1
|
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, Danda M, Zvonařová K, Šinkovec L, Večerková K, Bednářová L, Ruml T, Rumlová M. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A 2024; 121:e2407990121. [PMID: 39320912 PMCID: PMC11459146 DOI: 10.1073/pnas.2407990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Petra Junková
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Jana Racková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Radim Novotný
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Karolína Zvonařová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Larisa Šinkovec
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Kateřina Večerková
- Department of Informatics and Chemistry, University of Chemistry and Technology, 166 28Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20Prague, Czech Republic
| | - Lucie Bednářová
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| |
Collapse
|
2
|
Fullerene Derivatives Prevent Packaging of Viral Genomic RNA into HIV-1 Particles by Binding Nucleocapsid Protein. Viruses 2021; 13:v13122451. [PMID: 34960720 PMCID: PMC8705927 DOI: 10.3390/v13122451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.
Collapse
|
3
|
Kodr D, Stanková J, Rumlová M, Džubák P, Řehulka J, Zimmermann T, Křížová I, Gurská S, Hajdúch M, Drašar PB, Jurášek M. Betulinic Acid Decorated with Polar Groups and Blue Emitting BODIPY Dye: Synthesis, Cytotoxicity, Cell-Cycle Analysis and Anti-HIV Profiling. Biomedicines 2021; 9:biomedicines9091104. [PMID: 34572290 PMCID: PMC8472287 DOI: 10.3390/biomedicines9091104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023] Open
Abstract
Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.
Collapse
Affiliation(s)
- David Kodr
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Jiří Řehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Tomáš Zimmermann
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Pavel B. Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
- Correspondence:
| |
Collapse
|
4
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
5
|
In Vitro Quantification of the Effects of IP6 and Other Small Polyanions on Immature HIV-1 Particle Assembly and Core Stability. J Virol 2020; 94:JVI.00991-20. [PMID: 32727872 DOI: 10.1128/jvi.00991-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
Proper assembly and disassembly of both immature and mature HIV-1 hexameric lattices are critical for successful viral replication. These processes are facilitated by several host-cell factors, one of which is myo-inositol hexaphosphate (IP6). IP6 participates in the proper assembly of Gag into immature hexameric lattices and is incorporated into HIV-1 particles. Following maturation, IP6 is also likely to participate in stabilizing capsid protein-mediated mature hexameric lattices. Although a structural-functional analysis of the importance of IP6 in the HIV-1 life cycle has been reported, the effect of IP6 has not yet been quantified. Using two in vitro methods, we quantified the effect of IP6 on the assembly of immature-like HIV-1 particles, as well as its stabilizing effect during disassembly of mature-like particles connected with uncoating. We analyzed a broad range of molar ratios of protein hexamers to IP6 molecules during assembly and disassembly. The specificity of the IP6-facilitated effect on HIV-1 particle assembly and stability was verified by K290A, K359A, and R18A mutants. In addition to IP6, we also tested other polyanions as potential assembly cofactors or stabilizers of viral particles.IMPORTANCE Various host cell factors facilitate critical steps in the HIV-1 replication cycle. One of these factors is myo-inositol hexaphosphate (IP6), which contributes to assembly of HIV-1 immature particles and helps maintain the well-balanced metastability of the core in the mature infectious virus. Using a combination of two in vitro methods to monitor assembly of immature HIV-1 particles and disassembly of the mature core-like structure, we quantified the contribution of IP6 and other small polyanion molecules to these essential steps in the viral life cycle. Our data showed that IP6 contributes substantially to increasing the assembly of HIV-1 immature particles. Additionally, our analysis confirmed the important role of two HIV-1 capsid lysine residues involved in interactions with IP6. We found that myo-inositol hexasulphate also stabilized the HIV-1 mature particles in a concentration-dependent manner, indicating that targeting this group of small molecules may have therapeutic potential.
