1
|
Bronson AS, Zhu Y, Lilley CM, Crane GM, Mirza KM. Clinicopathologic Insights and Molecular Oncogenesis: Understanding Epstein-Barr Virus-Induced B-cell Lymphoproliferations. Int J Surg Pathol 2025; 33:502-515. [PMID: 39166368 DOI: 10.1177/10668969241266933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Epstein-Barr virus (EBV) is a highly prevalent virus among adults worldwide. In an immunocompetent individual, EBV infection generally results in lifelong latency of the virus and no sequelae. However, in the setting of immune dysfunction, EBV can induce the development of autoimmune disorders, hyperplastic proliferations, and cancers, including lymphoma. Here, we explore the pathogenic and oncogenic role of EBV in Burkitt lymphoma, diffuse large B-cell lymphoma, Hodgkin lymphoma, plasmablastic lymphoma, lymphomatoid granulomatosis, and post-transplant lymphoproliferative disorders and lymphoproliferative disorders associated with immune deficiency and dysregulation. In addition to describing general mechanisms of EBV-associated oncogenesis, we also discuss EBV-associated oncogenesis in the context of each disorder, as well as their microscopic, phenotypic, and clinical presentations.
Collapse
Affiliation(s)
- Adam S Bronson
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Yuanzhe Zhu
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Cullen M Lilley
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamran M Mirza
- Department of Pathology and Clinical Laboratories, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Havey L, You H, Asara JM, Wang Y, Guo R. Epstein-Barr Virus-Driven B-Cell Transformation under Germinal Center Hypoxia Requires External Unsaturated Fatty Acids. RESEARCH SQUARE 2025:rs.3.rs-6506954. [PMID: 40313738 PMCID: PMC12045359 DOI: 10.21203/rs.3.rs-6506954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Epstein-Barr virus (EBV) contributes to over 200,000 cancers annually, predominantly aggressive lymphomas originating from hypoxic germinal centers (< 1% O2). However, conventional models fail to recapitulate the physiologically relevant hypoxic microenvironment which profoundly influences B-cell metabolic remodeling during transformation. Here, we establish an ex vivo model of EBV-driven B-cell transformation under 1% O2, demonstrating robust transformation and super-enhancer activation of oncogenic regulators, including MYC. Multi-omic analyses reveal distinct metabolic adaptations to hypoxia. Unlike normoxic B-cells, which rely on fatty acid desaturases and oxidation to mitigate lipotoxicity, hypoxically transformed B-cells suppress fatty acid synthesis while upregulating glycerophospholipid metabolism and lipid droplet formation to buffer excess saturated lipids. Consequently, these cells exhibit heightened dependence on external unsaturated fatty acids to support proliferation. Our findings provide the first physiologically relevant ex vivo model of EBV-driven B-cell transformation under hypoxia, uncovering metabolic vulnerabilities that could inform targeted therapeutic strategies for EBV-associated malignancies.
Collapse
Affiliation(s)
- Larissa Havey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Haixi You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
3
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Chiu YF, Ponlachantra K, Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses 2024; 16:1744. [PMID: 39599857 PMCID: PMC11599019 DOI: 10.3390/v16111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Since Epstein-Barr Virus (EBV) was isolated 60 years ago, it has been studied clinically, epidemiologically, immunologically, and molecularly in the ensuing years. These combined studies allow a broad mechanistic understanding of how this ubiquitous human pathogen which infects more than 90% of adults can rarely cause multiple types of lymphomas. We survey these findings to provide a coherent description of its oncogenesis.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Department of Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236017, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Khongpon Ponlachantra
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand;
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Kang HR, Han JH, Ng YC, Ryu S, Park JY, Chung WC, Song YJ, Chen ST, Brickey WJ, Ting JPY, Song MJ. Dynamic bidirectional regulation of NLRC3 and gammaherpesviruses during viral latency in B lymphocytes. J Med Virol 2024; 96:e29504. [PMID: 38445794 DOI: 10.1002/jmv.29504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.
Collapse
Affiliation(s)
- Hye-Ri Kang
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Ho Han
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yee Ching Ng
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungbo Ryu
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji-Yeon Park
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - W June Brickey
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
7
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
8
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
10
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
11
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
13
|
Keane JT, Afrasiabi A, Schibeci SD, Swaminathan S, Parnell GP, Booth DR. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 2021; 71:103572. [PMID: 34488019 PMCID: PMC8426200 DOI: 10.1016/j.ebiom.2021.103572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection may be necessary for the development of Multiple sclerosis (MS). Earlier we had identified six MS risk loci that are co-located with binding sites for the EBV transcription factor Epstein-Barr Nuclear Antigen 2 (EBNA2) in EBV-infected B cells (lymphoblastoid cell lines – LCLs). Methods We used an allele-specific chromatin immunoprecipitation PCR assay to assess EBNA2 allelic preference. We treated LCLs with a peptide inhibitor of EBNA2 (EBNA2-TAT), reasoning that inhibiting EBNA2 function would alter gene expression at these loci if it was mediated by EBNA2. Findings We found that EBNA2 binding was dependent on the risk allele for five of these six MS risk loci (p < 0·05). Treatment with EBNA2-TAT significantly altered the expression of TRAF3 (p < 0·05), CD40 (p < 0·001), CLECL1 (p <0·0001), TNFAIP8 (p < 0·001) and TNFRSF1A (p < 0·001). Interpretation These data suggest that EBNA2 can enhance or reduce expression of the gene depending on the risk allele, likely promoting EBV infection. This is consistent with the concept that these MS risk loci affect MS risk through altering the response to EBNA2. Together with the extensive data indicating a pathogenic role for EBV in MS, this study supports targeting EBV and EBNA2 to reduce their effect on MS pathogenesis. Funding Funding was provided by grants from MS Research Australia, National Health and Medical Research Council of Australia, Australian Government Research Training Program, Multiple Sclerosis International Federation, Trish Multiple Sclerosis Research Foundation.
