1
|
Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 2022; 13:960733. [PMID: 35967323 PMCID: PMC9367475 DOI: 10.3389/fimmu.2022.960733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chandan Kumar
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, India
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute and NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniel Mitchell
- WMS - Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| |
Collapse
|
2
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
3
|
Rohini K, Roy R, Ramanathan K, Shanthi V. E-pharmacophore hypothesis strategy to discover potent inhibitor for influenza treatment. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The surface protein of Influenza virus, Neuraminidase (NA), is believed to play a critical role in the release of new viral particle and thus spreads infection. It has been recognized as a valid drug target for anti-influenza therapy. Despite the number of available approved drugs for the influenza infection treatment, the emergence of resistant variants with novel mutations are the foremost challenges for the currently used NA inhibitors. Thus, the current investigation was carried out to ascertain potent inhibitors using computational strategies such as e-pharmacophore based virtual screening and docking approach. A three-dimensional e-pharmacophore hypothesis was generated based on the chemical features of complexes of the drugs and NA protein using PHASE module of Schrödinger suite. The generated hypothesis consisted of one hydrogen bond acceptor (A), two hydrogen bond donors (D), one negatively charged group (N) and one aromatic ring (R), ADDNR. The hypothesis was further evaluated for its integrity using enrichment analysis and used to filter out molecules with similar pharmacophoric features from approved, investigational and experimental subsets of DrugBank and ZINC database. In addition, ligand filtration was performed to curb down the molecules to an efficient collection of hit molecules by using Lipinski “rule of five and ADME analysis by using Qikprop module. Overall, the results from our analysis suggest that compound lisinopril and formoterol could serve as potent antiviral compounds for the treatment of influenza A virus infection. It is worth mentioning that the results correlate well with literature evidences.
Collapse
Affiliation(s)
- K. Rohini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Roosha Roy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - K. Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V. Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
4
|
Hung SC, Hou T, Jiang W, Wang N, Qiao SW, Chow IT, Liu X, van der Burg SH, Koelle DM, Kwok WW, Sollid LM, Mellins ED. Epitope Selection for HLA-DQ2 Presentation: Implications for Celiac Disease and Viral Defense. THE JOURNAL OF IMMUNOLOGY 2019; 202:2558-2569. [PMID: 30926644 DOI: 10.4049/jimmunol.1801454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 01/28/2023]
Abstract
We have reported that the major histocompatibility molecule HLA-DQ2 (DQA1*05:01/DQB1*02:01) (DQ2) is relatively resistant to HLA-DM (DM), a peptide exchange catalyst for MHC class II. In this study, we analyzed the role of DQ2/DM interaction in the generation of DQ2-restricted gliadin epitopes, relevant to celiac disease, or DQ2-restricted viral epitopes, relevant to host defense. We used paired human APC, differing in DM expression (DMnull versus DMhigh) or differing by expression of wild-type DQ2, versus a DM-susceptible, DQ2 point mutant DQ2α+53G. The APC pairs were compared for their ability to stimulate human CD4+ T cell clones. Despite higher DQ2 levels, DMhigh APC attenuated T cell responses compared with DMnull APC after intracellular generation of four tested gliadin epitopes. DMhigh APC expressing the DQ2α+53G mutant further suppressed these gliadin-mediated responses. The gliadin epitopes were found to have moderate affinity for DQ2, and even lower affinity for the DQ2 mutant, consistent with DM suppression of their presentation. In contrast, DMhigh APC significantly promoted the presentation of DQ2-restricted epitopes derived intracellularly from inactivated HSV type 2, influenza hemagglutinin, and human papillomavirus E7 protein. When extracellular peptide epitopes were used as Ag, the DQ2 surface levels and peptide affinity were the major regulators of T cell responses. The differential effect of DM on stimulation of the two groups of T cell clones implies differences in DQ2 presentation pathways associated with nonpathogen- and pathogen-derived Ags in vivo.