Collapse
|
6
|
Kaufman F, Dostálková A, Pekárek L, Thanh TD, Kapisheva M, Hadravová R, Bednárová L, Novotný R, Křížová I, Černý J, Grubhoffer L, Ruml T, Hrabal R, Rumlová M. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett 2020; 594:1989-2004. [PMID: 32510601 DOI: 10.1002/1873-3468.13857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Collapse
Affiliation(s)
- Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Lukáš Pekárek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Tung Dinh Thanh
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Romana Hadravová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radim Novotný
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Richard Hrabal
- NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
7
|
PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles. Molecules 2020; 25:molecules25081895. [PMID: 32325987 PMCID: PMC7221806 DOI: 10.3390/molecules25081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023] Open
Abstract
A major structural retroviral protein, capsid protein (CA), is able to oligomerize into two different hexameric lattices, which makes this protein a key component for both the early and late stages of HIV-1 replication. During the late stage, the CA protein, as part of the Gag polyprotein precursor, facilitates protein–protein interactions that lead to the assembly of immature particles. Following protease activation and Gag polyprotein processing, CA also drives the assembly of the mature viral core. In the early stage of infection, the role of the CA protein is distinct. It controls the disassembly of the mature CA hexameric lattice i.e., uncoating, which is critical for the reverse transcription of the single-stranded RNA genome into double stranded DNA. These properties make CA a very attractive target for small molecule functioning as inhibitors of HIV-1 particle assembly and/or disassembly. Of these, inhibitors containing the PF74 scaffold have been extensively studied. In this study, we reported a series of modifications of the PF74 molecule and its characterization through a combination of biochemical and structural approaches. Our data supported the hypothesis that PF74 stabilizes the mature HIV-1 CA hexameric lattice. We identified derivatives with a higher in vitro stabilization activity in comparison to the original PF74 molecule.
Collapse
|
8
|
Keprová A, Kořínková L, Křížová I, Hadravová R, Kaufman F, Pichová I, Ruml T, Rumlová M. Various AKIP1 expression levels affect its subcellular localization but have no effect on NF-kappaB activation. Physiol Res 2019; 68:431-443. [PMID: 30904007 DOI: 10.33549/physiolres.933961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A-kinase interacting protein 1 (AKIP1) has been shown to interact with a broad range of proteins involved in various cellular processes, including apoptosis, tumorigenesis, and oxidative stress suggesting it might have multiple cellular functions. In this study, we used an epitope-tagged AKIP1 and by combination of immunochemical approaches, microscopic methods and reporter assays we studied its properties. Here, we show that various levels of AKIP1 overexpression in HEK-293 cells affected not only its subcellular localization but also resulted in aggregation. While highly expressed AKIP1 accumulated in electron-dense aggregates both in the nucleus and cytosol, low expression of AKIP1 resulted in its localization within the nucleus as a free, non-aggregated protein. Even though AKIP1 was shown to interact with p65 subunit of NF-kappaB and activate this transcription factor, we did not observe any effect on NF-kappaB activation regardless of various AKIP1 expression level.
Collapse
Affiliation(s)
- A Keprová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Píchalová R, Füzik T, Vokatá B, Rumlová M, Llano M, Dostálková A, Křížová I, Ruml T, Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology 2018; 521:108-117. [PMID: 29906704 DOI: 10.1016/j.virol.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Collapse
Affiliation(s)
- Růžena Píchalová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tibor Füzik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University El Paso, TX 79902, USA.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
10
|
Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site. J Virol 2018; 92:JVI.00106-18. [PMID: 29491167 DOI: 10.1128/jvi.00106-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
Collapse
|
11
|
Does BCA3 Play a Role in the HIV-1 Replication Cycle? Viruses 2018; 10:v10040212. [PMID: 29677171 PMCID: PMC5923506 DOI: 10.3390/v10040212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The cellular role of breast carcinoma-associated protein (BCA3), also known as A-kinase-interacting protein 1 (AKIP-1), is not fully understood. Recently, we reported that full-length, but not C-terminally truncated, BCA3 is incorporated into virions of Mason-Pfizer monkey virus, and that BCA3 enhances HIV-1 protease-induced apoptosis. In the present study, we report that BCA3 is associated with purified and subtilisin-treated HIV particles. Using a combination of immune-based methods and confocal microscopy, we show that the C-terminus of BCA3 is required for packaging into HIV-1 particles. However, we were unable to identify an HIV-1 binding domain for BCA3, and we did not observe any effect of incorporated BCA3 on HIV-1 infectivity. Interestingly, the BCA3 C-terminus was previously identified as a binding site for the catalytic subunit of protein kinase A (PKAc), a cellular protein that is specifically packaged into HIV-1 particles. Based on our analysis of PKAc–BCA3 interactions, we suggest that BCA3 incorporation into HIV-1 particles is mediated by its ability to interact with PKAc.
