1
|
Li Y, Xue M, Dai Y, Xie Y, Wei Y, Wang C, Tian M, Fan Y, Jiang N, Xu C, Liu W, Meng Y, Zhou Y. Chinese giant salamander Bcl-w: An inhibitory role in iridovirus-induced mitochondrial apoptosis and virus replication. Virus Res 2023; 335:199196. [PMID: 37597665 PMCID: PMC10445403 DOI: 10.1016/j.virusres.2023.199196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
B-cell lymphoma-2 (BCL-2) superfamily molecules play crucial roles in mitochondrial apoptosis induced by Chinese giant salamander iridovirus (GSIV). As an anti-apoptotic molecule in the BCL-2 family, the molecular mechanism of Bcl-w during GSIV infection remains unknown. In this study, we characterized for the first time an amphibian Bcl-w from Chinese giant salamander Andrias davidianus (AdBcl-w), and its function and regulatory mechanism during GSIV infection were investigated. AdBcl-w possesses the conserved structural features of Bcl-w and shares 35-54% sequence identities with other Bcl-w. mRNA expression of AdBcl-w was most abundant in liver and muscle. The AdBcl-w mRNA expression was regulated during GSIV infection. Western blotting assays revealed that the level of Bcl-w protein was downregulated markedly as the infection progresses. Confocal microscopy showed that overexpressed AdBcl-w was translocated to the mitochondria after infection with GSIV. Flow cytometry analysis demonstrated that compared with control, the apoptotic progress in cells transfected with AdBcl-w was reduced while that in cells transfected with AdBcl-w siRNA was enhanced. The number of virus major capsid protein gene copies was lower and protein synthesis was reduced in AdBcl-w overexpressing cells. In addition, AdBcl-w could bind directly to the pro-apoptotic molecule AdBak, while this interaction was weakened with GSIV infection. Moreover, p53 level was reduced and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-w overexpressing cells during GSIV infection. These results suggested that AdBcl-w inhibit GSIV replication by regulating the virus induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yixing Xie
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Ying Wei
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Cheng Wang
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Mingzhu Tian
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| |
Collapse
|
2
|
Giri J, Basu M, Roy S, Mishra T, Jana K, Chande A, Ukil A. Translationally Controlled Tumor Protein-Mediated Stabilization of Host Antiapoptotic Protein MCL-1 Is Critical for Establishment of Infection by Intramacrophage Parasite Leishmania donovani. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2540-2548. [PMID: 35562118 DOI: 10.4049/jimmunol.2100748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
In the early phase of infection, the intramacrophage pathogen Leishmania donovani protects its niche with the help of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Whether Leishmania could exploit MCL-1, an extremely labile protein, at the late phase is still unclear. A steady translational level of MCL-1 observed up to 48 h postinfection and increased caspase-3 activity in MCL-1-silenced infected macrophages documented its importance in the late hours of infection. The transcript level of MCL-1 showed a sharp decline at 6 h postinfection, and persistent MCL-1 expression in cyclohexamide-treated cells negates the possibility of de novo protein synthesis, thereby suggesting infection-induced stability. Increased ubiquitination, a prerequisite for proteasomal degradation of MCL-1, was also found to be absent in the late hours of infection. Lack of interaction with its specific E3 ubiquitin ligase MULE (MCL-1 ubiquitin ligase E3) and specific deubiquitinase USP9X prompted us to search for blockade of the ubiquitin-binding site in MCL-1. To this end, TCTP (translationally controlled tumor protein), a well-known binding partner of MCL-1 and antiapoptotic regulator, was found to be strongly associated with MCL-1 during infection. Phosphorylation of TCTP, a requirement for MCL-1 binding, was also increased in infected macrophages. Knockdown of TCTP decreased MCL-1 expression and short hairpin RNA-mediated silencing of TCTP in an infected mouse model of visceral leishmaniasis showed decreased parasite burden and induction of liver cell apoptosis. Collectively, our investigation revealed a key mechanism of how L. donovani exploits TCTP to establish infection within the host.
Collapse
Affiliation(s)
- Jayeeta Giri
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Moumita Basu
- Biosciences and Bioengineering Department, Indian Institute of Technology, Mumbai, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM, Kolkata, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India;
| |
Collapse
|
3
|
Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT. Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish. Front Cell Infect Microbiol 2018; 8:406. [PMID: 30524971 PMCID: PMC6262203 DOI: 10.3389/fcimb.2018.00406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the innate immune response, we have used Danio rerio (zebrafish) as an infection model. Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the host during P. aeruginosa infection. Following establishment of infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were 6739 genes found to be significantly differentially expressed in zebrafish and 176 genes in PASS1. A range of virulence genes were upregulated in PASS1, including genes encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases, superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the host immune response genes highlighted phagocytosis as a key response mechanism to PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis were upregulated alongside transcriptional regulators governing response to tissue injury, infection, and inflammation. The zebrafish host showed significant downregulation of the ribosomal RNAs and other genes involved in translation, suggesting that protein translation in the host is affected by PASS1 infection.