Collapse
Affiliation(s)
- Jeremy Thomas Keane
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stephen Donald Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; Department of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Grant Peter Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| | - David Richmond Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Li C, Romero-Masters JC, Huebner S, Ohashi M, Hayes M, Bristol JA, Nelson SE, Eichelberg MR, Van Sciver N, Ranheim EA, Scott RS, Johannsen EC, Kenney SC. EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice. PLoS Pathog 2020; 16:e1008590. [PMID: 32542010 PMCID: PMC7316346 DOI: 10.1371/journal.ppat.1008590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
EBV transforms B cells in vitro and causes human B-cell lymphomas including classical Hodgkin lymphoma (CHL), Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). The EBV latency protein, EBNA2, transcriptionally activates the promoters of all latent viral protein-coding genes expressed in type III EBV latency and is essential for EBV's ability to transform B cells in vitro. However, EBNA2 is not expressed in EBV-infected CHLs and BLs in humans. EBV-positive CHLs have type II latency and are largely driven by the EBV LMP1/LMP2A proteins, while EBV-positive BLs, which usually have type I latency are largely driven by c-Myc translocations, and only express the EBNA1 protein and viral non-coding RNAs. Approximately 15% of human BLs contain naturally occurring EBNA2-deleted viruses that support a form of viral latency known as Wp-restricted (expressing the EBNA-LP, EBNA3A/3B/3C, EBNA1 and BHRF1 proteins), but whether Wp-restricted latency and/or EBNA2-deleted EBV can induce lymphomas in humanized mice, or in the absence of c-Myc translocations, is unknown. Here we show that a naturally occurring EBNA2-deleted EBV strain (P3HR1) isolated from a human BL induces EBV-positive B-cell lymphomas in a subset of infected cord blood-humanized (CBH) mice. Furthermore, we find that P3HR1-infected lymphoma cells support two different viral latency types and phenotypes that are mutually exclusive: 1) Large (often multinucleated), CD30-positive, CD45-negative cells reminiscent of the Reed-Sternberg (RS) cells in CHL that express high levels of LMP1 but not EBNA-LP (consistent with type II viral latency); and 2) smaller monomorphic CD30-negative DLBCL-like cells that express EBNA-LP and EBNA3A but not LMP1 (consistent with Wp-restricted latency). These results reveal that EBNA2 is not absolutely required for EBV to form tumors in CBH mice and suggest that P3HR1 virus can be used to model EBV positive lymphomas with both Wp-restricted and type II latency in vivo.
Collapse
MESH Headings
- Animals
- Cell Line
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Deletion
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/virology
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Mice
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Chunrong Li
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shane Huebner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark R. Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rona S. Scott
- Center for Molecular and Tumor Virology, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
15
|
Romero-Masters JC, Ohashi M, Djavadian R, Eichelberg MR, Hayes M, Zumwalde NA, Bristol JA, Nelson SE, Ma S, Ranheim EA, Gumperz JE, Johannsen EC, Kenney SC. An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model. J Virol 2020; 94:e02168-19. [PMID: 32132242 PMCID: PMC7199417 DOI: 10.1128/jvi.02168-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.
Collapse
Affiliation(s)
- James C Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reza Djavadian
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark R Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas A Zumwalde
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillian A Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott E Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shidong Ma
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Conditional expression of a dominant-negative form of Epstein-Barr virus (EBV) nuclear antigen EBNALP inhibits EBV-positive lymphoblastoid cell growth. Arch Virol 2019; 165:313-320. [PMID: 31813023 DOI: 10.1007/s00705-019-04489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that transforms primary B lymphocytes, yielding lymphoblastoid cell lines (LCLs). EBV-encoded nuclear antigen 2 (EBNA2) and EBV-encoded nuclear antigen leader protein (EBNALP) are the first viral products expressed after EBV infection of primary B lymphocytes and are essential for EBV-induced B-lymphocyte growth transformation. EBNA2 functions as a transcriptional activator of viral and cellular genes, with EBNALP as a coactivator for EBNA2-mediated transcriptional activation. We previously reported that mutant EBNALP with a C-terminal 10-amino-acid truncation loses the ability to coactivate, and has a dominant-negative effect on wild-type-EBNALP-mediated coactivation. However, the functional relevance of EBNALP in maintenance of LCL cell growth has not been investigated. To address this, we have constructed LCL-derived cell clones in which this dominant-negative form of EBNALP (DNLP) is conditionally expressed by the Cre-loxP system. We used these cells to evaluate the effect of DNLP expression on EBV-induced cell proliferation. After drug treatment, the DNLP-expressing LCL clones showed reduced cell proliferation and viability. These results indicate that EBNALP is critical for maintaining LCL growth and EBV-induced cell proliferation.
