introduction of point mutation into the zinc-binding motif also led to sharp degradation of KSHV ORF57 and other herpesvirus homologues. These data indicate that the "arm" region, the residues at the globular interface and the zinc-binding motif are all equally important in ORF57 protein dimerization and stability. Consistently, KSHV recombinant virus with the disrupted zinc-binding motif by point mutation exhibited a significant reduction in the RNA level of ORF57 downstream genes ORF59 and K8.1 and infectious virus production. Taken together, this study illustrates the first structure of KSHV ORF57-CTD and provides new insights into the understanding of ORF57 protein dimerization and stability, which would shed light on the potential design of novel therapeutics against KSHV infection and related diseases.
Collapse
Affiliation(s)
- Fei Yuan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Zeng-Qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Meng-Lu Hu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Xi Lin
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (ZMZ); (YHD); (KL)
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ZMZ); (YHD); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
- * E-mail: (ZMZ); (YHD); (KL)
| |
Collapse
|
21
|
The ICP27 Homology Domain of the Human Cytomegalovirus Protein UL69 Adopts a Dimer-of-Dimers Structure. mBio 2018; 9:mBio.01112-18. [PMID: 29921674 PMCID: PMC6016253 DOI: 10.1128/mbio.01112-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The UL69 protein from human cytomegalovirus (HCMV) is a multifunctional regulatory protein and a member of the ICP27 protein family conserved throughout herpesviruses. UL69 plays many roles during productive infection, including the regulation of viral gene expression, nuclear export of intronless viral RNAs, and control of host cell cycle progression. Throughout the ICP27 protein family, an ability to self-associate is correlated with the functions of these proteins in transactivating certain viral genes. Here, we determined the domain boundaries of a globular ICP27 homology domain of UL69, which mediates self-association, and characterized the oligomeric state of the isolated domain. Size exclusion chromatography coupled with multiangle light scattering (SEC-MALS) revealed that residues 200 to 540 form a stable homo-tetramer, whereas a shorter region comprising residues 248 to 536 forms a homo-dimer. Structural analysis of the UL69 tetramer by transmission electron microscopy (TEM) revealed a dimer-of-dimers three-dimensional envelope with bridge features likely from a region of the protein unique to betaherpesviruses. The data provide a structural template for tetramerization and improve our understanding of the structural diversity and features necessary for self-association within UL69 and the ICP27 family. Human cytomegalovirus (HCMV) infection is widespread in the human population but typically remains dormant in an asymptomatic latent state. HCMV causes disease in neonates and adults with suppressed or impaired immune function, as the virus is activated into a lytic state. All species of herpesvirus express a protein from the ICP27 family which functions as a posttranscriptional activator in the lytic state. In HCMV, this protein is called UL69. The region of sequence conservation in the ICP27 family is a folded domain that mediates protein interactions, including self-association and functions in transactivation. All members thus far analyzed homo-dimerize, with the exception of UL69, which forms higher-order oligomers. Here, we use biochemical and structural data to reveal that UL69 forms stable tetramers composed of a dimer of dimers and determine a region essential for cross-dimer stabilization.
Collapse
|
22
|
Neuber S, Wagner K, Messerle M, Borst EM. The C-terminal part of the human cytomegalovirus terminase subunit pUL51 is central for terminase complex assembly. J Gen Virol 2018; 99:119-134. [DOI: 10.1099/jgv.0.000984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Sebastian Neuber
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Vogt C, Bohne J. The KSHV RNA regulator ORF57: target specificity and its role in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:173-85. [PMID: 26769399 DOI: 10.1002/wrna.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which enhances the expression of intron-less KSHV genes on multiple post-transcriptional levels mainly affecting RNA stability and export to the cytoplasm. Yet, it remains elusive how ORF57 recognizes viral RNAs and discriminates them from cellular messenger RNAs (mRNAs). Although one common binding motif on three separate KSHV RNAs has been described, most other lytic genes lack this sequence element. In this article we will review the sequence requirements for ORF57 to enhance RNA expression and discuss a model how ORF57 achieves specificity for viral RNAs. Finally, the role of ORF57 is integrated into the viral life cycle as a complex interplay with other viral and host factors and with implications for cellular gene expression.