Collapse
Affiliation(s)
- Sheemal S Kumar
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia I Tandberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anahit Penesyan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nadia Suarez-Bosche
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Emily Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eline Skadberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, The Faculty of Mathematic and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicholas Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hanne Cecilie Winther-Larsen
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ian T Paulsen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Arslan SY, Son KN, Lipton HL. During Infection, Theiler's Virions Are Cleaved by Caspases and Disassembled into Pentamers. J Virol 2016; 90:3573-83. [PMID: 26792734 PMCID: PMC4794658 DOI: 10.1128/jvi.03035-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infected macrophages in spinal cords of mice persistently infected with Theiler's murine encephalomyelitis virus (TMEV) undergo apoptosis, resulting in restricted virus yields, as do infected macrophages in culture. Apoptosis of murine macrophages in culture occurs via the intrinsic pathway later in infection (>10 h postinfection [p.i.]) after maximal virus titers (150 to 200 PFU/cell) have been reached, with loss of most infectious virus (<5 PFU/cell) by 20 to 24 h p.i. Here, we show that BeAn virus RNA replication, translation, polyprotein processing into final protein products, and assembly of protomers and pentamers in infected M1-D macrophages did not differ from those processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the initial difference from BHK-21 cell infection was seen at 10 to 12 h p.i., where virions from the 160S peak in sucrose gradients had incompletely processed VP0 (compared to that in infected BHK-21 cells). Thereafter, there was a gradual loss of the 160S virion peak in sucrose gradients, with replacement by a 216S peak that was observed to contain pentamers among lipid debris in negatively stained grids by electron microscopy. After infection or incubation of purified virions with activated caspase-3 in vitro, 13- and 17-kDa capsid peptide fragments were observed and were predicted by algorithms to contain cleavage sites within proteins by cysteine-dependent aspartate-directed proteases. These findings suggest that caspase cleavage of sites in exposed capsid loops of assembled virions occurs contemporaneously with the onset and progression of apoptosis later in the infection. IMPORTANCE Theiler's murine encephalomyelitis virus (TMEV) infection in mice results in establishment of virus persistence in the central nervous system and chronic inflammatory demyelinating disease, providing an experimental animal model for multiple sclerosis. Virus persistence takes place primarily in macrophages recruited into the spinal cord that undergo apoptosis and in turn may facilitate viral spread via infected apoptotic blebs. Infection of murine macrophages in culture results in restricted virus yields late in infection. Here it is shown that the early steps of the virus life cycle in infected macrophages in vitro do not differ from these processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the findings late in infection suggest that caspases cleave sites in exposed capsid loops and possibly internal sites of assembled virions occurring contemporaneously with onset and progression of apoptosis. Mechanistically, this would explain the dramatic loss in virus yields during TMEV-induced apoptosis and attenuate the virus, enabling persistence.
Collapse
Affiliation(s)
- Sevim Yildiz Arslan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA The Graduate School, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyung-No Son
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Howard L Lipton
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Son KN, Lipton HL. Inhibition of Theiler's virus-induced apoptosis in infected murine macrophages results in necroptosis. Virus Res 2014; 195:177-82. [PMID: 25449910 DOI: 10.1016/j.virusres.2014.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023]
Abstract
In mice Theiler's murine encephalomyelitis virus (TMEV) persists in macrophages that eventually undergo apoptosis. TMEV infection of macrophages in culture induces apoptosis through the intrinsic pathway, restricting virus yields. We show that inhibition of TMEV-induced apoptosis leads to phosphorylation of receptor interacting protein 1 (RIP1), localization of RIP1 and RIP3 to mitochondria, ROS production independent of MAPK activation and programmed necrosis (necroptosis). Blocking both apoptosis and necroptosis restored virus yields.