Collapse
|
17
|
Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019; 15:e1008030. [PMID: 31518366 PMCID: PMC6760809 DOI: 10.1371/journal.ppat.1008030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/25/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with multiple human malignancies. EBV drives B-cell proliferation, which contributes to the pathogenesis of multiple lymphomas. Yet, knowledge of how EBV subverts host biosynthetic pathways to transform resting lymphocytes into activated lymphoblasts remains incomplete. Using a temporal proteomic dataset of EBV primary human B-cell infection, we identified that cholesterol and fatty acid biosynthetic pathways were amongst the most highly EBV induced. Epstein-Barr nuclear antigen 2 (EBNA2), sterol response element binding protein (SREBP) and MYC each had important roles in cholesterol and fatty acid pathway induction. Unexpectedly, HMG-CoA reductase inhibitor chemical epistasis experiments revealed that mevalonate pathway production of geranylgeranyl pyrophosphate (GGPP), rather than cholesterol, was necessary for EBV-driven B-cell outgrowth, perhaps because EBV upregulated the low-density lipoprotein receptor in newly infected cells for cholesterol uptake. Chemical and CRISPR genetic analyses highlighted downstream GGPP roles in EBV-infected cell small G protein Rab activation. Rab13 was highly EBV-induced in an EBNA3-dependent manner and served as a chaperone critical for latent membrane protein (LMP) 1 and 2A trafficking and target gene activation in newly infected and in lymphoblastoid B-cells. Collectively, these studies identify highlight multiple potential therapeutic targets for prevention of EBV-transformed B-cell growth and survival. EBV, the first human tumor virus identified, persistently infects >95% of adults worldwide. Upon infection of small, resting B-lymphocytes, EBV establishes a state of viral latency, where viral oncoproteins and non-coding RNAs activate host pathways to promote rapid B-cell proliferation. EBV’s growth-transforming properties are closely linked to the pathogenesis of multiple immunoblastic lymphomas, particularly in immunosuppressed hosts. While EBV oncogenes important for B-cell transformation have been identified, knowledge remains incomplete of how these EBV factors remodel cellular metabolism, a hallmark of human cancers. Using a recently established proteomic map of EBV-mediated B-cell growth transformation, we found that EBV induces biosynthetic pathways that convert acetyl-coenzyme A (acetyl-CoA) into isoprenoids, steroids, terpenoids, cholesterol, and long-chain fatty acids. Viral nuclear antigens cooperated with EBV-activated host transcription factors to upregulate rate-limiting enzymes of these biosynthetic pathways. The isoprenoid geranylgeranyl pyrophosphate was identified as a key product of the EBV-induced mevalonate pathway. Our studies highlighted GGPP roles in Rab protein activation, and Rab13 was identified as a highly EBV-upregulated GTPase critical for LMP1 and LMP2A trafficking and signaling. These studies identify multiple EBV-induced metabolic enzymes important for B-cell transformation, including potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin E. Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, Wang Z, Smith NA, Ma Y, Reinstadler B, Nomburg J, Sommermann T, Cahir-McFarland E, Gygi SP, Mootha VK, Weekes MP, Gewurz BE. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab 2019; 30:539-555.e11. [PMID: 31257153 PMCID: PMC6720460 DOI: 10.1016/j.cmet.2019.06.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongying Shen
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Nicholas A Smith
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bryn Reinstadler
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jason Nomburg
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Thomas Sommermann
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Ellen Cahir-McFarland
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
20
|
Chen YF, Chang CH, Huang ZN, Su YC, Chang SJ, Jan JS. The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma. Leuk Lymphoma 2018; 60:1193-1203. [DOI: 10.1080/10428194.2018.1512709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Wood CD, Carvell T, Gunnell A, Ojeniyi OO, Osborne C, West MJ. Enhancer Control of MicroRNA miR-155 Expression in Epstein-Barr Virus-Infected B Cells. J Virol 2018; 92:e00716-18. [PMID: 30021904 PMCID: PMC6146817 DOI: 10.1128/jvi.00716-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
The oncogenic microRNA (miRNA) miR-155 is the most frequently upregulated miRNA in Epstein-Barr virus (EBV)-positive B cell malignancies and is upregulated in other nonviral lymphomas. Both EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription, indicating that EBV may upregulate miR-155 through direct and indirect mechanisms. The mechanism of transcriptional regulation of IRF4 and miR-155HG by EBNA2, however, has not been defined. We demonstrate that EBNA2 can activate IRF4 and miR-155HG expression through specific upstream enhancers that are dependent on the Notch signaling transcription factor RBPJ, a known binding partner of EBNA2. We demonstrate that in addition to the activation of the miR-155HG promoter, IRF4 can also activate miR-155HG via the upstream enhancer also targeted by EBNA2. Gene editing to remove the EBNA2- and IRF4-responsive miR-155HG enhancer located 60 kb upstream of miR-155HG led to reduced miR-155HG expression in EBV-infected cells. Our data therefore demonstrate that specific RBPJ-dependent enhancers regulate the IRF4-miR-155 expression network and play a key role in the maintenance of miR-155 expression in EBV-infected B cells. These findings provide important insights that will improve our understanding of miR-155 control in B cell malignancies.IMPORTANCE MicroRNA miR-155 is expressed at high levels in many human cancers, particularly lymphomas. Epstein-Barr virus (EBV) infects human B cells and drives the development of numerous lymphomas. Two genes carried by EBV (LMP1 and EBNA2) upregulate miR-155 expression, and miR-155 expression is required for the growth of EBV-infected B cells. We show that the EBV transcription factor EBNA2 upregulates miR-155 expression by activating an enhancer upstream from the miR-155 host gene (miR-155HG) from which miR-155 is derived. We show that EBNA2 also indirectly activates miR-155 expression through enhancer-mediated activation of IRF4 IRF4 then activates both the miR-155HG promoter and the upstream enhancer, independently of EBNA2. Gene editing to remove the miR-155HG enhancer leads to a reduction in miR-155HG expression. We therefore identify enhancer-mediated activation of miR-155HG as a critical step in promoting B cell growth and a likely contributor to lymphoma development.