Collapse
|
12
|
Sloan KE, Bohnsack MT. Unravelling the Mechanisms of RNA Helicase Regulation. Trends Biochem Sci 2018; 43:237-250. [PMID: 29486979 DOI: 10.1016/j.tibs.2018.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022]
Abstract
RNA helicases are critical regulators at the nexus of multiple pathways of RNA metabolism, and in the complex cellular environment, tight spatial and temporal regulation of their activity is essential. Dedicated protein cofactors play key roles in recruiting helicases to specific substrates and modulating their catalytic activity. Alongside individual RNA helicase cofactors, networks of cofactors containing evolutionarily conserved domains such as the G-patch and MIF4G domains highlight the potential for cross-regulation of different aspects of gene expression. Structural analyses of RNA helicase-cofactor complexes now provide insight into the diverse mechanisms by which cofactors can elicit specific and coordinated regulation of RNA helicase action. Furthermore, post-translational modifications (PTMs) and long non-coding RNA (lncRNA) regulators have recently emerged as novel modes of RNA helicase regulation.
Collapse
Affiliation(s)
- Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Center for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Optimized method for isolation of immature intracytoplasmic retroviral particles from mammalian cells. J Virol Methods 2017; 248:19-25. [PMID: 28619602 DOI: 10.1016/j.jviromet.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022]
Abstract
To biochemically and structurally characterize viral intracytoplasmic particles (ICAPs), a sample of high purity and homogeneity is usually required. Production of ICAPs in the system closely related to their natural host cells is crucial for the analysis of host-cell binding proteins involved in ICAPs assembly, transport and budding. However, this approach is often hampered by problems with low yield of the ICAPs due to either low expression or fast release from the host cell. Another obstacle may be a low stability or fragility of the intracellular particles. The published methods for ICAPs isolation often involved several time-consuming centrifugation steps yielding damaged particles. Other papers describe the ICAPs production in non-natural host cells. Here, we optimized the method for purification of unstable Mason-Pfizer monkey virus (M-PMV) ICAPs from non-human primate derived cells, commonly used to study MPMV replication i.e. African green monkey kidney fibroblast cell line (COS-1). Our simple and rapid procedure involved separation of the intracytoplasmic particles from the cell debris and organelles by differential, low-speed centrifugation, their purification using sucrose velocity gradient and final concentrating by low-speed centrifugation. Importantly, the method was established for unstable and fragile M-PMV intracytoplasmic particles. Therefore, it may be suitable for isolation of ICAPs of other viruses.
Collapse
|
14
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
16
|
Liu Q, Qin J, Li T, Liu E, Fan D, Edzesi WM, Liu J, Jiang J, Liu X, Xiao L, Liu L, Hong D. Fine Mapping and Candidate Gene Analysis of qSTL3, a Stigma Length-Conditioning Locus in Rice (Oryza sativa L.). PLoS One 2015; 10:e0127938. [PMID: 26030903 PMCID: PMC4452489 DOI: 10.1371/journal.pone.0127938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
The efficiency of hybrid seed production can be improved by increasing the percentage of exserted stigma, which is closely related to the stigma length in rice. In the chromosome segment substitute line (CSSL) population derived from Nipponbare (recipient) and Kasalath (donor), a single CSSL (SSSL14) was found to show a longer stigma length than that of Nipponbare. The difference in stigma length between Nipponbare and SSSL14 was controlled by one locus (qSTL3). Using 7,917 individuals from the SSSL14/Nipponbare F2 population, the qSTL3 locus was delimited to a 19.8-kb region in the middle of the short arm of chromosome 3. Within the 19.8-kb chromosome region, three annotated genes (LOC_Os03g14850, LOC_Os03g14860 and LOC_Os03g14880) were found in the rice genome annotation database. According to gene sequence alignments in LOC_Os03g14850, a transition of G (Nipponbare) to A (Kasalath) was detected at the 474-bp site in CDS. The transition created a stop codon, leading to a deletion of 28 amino acids in the deduced peptide sequence in Kasalath. A T-DNA insertion mutant (05Z11CN28) of LOC_Os03g14850 showed a longer stigma length than that of wild type (Zhonghua 11), validating that LOC_Os03g14850 is the gene controlling stigma length. However, the Kasalath allele of LOC_Os03g14850 is unique because all of the alleles were the same as that of Nipponbare at the 474-bp site in the CDS of LOC_Os03g14850 among the investigated accessions with different stigma lengths. A gene-specific InDel marker LQ30 was developed for improving stigma length during rice hybrid breeding by marker-assisted selection.