Collapse
Affiliation(s)
- Shu-Chen Hung
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Tieying Hou
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Wei Jiang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Nan Wang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Xiaodan Liu
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - Elizabeth D Mellins
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305; .,Program in Immunology, Stanford University, Stanford, CA 94305
| |
Collapse
|
5
|
Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren HG, Klingström J, Ahlm C, Smed-Sörensen A. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog 2017. [PMID: 28640917 PMCID: PMC5498053 DOI: 10.1371/journal.ppat.1006462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients’ bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients. Inhalation of hantavirus-infected rodent droppings can cause a wide range of disease ranging from mild symptoms to deaths in humans. Central to hantavirus disease is vascular leakage that can manifest in different organs, including the lungs. Although the virus can infect endothelial cells lining the blood vessels, it does not cause cell death. Instead, activation of the immune system in response to viral infection has been implicated in causing vascular leakage. In this study, we investigated how monocytes and dendritic cells (DCs) are involved in hantavirus disease, given their capacity to activate other immune cells. We obtained unique clinical material from 17 Puumala virus-infected patients including mucosal biopsies from the airways as well as multiple blood draws over the course of disease. In the airways of these patients, we observed an infiltration of monocytes and DCs. In parallel, there was a dramatic depletion in peripheral blood—more than ten-fold—of monocytes and DCs that was sustained throughout the first two weeks of disease. Taken together, this study provides novel insights into immune mediated processes underlying human hantavirus pathogenesis.
Collapse
Affiliation(s)
- Saskia Scholz
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shawon Gupta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Andrea Discacciati
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rasmuson
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
6
|
Baharom F, Thomas S, Bieder A, Hellmér M, Volz J, Sandgren KJ, McInerney GM, Karlsson Hedestam GB, Mellman I, Smed-Sörensen A. Protection of human myeloid dendritic cell subsets against influenza A virus infection is differentially regulated upon TLR stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4422-30. [PMID: 25801434 DOI: 10.4049/jimmunol.1402671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/18/2015] [Indexed: 12/24/2022]
Abstract
The proinflammatory microenvironment in the respiratory airway induces maturation of both resident and infiltrating dendritic cells (DCs) upon influenza A virus (IAV) infection. This results in upregulation of antiviral pathways as well as modulation of endocytic processes, which affect the susceptibility of DCs to IAV infection. Therefore, it is highly relevant to understand how IAV interacts with and infects mature DCs. To investigate how different subsets of human myeloid DCs (MDCs) involved in tissue inflammation are affected by inflammatory stimulation during IAV infection, we stimulated primary blood MDCs and inflammatory monocyte-derived DCs (MDDCs) with TLR ligands, resulting in maturation. Interestingly, MDDCs but not MDCs were protected against IAV infection after LPS (TLR4) stimulation. In contrast, stimulation with TLR7/8 ligand protected MDCs but not MDDCs from IAV infection. The reduced susceptibility to IAV infection correlated with induction of type I IFNs. We found that differential expression of TLR4, TRIF, and MyD88 in the two MDC subsets regulated the ability of the cells to enter an antiviral state upon maturation. This difference was functionally confirmed using small interfering RNA and inhibitors. Our data show that different human MDC subsets may play distinct roles during IAV infection, as their capacity to induce type I IFNs is dependent on TLR-specific maturation, resulting in differential susceptibility to IAV infection.
Collapse
Affiliation(s)
- Faezzah Baharom
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Saskia Thomas
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Andrea Bieder
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Maria Hellmér
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Julia Volz
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Kerrie J Sandgren
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | | | - Ira Mellman
- Genentech, Inc., South San Francisco, CA 94080
| | - Anna Smed-Sörensen
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| |
Collapse
|
7
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
8
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 2014; 6:1294-316. [PMID: 24638204 PMCID: PMC3970151 DOI: 10.3390/v6031294] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.
Collapse
Affiliation(s)
- Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia.