Collapse
Affiliation(s)
- C David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Thomas Carvell
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Andrea Gunnell
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Opeoluwa O Ojeniyi
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Cameron Osborne
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
22
|
Romero-Masters JC, Ohashi M, Djavadian R, Eichelberg MR, Hayes M, Bristol JA, Ma S, Ranheim EA, Gumperz J, Johannsen EC, Kenney SC. An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model. PLoS Pathog 2018; 14:e1007221. [PMID: 30125329 PMCID: PMC6117096 DOI: 10.1371/journal.ppat.1007221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/30/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
EBV causes human B-cell lymphomas and transforms B cells in vitro. EBNA3C, an EBV protein expressed in latently-infected cells, is required for EBV transformation of B cells in vitro. While EBNA3C undoubtedly plays a key role in allowing EBV to successfully infect B cells, many EBV+ lymphomas do not express this protein, suggesting that cellular mutations and/or signaling pathways may obviate the need for EBNA3C in vivo under certain conditions. EBNA3C collaborates with EBNA3A to repress expression of the CDKN2A-encoded tumor suppressors, p16 and p14, and EBNA3C-deleted EBV transforms B cells containing a p16 germline mutation in vitro. Here we have examined the phenotype of an EBNAC-deleted virus (Δ3C EBV) in a cord blood-humanized mouse model (CBH). We found that the Δ3C virus induced fewer lymphomas (occurring with a delayed onset) in comparison to the wild-type (WT) control virus, although a subset (10/26) of Δ3C-infected CBH mice eventually developed invasive diffuse large B cell lymphomas with type III latency. Both WT and Δ3C viruses induced B-cell lymphomas with restricted B-cell populations and heterogeneous T-cell infiltration. In comparison to WT-infected tumors, Δ3C-infected tumors had greatly increased p16 levels, and RNA-seq analysis revealed a decrease in E2F target gene expression. However, we found that Δ3C-infected tumors expressed c-Myc and cyclin E at similar levels compared to WT-infected tumors, allowing cells to at least partially bypass p16-mediated cell cycle inhibition. The anti-apoptotic proteins, BCL2 and IRF4, were expressed in Δ3C-infected tumors, likely helping cells avoid c-Myc-induced apoptosis. Unexpectedly, Δ3C-infected tumors had increased T-cell infiltration, increased expression of T-cell chemokines (CCL5, CCL20 and CCL22) and enhanced type I interferon response in comparison to WT tumors. Together, these results reveal that EBNA3C contributes to, but is not essential for, EBV-induced lymphomagenesis in CBH mice, and suggest potentially important immunologic roles of EBNA3C in vivo.
Collapse
MESH Headings
- Animals
- Cell Transformation, Viral/genetics
- Cells, Cultured
- Disease Models, Animal
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Nuclear Antigens/genetics
- Fetal Blood/immunology
- HEK293 Cells
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Virus Latency/genetics
Collapse
Affiliation(s)
- James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark R. Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitch Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shidong Ma
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection. J Virol 2018; 92:JVI.01178-17. [PMID: 29118124 DOI: 10.1128/jvi.01178-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription.IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival.
Collapse
|
24
|
Grant M, Bollard CM. Developing T-cell therapies for lymphoma without receptor engineering. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:622-631. [PMID: 29222313 PMCID: PMC6142576 DOI: 10.1182/asheducation-2017.1.622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
Affiliation(s)
- Melanie Grant
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
- Departments of Pediatrics and Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
25
|
Developing T-cell therapies for lymphoma without receptor engineering. Blood Adv 2017; 1:2579-2590. [PMID: 29296911 DOI: 10.1182/bloodadvances.2017009886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
|
26
|
Poling BC, Price AM, Luftig MA, Cullen BR. The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 2017; 512:113-123. [PMID: 28950226 DOI: 10.1016/j.virol.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (∆123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3'UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ∆123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ∆123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis.
Collapse
Affiliation(s)
- Brigid Chiyoko Poling
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Alexander M Price
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development. Curr Opin Virol 2017; 26:149-155. [DOI: 10.1016/j.coviro.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/07/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022]
|
28
|
Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc Natl Acad Sci U S A 2016; 113:14121-14126. [PMID: 27864512 DOI: 10.1073/pnas.1616697113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) super-enhancers (ESEs) are essential for lymphoblastoid cell (LCL) growth and survival. Reanalyses of LCL global run-on sequencing (Gro-seq) data found abundant enhancer RNAs (eRNAs) being transcribed at ESEs. Inactivation of ESE components, EBV nuclear antigen 2 (EBNA2) and bromodomain-containing protein 4 (BRD4), significantly decreased eRNAs at ESEs -428 and -525 kb upstream of the MYC oncogene transcription start site (TSS). shRNA knockdown of the MYC -428 and -525 ESE eRNA caused LCL growth arrest and reduced cell growth. Furthermore, MYC ESE eRNA knockdown also significantly reduced MYC expression, ESE H3K27ac signals, and MYC ESEs looping to MYC TSS. These data indicate that ESE eRNAs strongly affect cell gene expression and enable LCL growth.
Collapse
|
29
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. Bioessays 2016; 38 Suppl 1:S75-85. [DOI: 10.1002/bies.201670912] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nur F. Isa
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
- Department of Biotechnology; Kulliyyah of Science, IIUM; Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| |
Collapse
|
30
|
Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. J Virol 2016; 90:3873-3889. [PMID: 26819314 DOI: 10.1128/jvi.03227-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1.
Collapse
|
31
|
Harter MR, Liu CD, Shen CL, Gonzalez-Hurtado E, Zhang ZM, Xu M, Martinez E, Peng CW, Song J. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2. PLoS Pathog 2016; 12:e1005414. [PMID: 26845565 PMCID: PMC4742278 DOI: 10.1371/journal.ppat.1005414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. Since the discovery of Epstein-Barr virus (EBV) 50 years ago, the etiologic links between EBV and a variety of human cancers have gained wide recognition. It is estimated that >90% of the worldwide population carry this virus, which causes over 200,000 cancers across the world every year. One of the key proteins in driving immortalization of EBV-infected B cells is Epstein-Barr virus nuclear antigen 2 (EBNA2), which regulates the expression of many cellular and viral genes. However, the molecular mechanism underlying the interactions between EBNA2 and cellular transcriptional regulators remains enigmatic. Here, we determined the crystal structure of the coiled-coil and MYND tandem domains of BS69/ZMYND11, a candidate tumor suppressor, in complex with an EBNA2 peptide containing a PXLXP motif. We found that the coiled-coil and MYND domains of BS69 cooperate in binding to EBNA2. We also showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-associated B cells. Ectopic BS69 coiled-coil-MYND dual domain is recruited to viral target promoters through interaction with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Together, this study identifies the BS69 C-terminal domains as an inhibitor of EBNA2.
