1
|
Yurkevicz AM, Liu Y, Katz SG, Glazer PM. Tumor-Specific Antigen Delivery for T-cell Therapy via a pH-Sensitive Peptide Conjugate. Mol Cancer Ther 2025; 24:105-117. [PMID: 39382073 DOI: 10.1158/1535-7163.mct-23-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Identifying an optimal antigen for targeted cancer therapy is challenging as the antigen landscape on cancerous tissues mimics that of healthy tissues, with few unique tumor-specific antigens identified in individual patients. pH low insertion peptide (pHLIP) acts as a unique delivery platform that can specifically target the acidic microenvironment of tumors, sparing healthy tissue in the process. We developed a pHLIP-peptide conjugate to deliver the SIINFEKL peptide, an immunogenic fragment of ovalbumin (OVA), to tumor cells in vivo. When processed intracellularly, SIINFEKL is presented for immune recognition through the major histocompatibility complex (MHC) class I pathway. We observed selective delivery of pHLIP-SIINFEKL both in vitro and in vivo using fluorescently labeled constructs. In vitro, treatment of melanoma tumor cells with pHLIP-SIINFEKL resulted in recognition by SIINFEKL-specific T cells (OT1), leading to T-cell activation and effector function. Mechanistically, we show that this recognition by OT1 T cells was abrogated by siRNA/shRNA knockdown of multiple components within the MHC class I pathway in the target tumor cells, indicating that an intact antigen processing pathway in the cancer cells is necessary to mediate the effect of pHLIP-directed SIINFEKL delivery. In vivo, pHLIP-SIINFEKL treatment of tumor-bearing mice resulted in the recruitment of OT1 T cells and suppression of tumor growth in two syngeneic tumor models in immunocompetent mice, with no effect when mutating either the pHLIP or SIINFEKL components of the conjugate. These results suggest that pHLIP-mediated peptide delivery can be used to deliver novel artificial antigens that can be targeted by cell-based therapies.
Collapse
Affiliation(s)
- Annali M Yurkevicz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Ono T, Fujita Y, Matano T, Takahashi S, Morio T, Kawana-Tachikawa A. Characterization of In Vitro Expanded Virus-Specific T cells for Adoptive Immunotherapy against Virus Infection. Jpn J Infect Dis 2018; 71:122-128. [PMID: 29491233 DOI: 10.7883/yoken.jjid.2017.500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adoptive transfer of virus-specific T cells has emerged as a promising therapeutic approach for treatment of virus infections in immunocompromised hosts. Characterization of virus-specific T cells provides essential information about the curative mechanism of the treatment. In this study, we developed a T cell epitope mapping system for 718 overlapping peptides spanning 6 proteins of 3 viruses (pp65 and IE1 from cytomegalovirus; LMP1, EBNA1, and BZLF1 from Epstein-Barr virus; Penton from adenovirus). Peripheral blood mononuclear cells (PBMCs) from 33 healthy Japanese donors were stimulated with these peptides and virus-specific CD4+ and CD8+ T cells were expanded in vitro in the presence of interleukin (IL) 4 and IL7. A median of 13 (minimum-maximum, 2-46) peptides was recognized in the cohort. Both fresh and cryopreserved PBMCs were used for in vitro expansion. The expansion and breadth of T cell responses were not significantly different between the 2 PBMC sets. We assessed viral regions frequently recognized by T cells in a Japanese cohort that could become pivotal T cell targets for immunotherapy in Japan. We tested epitope prediction for CD8+ T cell responses against a common target region using a freely available online tool. Some epitopes were considered to be predictive.
Collapse
Affiliation(s)
- Toshiaki Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University
| | - Yuriko Fujita
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo.,Yokohama Municipal Citizen's Hospital
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases.,Department of AIDS Vaccine Development, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Satoshi Takahashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases.,Department of AIDS Vaccine Development, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| |
Collapse
|
3
|
Park S, Buck MD, Desai C, Zhang X, Loginicheva E, Martinez J, Freeman ML, Saitoh T, Akira S, Guan JL, He YW, Blackman MA, Handley SA, Levine B, Green DR, Reese TA, Artyomov MN, Virgin HW. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation from Latency by Preventing Virus-Induced Systemic Inflammation. Cell Host Microbe 2016; 19:91-101. [PMID: 26764599 PMCID: PMC4714357 DOI: 10.1016/j.chom.2015.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023]
Abstract
Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine gammaherpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by interferon-γ (IFN-γ). Using a lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16l1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5 deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ, and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. Autophagy (Atg) genes in myeloid cells inhibit virus-triggered systemic inflammation Atg gene-regulated systemic inflammation inhibits herpesvirus reactivation Interferon-γ controls herpesvirus reactivation in the setting of Atg gene mutations
Collapse
Affiliation(s)
- Sunmin Park
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael D Buck
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xin Zhang
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ekaterina Loginicheva
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27703, USA
| | - Michael L Freeman
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tatsuya Saitoh
- Division of Molecular Genetics, Institute for Enzyme Research, Tokushima University, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Scott A Handley
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tiffany A Reese
- Department of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, Simas JP. Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation. PLoS Pathog 2014; 10:e1004220. [PMID: 24967892 PMCID: PMC4072806 DOI: 10.1371/journal.ppat.1004220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/13/2014] [Indexed: 12/26/2022] Open
Abstract
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Chronic viral infections cause huge morbidity and mortality worldwide. γ-herpesviruses provide an example relevant to all human demographics, causing, inter alia, Hodgkin's disease, Burkitt's lymphoma, Kaposi's Sarcoma, and nasopharyngeal carcinoma. The proliferation of latently infected B cells and their control by CD8+ T cells are central to pathogenesis. Although many viral T cell targets have been identified in vitro, the functional impact of their engagement in vivo remains ill-defined. With the well-established Murid Herpesvirus-4 infection model, we used a range of recombinant viruses to define functional thresholds for the engagement of a latently expressed viral epitope. These data advance significantly our understanding of how the immune system must function to control γ-herpesvirus infection, with implications for vaccination and anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G. Stevenson
- Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
5
|
Feng P, Moses A, Früh K. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses. Curr Opin Virol 2013; 3:285-95. [PMID: 23735334 DOI: 10.1016/j.coviro.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
Abstract
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|