| | - Emma R Job
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| |
Collapse
|
10
|
Wang L, Sun Y, Yang W, Lindo P, Singh BR. Type A botulinum neurotoxin complex proteins differentially modulate host response of neuronal cells. Toxicon 2014; 82:52-60. [PMID: 24560879 DOI: 10.1016/j.toxicon.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/24/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022]
Abstract
Type A Botulinum neurotoxin (BoNT/A), the most potent poison known to mankind, is produced by Clostridium botulinum type A as a complex with neurotoxin-associated proteins (NAPs). Currently BoNT/A in purified and complex forms are both available in therapeutic and cosmetic applications to treat neuromuscular disorders. Whereas Xeomin(®) (incobotulinumtoxin A, Merz Pharmaceuticals, Germany) is free from complexing proteins, Botox(®) (onabotulinumtoxin A, Allergan, USA) contains NAPs, which by themselves have no known role in the intracellular biochemical process involved in the blockade of neurotransmitter release. Since the fate and possible interactions of NAPs with patient tissues after intramuscular injection are not known, it was the aim of this study to evaluate the binding of BoNT/A and/or the respective NAPs to cells derived from neuronal and non-neuronal human tissues, and to further explore neuronal cell responses to different components of BoNT/A. BoNT/A alone, the complete BoNT/A complex, and the NAPs alone, all bind to neuronal SH-SY5Y cells. The BoNT/A complex and NAPs additionally bind to RMS13 skeletal muscle cells, TIB-152 lymphoblasts, Detroit 551 fibroblasts besides the SH-SY5Y cells. However, no binding to these non-neuronal cells was observed with pure BoNT/A. Although BoNT/A, both in its purified and complex forms, bind to SH-SY5Y, the intracellular responses of the SH-SY5Y cells to these BoNT/A components are not clearly understood. Examination of inflammatory cytokine released from SH-SY5Y cells revealed that BoNT/A did not increase the release of inflammatory cytokines, whereas exposure to NAPs significantly increased release of IL-6, and MCP-1, and exposure to BoNT/A complex significantly increased release of IL-6, MCP-1, IL-8, TNF-α, and RANTES vs. control, suggesting that different components of BoNT/A complex induce significantly differential host response in human neuronal cells. Results suggest that host response to different compositions of BoNT/A based therapeutics may play important role in local and systemic symptoms in patients.
Collapse
Affiliation(s)
- Lei Wang
- Prime Bio Inc., Dartmouth, MA 02747, USA.
| | - Yi Sun
- Prime Bio Inc., Dartmouth, MA 02747, USA
| | | | - Paul Lindo
- Prime Bio Inc., Dartmouth, MA 02747, USA
| | - Bal Ram Singh
- Prime Bio Inc., Dartmouth, MA 02747, USA; Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| |
Collapse
|
11
|
Abstract
Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.
Collapse
|
12
|
Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 2013; 6:464-73. [PMID: 23549447 DOI: 10.1038/mi.2013.14] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lung is highly exposed to the external environment. For this reason, the lung needs to handle a number of potential threats present in inhaled air such as viruses or bacteria. Dendritic cells (DCs) and macrophages (MFs) play an important role in orchestrating the immune responses to these challenges. The severe lung inflammation caused by some pathogens poses a unique challenge to the immune system: the potential insult must be eliminated rapidly whereas tissue inflammation must be controlled in order to avoid collateral damages that can lead to acute respiratory failure. Immune responses to infectious agents are initiated and controlled by various populations of antigen-presenting cells with specialized functions, which include conventional DCs (cDCs), monocyte-derived DCs (moDCs), plasmacytoid DCs (pDCs), and alveolar MFs (AMFs). This review will discuss the role of these different cells in responses to pulmonary infections, with a focus on influenza virus and Mycobacterium tuberculosis.
Collapse
|
13
|
Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet Immunol Immunopathol 2013; 154:25-35. [PMID: 23689011 DOI: 10.1016/j.vetimm.2013.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 12/23/2022]
Abstract
Swine influenza virus (SwIV) is considered a zoonosis and the fact that swine may act as an intermediate reservoir for avian influenza virus, potentially infectious for humans, highlights its relevance and the need to understand the interaction of different influenza viruses with the porcine immune system. Thus, in vitro porcine bone marrow-derived dendritic cell (poBMDCs) were infected with a circulating SwIV A/Swine/Spain/SF32071/2007(H3N2), 2009 human pandemic influenza virus A/Catalonia/63/2009(H1N1), low pathogenic avian influenza virus (LPAIV) A/Anas plathyrhynchos/Spain/1877/2009(aH7N2) or high pathogenic avian influenza virus (HPAIV) A/Chicken/Italy/5093/1999(aH7N1). Swine influenza virus H3N2 infection induced an increase of SLA-I and CD80/86 at 16 and 24h post infection (hpi), whereas the other viruses did not. All viruses induced gene expression of NF-κB, TGF-β, IFN-β and IL-10 at the mRNA level in swine poBMDCs to different extents and in a time-dependent manner. All viruses induced the secretion of IL-12 mostly at 24hpi whereas IL-18 was detected at all tested times. Only swH3N2 induced IFN-α in a time-dependent manner. Swine H3N2, aH7N2 and aH7N1 induced secretion of TNF-α also in a time-dependent manner. Inhibition of NF-κB resulted in a decrease of IFN-α and IL-12 secretion by swH3N2-infected poBMDC at 24hpi, suggesting a role of this transcription factor in the synthesis of these cytokines. Altogether, these data might help in understanding the relationship between influenza viruses and porcine dendritic cells in the innate immune response in swine controlled through soluble mediators and transcription factors.