Collapse
Affiliation(s)
- Matthew R. Harter
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Elsie Gonzalez-Hurtado
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Muyu Xu
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- * E-mail: (CWP); (JS)
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (CWP); (JS)
| |
Collapse
|
32
|
Epstein-Barr Virus Nuclear Antigen 3 (EBNA3) Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic Sites. J Virol 2015; 90:2906-19. [PMID: 26719268 DOI: 10.1128/jvi.02737-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear. Our chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis of the EBNA3 proteins analyzed in concert with prior EBNA2 and RBPJ data demonstrated that EBNA3A, EBNA3B, and EBNA3C bind to distinct, partially overlapping genomic locations. Although RBPJ interaction is critical for EBNA3A and EBNA3C growth effects, only 30 to 40% of EBNA3-bound sites colocalize with RBPJ. Using LCLs conditional for EBNA3A or EBNA3C activity, we demonstrate that EBNA2 binding at sites near EBNA3A- or EBNA3C-regulated genes is specifically regulated by the respective EBNA3. To investigate EBNA3 binding specificity, we identified sequences and transcription factors enriched at EBNA3A-, EBNA3B-, and EBNA3C-bound sites. This confirmed the prior observation that IRF4 is enriched at EBNA3A- and EBNA3C-bound sites and revealed IRF4 enrichment at EBNA3B-bound sites. Using IRF4-negative BJAB cells, we demonstrate that IRF4 is essential for EBNA3C, but not EBNA3A or EBNA3B, binding to specific sites. These results support a model in which EBNA2 and EBNA3s compete for distinct subsets of RBPJ sites to regulate cell genes and where EBNA3 subset specificity is determined by interactions with other cell transcription factors. IMPORTANCE Epstein-Barr virus (EBV) latent gene products cause human cancers and transform B lymphocytes into immortalized lymphoblastoid cell lines in vitro. EBV nuclear antigens (EBNAs) and membrane proteins constitutively activate pathways important for lymphocyte growth and survival. An important unresolved question is how four different EBNAs (EBNA2, -3A, -3B, and -3C) exert unique effects via a single transcription factor, RBPJ. Here, we report that each EBNA binds to distinct but partially overlapping sets of genomic sites. EBNA3A and EBNA3C specifically regulate EBNA2's access to different RBPJ sites, providing a mechanism by which each EBNA can regulate distinct cell genes. We show that IRF4, an essential regulator of B cell differentiation, is critical for EBNA3C binding specificity; EBNA3A and EBNA3B specificities are likely due to interactions with other cell transcription factors. EBNA3 titration of EBNA2 transcriptional function at distinct sites likely limits cell defenses that would be triggered by unchecked EBNA2 prooncogenic activity.
Collapse
|
33
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. ACTA ACUST UNITED AC 2015; 1:106-116. [PMID: 27398404 PMCID: PMC4863834 DOI: 10.1002/icl3.1037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents.
Collapse
Affiliation(s)
| | - Nur F Isa
- Sir William Dunn School of Pathology University of Oxford Oxford UK; Department of Biotechnology Kulliyyah of Science, IIUM Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology University of Oxford Oxford UK
| |
Collapse
|
34
|
Abstract
While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377, Munich, Germany.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Epstein-Barr virus type 2 latently infects T cells, inducing an atypical activation characterized by expression of lymphotactic cytokines. J Virol 2014; 89:2301-12. [PMID: 25505080 DOI: 10.1128/jvi.03001-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a well-established B-cell-tropic virus associated with various lymphoproliferative diseases of both B-cell and non-B-cell origin. EBV is associated with a number of T-cell lymphomas; however, in vitro studies utilizing prototypical EBV type 1 (EBV-1) laboratory strains have generally failed to readily infect mature T cells in culture. The difficulties in performing in vitro T-cell experiments have left questions regarding the role of EBV in the pathogenesis of EBV-positive T-cell lymphoproliferative diseases largely unresolved. We report here that the EBV type 2 (EBV-2) strain displays a unique cell tropism for T cells. In remarkable contrast to EBV-1, EBV-2 readily infects primary T cells in vitro, demonstrating a propensity for CD8(+) T cells. EBV-2 infection of purified T cells results in expression of latency genes and ultimately leads to T-cell activation, substantial proliferation, and profound alteration of cytokine expression. The pattern of cytokine production is strikingly skewed toward chemokines with roles in lymphocyte migration, demonstrating that EBV-2 has the ability to modulate normal T-cell processes. Collectively, these novel findings identify a previously unknown cell population potentially utilized by EBV-2 to establish latency and lay the foundation for further studies to elucidate the role of EBV in the pathogenesis of T-cell lymphoproliferative diseases. IMPORTANCE The ability of EBV to infect T cells is made apparent by its association with a variety of T-cell lymphoproliferative disorders. However, studies to elucidate the pathogenic role of EBV in these diseases have been limited by the inability to conduct in vitro T-cell infection experiments. Here, we report that EBV-2 isolates, compromised in the capacity to immortalize B cells, infect CD3(+) T cells ex vivo and propose a working model of EBV-2 persistence where alteration of T-cell functions resulting from EBV-2 infection enhances the establishment of latency in B cells. If indeed EBV-2 utilizes T cells to establish a persistent infection, this could provide one mechanism for the association of EBV with T-cell lymphomas. The novel finding that EBV-2 infects T cells in culture will provide a model to understand the role EBV plays in the development of T-cell lymphomas.