Collapse
Affiliation(s)
- Carolin Vogt
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute for Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
NP1 Protein of the Bocaparvovirus Minute Virus of Canines Controls Access to the Viral Capsid Genes via Its Role in RNA Processing. J Virol 2015; 90:1718-28. [PMID: 26637456 DOI: 10.1128/jvi.02618-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Minute virus of canines (MVC) is an autonomous parvovirus in the genus Bocaparvovirus. It has a single promoter that generates a single pre-mRNA processed via alternative splicing and alternative polyadenylation to produce at least 8 mRNA transcripts. MVC contains two polyadenylation sites, one at the right-hand end of the genome, (pA)d, and another complex site, (pA)p, within the capsid-coding region. During viral infection, the mRNAs must extend through (pA)p and undergo additional splicing of the immediately upstream 3D∕3A intron to access the capsid gene. MVC NP1 is a 22-kDa nuclear phosphoprotein unique to the genus Bocaparvovirus of the Parvovirinae which we have shown governs suppression of (pA)p independently of viral genome replication. We show here that in addition to suppression of (pA)p, NP1 is also required for the excision of the MVC 3D∕3A intron, independently of its effect on alternative polyadenylation. Mutations of the arginine∕serine (SR) di-repeats within the intrinsically disordered amino terminus of NP1 are required for splicing of the capsid transcript but not suppression of polyadenylation at (pA)p. 3'-end processing of MVC mRNAs at (pA)p is critical for viral genome replication and the optimal expression of NP1 and NS1. Thus, a finely tuned balance between (pA)p suppression and usage is necessary for efficient virus replication. NP1 is the first parvovirus protein implicated in RNA processing. Its characterization reveals another way that parvoviruses govern access to their capsid protein genes, namely, at the RNA level, by regulating the essential splicing of an intron and the suppression of an internal polyadenylation site. IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Although parvoviruses have only subtle early-to-late expression shifts, they all regulate access to their capsid genes. Minute virus of canines (MVC) is an autonomous parvovirus in the genus Bocaparvovirus. It has a single promoter generating a single pre-mRNA which is processed via alternative splicing and alternative polyadenylation to generate at least 8 mRNA transcripts. MVC contains two polyadenylation sites, one at the right-hand end of the genome, (pA)d, and another, (pA)p, within the capsid-coding region. It had not been clear how the potent internal polyadenylation motif is suppressed to allow processing, export, and accumulation of the spliced capsid protein-encoding mRNAs. We show here that MVC NP1, the first parvovirus protein to be implicated in RNA processing, governs access to the MVC capsid gene by facilitating splicing and suppressing internal polyadenylation of MVC pre-mRNAs.
Collapse
|
25
|
Majerciak V, Zheng ZM. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms. Virology 2015; 488:81-7. [PMID: 26609938 DOI: 10.1016/j.virol.2015.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/17/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702 MD, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702 MD, USA.
| |
Collapse
|
26
|
Tunnicliffe RB, Schacht M, Levy C, Jowitt TA, Sandri-Goldin RM, Golovanov AP. The structure of the folded domain from the signature multifunctional protein ICP27 from herpes simplex virus-1 reveals an intertwined dimer. Sci Rep 2015; 5:11234. [PMID: 26062451 PMCID: PMC4650695 DOI: 10.1038/srep11234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/19/2015] [Indexed: 01/11/2023] Open
Abstract
Herpesviruses cause life-long infections by evading the host immune system and establishing latent infections. All mammalian herpesviruses express an essential multifunctional protein that is typified by ICP27 encoded by Herpes Simplex Virus 1. The only region that is conserved among the diverse members of the ICP27 family is a predicted globular domain that has been termed the ICP27 homology domain. Here we present the first crystal structure of the ICP27 homology domain, solved to 1.9 Å resolution. The protein is a homo-dimer, adopting a novel intertwined fold with one CHCC zinc-binding site per monomer. The dimerization, which was independently confirmed by SEC-MALS and AUC, is stabilized by an extensive network of intermolecular contacts, and a domain-swap involving the two N-terminal helices and C-terminal tails. Each monomer contains a lid motif that can clamp the C-terminal tail of its dimeric binding partner against its globular core, without forming any distinct secondary structure elements. The binding interface was probed with point mutations, none of which had a noticeable effect on dimer formation; however deletion of the C-terminal tail region prevented dimer formation in vivo. The structure provides a template for future biochemical studies and modelling of ICP27 homologs from other herpesviruses.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.,Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Mitchell Schacht
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Colin Levy
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Thomas A Jowitt
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.,Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| |
Collapse
|
28
|
Massimelli MJ, Majerciak V, Kang JG, Liewehr DJ, Steinberg SM, Zheng ZM. Multiple regions of Kaposi's sarcoma-associated herpesvirus ORF59 RNA are required for its expression mediated by viral ORF57 and cellular RBM15. Viruses 2015; 7:496-510. [PMID: 25690794 PMCID: PMC4353900 DOI: 10.3390/v7020496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/28/2015] [Indexed: 11/16/2022] Open
Abstract
KSHV ORF57 (MTA) promotes RNA stability of ORF59, a viral DNA polymerase processivity factor. Here, we show that the integrity of both ORF59 RNA ends is necessary for ORF57-mediated ORF59 expression and deletion of both 5’ and 3’ regions, or one end region with a central region, of ORF59 RNA prevents ORF57-mediated translation of ORF59. The ORF59 sequence between nt 96633 and 96559 resembles other known MTA-responsive elements (MREs). ORF57 specifically binds to a stem-loop region from nt 96596–96572 of the MRE, which also binds cellular RBM15. Internal deletion of the MRE from ORF59 led to poor export, but accumulation of nuclear ORF59 RNA in the presence of ORF57 or RBM15. Despite of being translatable in the presence of ORF57, this deletion mutant exhibits translational defect in the presence of RBM15. Together, our results provide novel insight into the roles of ORF57 and RBM15 in ORF59 RNA accumulation and protein translation.
Collapse
Affiliation(s)
- Maria Julia Massimelli
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Jeong-Gu Kang
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - David J Liewehr
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Seth M Steinberg
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| |
Collapse
|