Collapse
Affiliation(s)
- Qiangming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiancai Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianwei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erbao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dejia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wisdom Mawuli Edzesi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaoli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lianjie Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
17
|
Regulation of DEAH/RHA helicases by G-patch proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:931857. [PMID: 25692149 PMCID: PMC4322301 DOI: 10.1155/2015/931857] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase's enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase.
Collapse
|
18
|
Obr M, Hadravová R, DoleŽal M, KříŽová I, Papoušková V, Zídek L, Hrabal R, Ruml T, Rumlová M. Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 2014; 11:94. [PMID: 25365920 PMCID: PMC4219007 DOI: 10.1186/s12977-014-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
19
|
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 2014; 88:14148-60. [PMID: 25275119 DOI: 10.1128/jvi.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses. Published models of supramolecular structures of immature particles suggest that in lentiviruses and alpharetroviruses, SP adopts a rod-like six-helix bundle organization. In contrast, Mason-Pfizer monkey virus (M-PMV), a betaretrovirus that assembles in the cytoplasm, does not contain a distinct SP sequence, and the CA-NC connecting region is not organized into a clear rod-like structure. Nevertheless, the CA-NC junction comprises a sequence critical for assembly of immature M-PMV particles. In the present work, we characterized this region, called the SP-like domain, in detail. We provide biochemical data confirming the critical role of the M-PMV SP-like domain in immature particle assembly, release, processing, and infectivity. Circular dichroism spectroscopy revealed that, in contrast to the SP regions of other retroviruses, a short SP-like domain-derived peptide (SPLP) does not form a purely helical structure in aqueous or helix-promoting solution. Using 8-Å cryo-electron microscopy density maps of immature M-PMV particles, we prepared computational models of the SP-like domain and indicate the structural features required for M-PMV immature particle assembly. IMPORTANCE Retroviruses such as HIV-1 are of great medical importance. Using Mason-Pfizer monkey virus (M-PMV) as a model retrovirus, we provide biochemical and structural data confirming the general relevance of a short segment of the structural polyprotein Gag for retrovirus assembly and infectivity. Although this segment is critical for assembly of immature particles of lentiviruses, alpharetroviruses, and betaretroviruses, the organization of this domain is strikingly different. A previously published electron microscopic structure of an immature M-PMV particle allowed us to model this important region into the electron density map. The data presented here help explain the different packing of the Gag segments of various retroviruses, such as HIV, Rous sarcoma virus (RSV), and M-PMV. Such knowledge contributes to understanding the importance of this region and its structural flexibility among retroviral species. The region might play a key role in Gag-Gag interactions, leading to different morphological pathways of immature particle assembly.
Collapse
|
20
|
Rumlová M, Křížová I, Hadravová R, Doležal M, Strohalmová K, Keprová A, Pichová I, Ruml T. Breast cancer-associated protein--a novel binding partner of Mason-Pfizer monkey virus protease. J Gen Virol 2014; 95:1383-1389. [PMID: 24659101 DOI: 10.1099/vir.0.064345-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified breast cancer-associated protein (BCA3) as a novel binding partner of Mason-Pfizer monkey virus (MPMV) protease (PR). The interaction was confirmed by co-immunoprecipitation and immunocolocalization of MPMV PR and BCA3. Full-length but not C-terminally truncated BCA3 was incorporated into MPMV virions. We ruled out the potential role of the G-patch domain, a glycine-rich domain located at the C terminus of MPMV PR, in BCA3 interaction and virion incorporation. Expression of BCA3 did not affect MPMV particle release and proteolytic processing; however, it slightly increased MPMV infectivity.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Ivana Křížová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Michal Doležal
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Karolína Strohalmová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Alena Keprová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., IOCB & Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
21
|
Schneider A, Peter D, Schmitt J, Leo B, Richter F, Rösch P, Wöhrl BM, Hartl MJ. Structural requirements for enzymatic activities of foamy virus protease-reverse transcriptase. Proteins 2013; 82:375-85. [DOI: 10.1002/prot.24394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Schneider
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Daniel Peter
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Jessica Schmitt
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Franziska Richter
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Paul Rösch
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Birgitta M. Wöhrl
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| | - Maximilian J. Hartl
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30; D-95447 Bayreuth Germany
| |
Collapse
|