Collapse
|
36
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-5013. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
37
|
Chabot PR, Raiola L, Lussier-Price M, Morse T, Arseneault G, Archambault J, Omichinski JG. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. PLoS Pathog 2014; 10:e1004042. [PMID: 24675874 PMCID: PMC3968163 DOI: 10.1371/journal.ppat.1004042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022] Open
Abstract
Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2₄₄₈₋₄₇₁) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of intrinsically disordered acidic TADs in recognizing common target host proteins.
Collapse
Affiliation(s)
- Philippe R. Chabot
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Luca Raiola
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Thomas Morse
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Genevieve Arseneault
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Jacques Archambault
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - James G. Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
38
|
Abstract
Epstein-Barr virus (EBV) latent antigen EBNA3C is implicated in B-cell immortalization and linked to several B-cell malignancies. Deregulation of H2AX can induce genomic instability with increased chromosomal aberrations, which ultimately leads to tumorigenesis. Here we demonstrated that EBNA3C can attenuate H2AX expression at the transcript and protein levels. A reduction of total H2AX levels was clearly observed upon infection of primary B cells with wild-type EBV but not with EBNA3C knockout recombinant EBV. H2AX also interacted with EBNA3C through its N-terminal domain (residues 1 to 100). Furthermore, H2AX mutated at Ser139 failed to interact with EBNA3C. Luciferase-based reporter assays also revealed that the binding domain of EBNA3C is sufficient for transcriptional inhibition of the H2AX promoter. EBNA3C also facilitated H2AX degradation through recruitment of components of the ubiquitin proteasome pathway. We further demonstrated that knockdown of H2AX in lymphoblastoid cell lines (LCLs) led to the upregulation of the Bub1 oncoprotein and downregulated expression of p53. Overall, our study provides additional insights into EBV-associated B-cell lymphomas, which are linked to the regulation of the DNA damage response system in infected cells. The importance of these insights are as follows: (i) EBNA3C downregulates H2AX expression at the protein and transcript levels in epithelial cells, B cells, and EBV-transformed LCLs, (ii) EBNA3C binds with wild-type H2AX but not with the Ser139 mutant of H2AX, (iii) the N terminus (residues 1 to 100) of EBNA3C is critical for binding to H2AX, (iv) localization of H2AX is predominantly nuclear in the presence of EBNA3C, and (v) H2AX knocked down in LCLs led to enhanced expression of Bub1 and downregulation of the tumor suppressor p53, which are both important for driving the oncogenic process.
Collapse
|
39
|
Pyothorax-associated lymphoma (PAL) with biclonal Epstein–Barr virus infection: Characterization of a novel PAL cell line with unique features. Leuk Res 2013; 37:1545-50. [DOI: 10.1016/j.leukres.2013.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/27/2013] [Indexed: 11/20/2022]
|
40
|
McClellan MJ, Wood CD, Ojeniyi O, Cooper TJ, Kanhere A, Arvey A, Webb HM, Palermo RD, Harth-Hertle ML, Kempkes B, Jenner RG, West MJ. Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming. PLoS Pathog 2013; 9:e1003636. [PMID: 24068937 PMCID: PMC3771879 DOI: 10.1371/journal.ppat.1003636] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/03/2013] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. Epstein-Barr virus (EBV) is associated with numerous cancers. The ability of the virus to infect B-cells and convert them from short-lived into immortal cells is the key to its cancer-promoting properties. A small number of EBV transcription factors are required for immortalization and act in concert to drive cell growth by deregulating the expression of cellular genes through largely unknown mechanisms. We have demonstrated that four of these key transcription factors function cooperatively by targeting common genes via long-range enhancer elements and modulating their looping interactions with gene promoters. Specifically we show that gene repression by the EBV EBNA 3 family of proteins can be mediated through the modulation of enhancer-promoter looping. Our results also reveal that different subsets of EBNA 3 proteins are bound at different genes and that this differential binding can vary in lymphoma cells compared to cells immortalized in culture, indicating that cell-background-specific gene regulation may be important in lymphoma development. Our results demonstrate how cellular genes can be deregulated by an oncogenic virus through modulation of enhancer-promoter looping with the specificity of binding by viral transcription factors controlling cellular reprogramming in a gene and cell-type specific manner.
Collapse
Affiliation(s)
- Michael J. McClellan
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - C. David Wood
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - Opeoluwa Ojeniyi
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - Tim J. Cooper
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - Aditi Kanhere
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Aaron Arvey
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Helen M. Webb
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - Richard D. Palermo
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
| | - Marie L. Harth-Hertle
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Richard G. Jenner
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Michelle J. West
- School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Banerjee S, Lu J, Cai Q, Saha A, Jha HC, Dzeng RK, Robertson ES. The EBV Latent Antigen 3C Inhibits Apoptosis through Targeted Regulation of Interferon Regulatory Factors 4 and 8. PLoS Pathog 2013; 9:e1003314. [PMID: 23658517 PMCID: PMC3642079 DOI: 10.1371/journal.ppat.1003314] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers. Interferon regulatory factor (IRF) family members have different roles in context of pathogen response, signal transduction, cell proliferation and hematopoietic development. IRF4 and IRF8 are members of the IRF family and are critical mediators of B-cell development. Enhanced expression of IRF4 is often associated with multiple myeloma and adult T-cell lymphomas. Furthermore, IRF8 can function as a tumor suppressor in myeloid cancers. Epstein-Barr virus (EBV), one of the first characterized human tumor viruses is associated with several lymphoid malignancies. One of the essential antigens, EBV encoded nuclear antigen 3C (EBNA3C), plays a critical role in EBV-induced B-cell transformation. In our study, we now demonstrate that EBNA3C forms a molecular complex with IRF4 and IRF8 specifically through its N-terminal domain. We show that IRF4 is stabilized by EBNA3C, which resulted in downregulation of IRF8 through proteasome-mediated degradation and subsequent inhibition of its tumor suppressive activity. Moreover, si-RNA-mediated inhibition of IRF4 showed a substantial reduction in EBV transformed B-cell proliferation, and also enhanced their sensitivity to DNA-damage induced apoptosis. Therefore, our findings demonstrated that targeted disruption of EBNA3C-mediated differential regulation of IRF4 and IRF8 may have potential therapeutic value for treating EBV induced B-cell malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation. J Virol 2012; 86:11096-106. [PMID: 22855490 DOI: 10.1128/jvi.01069-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.