Collapse
|
14
|
Hartmann BM, Li W, Jia J, Patil S, Marjanovic N, Martínez-Romero C, Albrecht RA, Hayot F, García-Sastre A, Wetmur JG, Moran TM, Sealfon SC. Mouse dendritic cell (DC) influenza virus infectivity is much lower than that for human DCs and is hemagglutinin subtype dependent. J Virol 2013; 87:1916-8. [PMID: 23192878 PMCID: PMC3554152 DOI: 10.1128/jvi.02980-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/21/2012] [Indexed: 01/23/2023] Open
Abstract
We show that influenza A H1N1 virus infection leads to very low infectivity in mouse dendritic cells (DCs) in vitro compared with that in human DCs. This holds when H3 or H5 replaces H1 in recombinant viruses. Viruslike particles confirm the difference between mouse and human, suggesting that reduced virus entry contributes to lower mouse DC infectivity. Low infectivity of mouse DCs should be considered when they are used to study responses of DCs that are actually infected.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Randy A. Albrecht
- Department of Microbiology
- Global Health and Emerging Pathogens Institute
| | | | - Adolfo García-Sastre
- Department of Microbiology
- Global Health and Emerging Pathogens Institute
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Influenza A virus (IAV) is a dangerous virus equipped with the potential to evoke widespread pandemic disease. The 2009 H1N1 pandemic highlights the urgency for developing effective therapeutics against IAV infection. Vaccination is a major weapon to combat IAV and efforts to improve current regimes are critically important. Here, we will review the role of dendritic cells (DCs), a pivotal cell type in the initiation of robust IAV immunity. The complexity of DC subset heterogeneity in the respiratory tract and lymph node that drains the IAV infected lung will be discussed, together with the varied and in some cases, conflicting contributions of individual DC populations to presenting IAV associated antigen to T cells.
Collapse
Affiliation(s)
- Jason Waithman
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, West Perth, WA, Australia
| | | |
Collapse
|
16
|
Hematopoietic-specific targeting of influenza A virus reveals replication requirements for induction of antiviral immune responses. Proc Natl Acad Sci U S A 2012; 109:12117-22. [PMID: 22778433 DOI: 10.1073/pnas.1206039109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A coordinated innate and adaptive immune response, orchestrated by antigen presenting cells (APCs), is required for effective clearance of influenza A virus (IAV). Although IAV primarily infects epithelial cells of the upper respiratory tract, APCs are also susceptible. To determine if virus transcription in these cells is required to generate protective innate and adaptive immune responses, we engineered IAV to be selectively attenuated in cells of hematopoietic origin. Incorporation of hematopoietic-specific miR-142 target sites into the nucleoprotein of IAV effectively silenced virus transcription in APCs, but had no significant impact in lung epithelial cells. Here we demonstrate that inhibiting IAV replication in APCs in vivo did not alter clearance, or the generation of IAV-specific CD8 T cells, suggesting that cross-presentation is sufficient for cytotoxic T lymphocyte activation. In contrast, loss of in vivo virus infection, selectively in APCs, resulted in a significant reduction of retinoic acid-inducible gene I-dependent type I IFN (IFN-I). These data implicate the formation of virus replication intermediates in APCs as the predominant trigger of IFN-I in vivo. Taking these data together, this research describes a unique platform to study the host response to IAV and provides insights into the mechanism of antigen presentation and the induction of IFN-I.
Collapse
|
17
|
Abstract
The interaction between influenza virus and dendritic cells (DCs) remains poorly defined and controversial. Here we show that influenza virus replication in mouse bone marrow-derived DCs is abortive, despite viral genome transcription and replication occurring for each gene segment and viral hemagglutinin and nucleoprotein, at least, being produced. Electron microscopy reveals that virus assembly, rather than release of virus from the cell surface, is defective.
Collapse
|