Collapse
Affiliation(s)
- Kyung-No Son
- Department of Microbiology-Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Howard L Lipton
- Department of Microbiology-Immunology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
6
|
Basta HA, Palmenberg AC. AMP-activated protein kinase phosphorylates EMCV, TMEV and SafV leader proteins at different sites. Virology 2014; 462-463:236-40. [PMID: 24999048 DOI: 10.1016/j.virol.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/07/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022]
Abstract
Cardioviruses of the Encephalomyocarditis virus (EMCV) and Theilovirus species encode small, amino-terminal proteins called Leaders (L). Phosphorylation of the EMCV L (LE) at two distinct sites by CK2 and Syk kinases is important for virus-induced Nup phosphorylation and nucleocytoplasmic trafficking inhibition. Despite similar biological activities, the LE phosphorylation sites are not conserved in the Theiloviruses, Saffold virus (LS, SafV) or Theiler׳s murine encephalitis virus (LT, TMEV) sequences even though these proteins also become phosphorylated in cells and cell-free extracts. Site prediction algorithms, combined with panels of site-specific protein mutations now identify analogous, but not homologous phosphorylation sites in the Ser/Thr and Theilo protein domains of LT and LS, respectively. In both cases, recombinant AMP-activated kinase (AMPK) was reactive with the proteins at these sites, and also with LE, modifying the same residue recognized by CK2.
Collapse
Affiliation(s)
- Holly A Basta
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
7
|
Mutation of the Theiler's virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages. Virus Res 2013; 177:222-5. [PMID: 24036175 DOI: 10.1016/j.virusres.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023]
Abstract
The Theiler's murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line.
Collapse
|
8
|
Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology 2013; 444:233-40. [PMID: 23850458 DOI: 10.1016/j.virol.2013.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/05/2013] [Accepted: 06/10/2013] [Indexed: 11/20/2022]
Abstract
Our previous study has shown that activation of JNK plays a critical role in Porcine reproductive and respiratory syndrome virus (PRRSV)-mediated apoptosis. In this follow-up study, we further investigated the mechanisms involved in modulation of PRRSV-mediated JNK activation and apoptosis. We found that unfolded protein response (UPR) was induced in response to PRRSV infection which in turn triggered JNK activation and apoptosis. We also found that p53 and Akt were activated at the early stage of infection and functioned as negative regulator of JNK activation to counteract the PRRSV-mediated apoptosis. Furthermore, induction of UPR, p53 and Akt was not only involved in modulation of PRRSV-mediated apoptosis, but also contributed to the virus replication. Our findings indicated that multiple signaling pathways were involved in modulation of PRRSV-mediated apoptosis of the host cells via regulating JNK signaling pathway and provided novel insights into understanding the mechanisms of pathogenesis of PRRSV infection.
Collapse
|
9
|
Agol VI. Cytopathic effects: virus-modulated manifestations of innate immunity? Trends Microbiol 2012; 20:570-6. [PMID: 23072900 PMCID: PMC7126625 DOI: 10.1016/j.tim.2012.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022]
Abstract
The capacity to injure infected cells is a widespread property of viruses. Usually, this cytopathic effect (CPE) is ascribed to viral hijacking of cellular resources to fulfill viral needs. However, evidence is accumulating that CPE is not necessarily directly coupled to viral reproduction but may largely be due to host defensive and viral antidefensive activities. A major part in this virus–cell interaction appears to be played by a putative host-encoded program with multiple competing branches, leading to necrotic, apoptotic, and, possibly, other types of cell suicide. Manifestations of this program are controlled and modulated by host, viral, and environmental factors.
Collapse
Affiliation(s)
- Vadim I Agol
- MP Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| |
Collapse
|
10
|
Horsington J, Turnbull L, Whitchurch CB, Newsome TP. Sub-viral imaging of vaccinia virus using super-resolution microscopy. J Virol Methods 2012; 186:132-6. [PMID: 22776111 DOI: 10.1016/j.jviromet.2012.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/16/2022]
Abstract
The study of host-pathogen interactions over past decades has benefited from advances in microscopy and fluorescent imaging techniques. A particularly powerful model in this field is vaccinia virus (VACV), which due to its amenability to genetic manipulation has been a productive model in advancing the understanding of the transport of subcellular cargoes. Conventional light microscopy imposes an upper limit of resolution of ~250nm, hence knowledge of events occurring at the sub-viral resolution is based predominantly on studies utilising electron microscopy. The development of super-resolution light microscopy presents the opportunity to bridge the gap between these two technologies. This report describes the analysis of VACV replication using fluorescent recombinant viruses, achieving sub-viral resolution with three-dimensional structured illumination microscopy. This is the first report of successfully resolving poxvirus particle morphologies at the scale of single virus particles using light microscopy.
Collapse
Affiliation(s)
- Jacquelyn Horsington
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|