Collapse
|
43
|
EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012; 31:2207-21. [PMID: 22473208 DOI: 10.1038/emboj.2012.63] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/16/2012] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) controls gene expression to transform human B cells and maintain viral latency. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) identified mRNA targets of 44 EBV and 310 human microRNAs (miRNAs) in Jijoye (Latency III) EBV-transformed B cells. While 25% of total cellular miRNAs are viral, only three viral mRNAs, all latent transcripts, are targeted. Thus, miRNAs do not control the latent/lytic switch by targeting EBV lytic genes. Unexpectedly, 90% of the 1664 human 3'-untranslated regions targeted by the 12 most abundant EBV miRNAs are also targeted by human miRNAs via distinct binding sites. Half of these are targets of the oncogenic miR-17∼92 miRNA cluster and associated families, including mRNAs that regulate transcription, apoptosis, Wnt signalling, and the cell cycle. Reporter assays confirmed the functionality of several EBV and miR-17 family miRNA-binding sites in EBV latent membrane protein 1 (LMP1), EBV BHRF1, and host CAPRIN2 mRNAs. Our extensive list of EBV and human miRNA targets implicates miRNAs in the control of EBV latency and illuminates viral miRNA function in general.
Collapse
|
44
|
Papp B, Brouland JP, Arbabian A, Gélébart P, Kovács T, Bobe R, Enouf J, Varin-Blank N, Apáti A. Endoplasmic reticulum calcium pumps and cancer cell differentiation. Biomolecules 2012; 2:165-86. [PMID: 24970132 PMCID: PMC4030869 DOI: 10.3390/biom2010165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Jean-Philippe Brouland
- Service d'Anatomie et Cytologie Pathologique, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Atousa Arbabian
- Inserm UMR U 940, IUH Université Paris 7-Paris Diderot, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Tünde Kovács
- Semmelweis University, Department of Medical Biochemistry, Tűzoltó u. 37-47, H-1094-Budapest, Hungary.
| | - Régis Bobe
- Inserm UMR U770, Université Paris-Sud 11. 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | - Jocelyne Enouf
- Inserm UMR U689, Université Paris 7-Paris Diderot, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Diószegi út 64, H-1113-Budapest, Hungary.
| |
Collapse
|
45
|
Kim DN, Lee SK. Biogenesis of Epstein-Barr virus microRNAs. Mol Cell Biochem 2012; 365:203-10. [PMID: 22350759 DOI: 10.1007/s11010-012-1261-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/08/2012] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus implicated in lymphomas, such as Burkitt's lymphoma, Hodgkin's lymphoma, and NK/T cell lymphoma. MicroRNAs (miRNAs) are 19-25 nucleotide long single-stranded RNAs involved in post-transcriptional gene regulation. miRNAs are mainly transcribed by RNA polymerase II (pol II) to have stem-loop structures and subsequently processed by Drosha and Dicer. EBV miRNAs are expressed in B cells, nasopharyngeal carcinoma cells, and gastric carcinoma cells infected with EBV. EBV miRNAs can be divided into two groups: BHRF1 miRNAs and BART miRNAs. In this study, we investigated the biogenesis of EBV miRNAs. Treatment of the SNU-719 EBV-positive gastric cancer cell line with α-amanitin at a concentration that selectively inhibits RNA polymerase II activity decreased the expression levels of BART miRNAs. The expression levels of BART miRNAs were also reduced by RNA interference targeting Drosha and Dicer. Two of each C/EBPβ and c-Myc binding sites are located upstream of the proposed initiation sites for primary BART miRNA transcripts. Knockdown of C/EBPβ but not c-Myc using siRNAs reduced BART miRNA expression by 25-55% compared with the control. These results suggest that BART miRNAs are transcribed by pol II and undergo a similar biogenesis process with cellular miRNAs.
Collapse
Affiliation(s)
- Do Nyun Kim
- Department of Medical Lifescience, Research Institute of Immunobiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | |
Collapse
|
46
|
Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J Virol 2012; 86:1034-45. [PMID: 22072770 PMCID: PMC3255836 DOI: 10.1128/jvi.05923-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Establishment of persistent Epstein-Barr virus (EBV) infection requires transition from a program of full viral latency gene expression (latency III) to one that is highly restricted (latency I and 0) within memory B lymphocytes. It is well established that DNA methylation plays a critical role in EBV gene silencing, and recently the chromatin boundary protein CTCF has been implicated as a pivotal regulator of latency via its binding to several loci within the EBV genome. One notable site is upstream of the common EBNA gene promoter Cp, at which CTCF may act as an enhancer-blocking factor to initiate and maintain silencing of EBNA gene transcription. It was previously suggested that increased expression of CTCF may underlie its potential to promote restricted latency, and here we also noted elevated levels of DNA methyltransferase 1 (DNMT1) and DNMT3B associated with latency I. Within B-cell lines that maintain latency I, however, stable knockdown of CTCF, DNMT1, or DNMT3B or of DNMT1 and DNMT3B in combination did not result in activation of latency III protein expression or EBNA gene transcription, nor did knockdown of DNMTs significantly alter CpG methylation within Cp. Thus, differential expression of CTCF and DNMT1 and -3B is not critical for maintenance of restricted latency. Finally, mutant EBV lacking the Cp CTCF binding site exhibited sustained Cp activity relative to wild-type EBV in a recently developed B-cell superinfection model but ultimately was able to transition to latency I, suggesting that CTCF contributes to but is not necessarily essential for the establishment of restricted latency.
Collapse
Affiliation(s)
- David J Hughes
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and Penn State Hershey Cancer Institute, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
47
|
Epstein-Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J Virol 2011; 85:12362-75. [PMID: 21957300 DOI: 10.1128/jvi.06059-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Epstein-Barr virus (EBV), a gammaherpesvirus with potent B-cell growth-transforming ability, contains multiple copies of a 3-kb BamHI W repeat sequence; each repeat carries (i) a promoter (Wp) that initiates transformation by driving EBNA-LP and EBNA2 expression and (ii) the W1W2 exons encoding the functionally active repeat domain of EBNA-LP. The W repeat copy number of a virus therefore influences two potential determinants of its transforming ability: the number of available Wp copies and the maximum size of the encoded EBNA-LP. Here, using recombinant EBVs, we show that optimal B-cell transformation requires a minimum of 5 W repeats (5W); the levels of transforming ability fall progressively with viruses carrying 4, 3, and 2 W repeats, as do the levels of Wp-initiated transcripts expressed early postinfection (p.i.), while viruses with 1 copy of the wild-type W repeat (1W) and 0W are completely nontransforming. We therefore suggest that genetic analyses of EBV transforming function should ensure that wild-type and mutant strains have equal numbers (ideally at least 5) of W copies if the analysis is not to be compromised. Attempts to enhance the transforming function of low-W-copy-number viruses, via the activity of helper EBV strains or by gene repair, suggested that the critical defect is not related to EBNA-LP size but to the failure to achieve sufficiently strong coexpression of EBNA-LP and EBNA2 early postinfection. We further show by the results of ex vivo assays that EBV strains in the blood of infected individuals typically have a mean of 5 to 8 W copies, consistent with the view that evolution has selected for viruses with an optimal transforming function.
Collapse
|
48
|
trans-Repression of protein expression dependent on the Epstein-Barr virus promoter Wp during latency. J Virol 2011; 85:11435-47. [PMID: 21865378 DOI: 10.1128/jvi.05158-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An ordered silencing of Epstein-Barr virus (EBV) latency gene transcription is critical for establishment of persistent infection within B lymphocytes, yet the mechanisms responsible and the role that the virus itself may play are unclear. Here we describe two B-cell superinfection models with which to address these problems. In the first, Burkitt lymphoma (BL) cells that maintain latency I, when superinfected, initially supported transcription from the common EBNA promoters Wp and Cp (latency III) but ultimately transitioned to latency I (Cp/Wp silent), an essential requirement for establishment of EBV latency in vivo. We used this model to test whether the early lytic-cycle gene BHLF1, implicated in silencing of the Cp/Wp locus, is required to establish latency I. Upon superinfection with EBV deleted for the BHLF1 locus, however, we have demonstrated that BHLF1 is not essential for this aspect of EBV latency. In the second model, BL cells that maintain Wp-restricted latency, a variant program in which Cp is silent but Wp remains active, sustained the latency III program of transcription from the superinfecting-virus genomes, failing to transition to latency I. Importantly, there was substantial reduction in Wp-mediated protein expression from endogenous EBV genomes, in the absence of Cp reactivation, that could occur independent of a parallel decrease in mRNA. Thus, our data provide evidence of a novel, potentially posttranscriptional mechanism for trans-repression of Wp-dependent gene expression. We suggest that this may ensure against overexpression of the EBV nuclear antigens (EBNAs) prior to the transcriptional repression of Wp in cis that occurs upon activation of Cp.
Collapse
|
49
|
C-terminal region of EBNA-2 determines the superior transforming ability of type 1 Epstein-Barr virus by enhanced gene regulation of LMP-1 and CXCR7. PLoS Pathog 2011; 7:e1002164. [PMID: 21857817 PMCID: PMC3145799 DOI: 10.1371/journal.ppat.1002164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022] Open
Abstract
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. Epstein-Barr virus (EBV) is a common human virus that is involved in several types of cancer and directly causes human B lymphocytes to proliferate when they become infected. EBV occurs naturally as two different viral types (type 1 and type 2). The genomes of these viruses are mostly very similar but they differ in a few genes, particularly the EBNA-2 gene. For many years it has been known that type 1 EBV is much more effective than type 2 EBV at causing B lymphocyte proliferation and this difference is mediated by the EBNA-2 gene. Here we have shown that the greater ability of type 1 EBNA-2 to cause B cell proliferation is due to superior induction of the EBV LMP-1 and the cell CXCR7 genes, both of which are required for growth of EBV-infected lymphocytes. We mapped the section of type 1 EBNA-2 responsible for this to the C-terminus of the protein, including the transactivation and EBNA-LP interaction domains. The results provide a mechanism for the long-standing question of the functional difference between these two major types of EBV and will be important in understanding the significance of the EBV types in human infection.
Collapse
|
50
|
Niller HH, Wolf H, Ay E, Minarovits J. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:82-102. [PMID: 21627044 DOI: 10.1007/978-1-4419-8216-2_7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epstein-Barr virus (EBV) is ahumanherpesvirus thatpersists in the memory B-cells of the majority of the world population in a latent form. Primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis. Virus latency is associated with a wide variety of neoplasms whereof some occur in immune suppressed individuals. Virus production does not occur in strict latency. The expression of latent viral oncoproteins and nontranslated RNAs is under epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of a couple of latency promoters in tumor cells, germinal center B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent and lytic EBV proteins elicit a strong immune response. In immune suppressed and infectious mononucleosis patients, an increased viral load can be detected in the blood. Enhanced lytic replication may result in new infection- and transformation-events and thus is a risk factor both for malignant transformation and the development of autoimmune diseases. An increased viral load or a changed presentation of a subset of lytic or latent EBV proteins that cross-react with cellular antigens may trigger pathogenic processes through molecular mimicry that result in multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|