1
|
Juang HH, Hsu CW, Chang KS, Iang SB, Lin YH, Chao M. Investigating the Genetic Diversity of Hepatitis Delta Virus in Hepatocellular Carcinoma (HCC): Impact on Viral Evolution and Oncogenesis in HCC. Viruses 2024; 16:817. [PMID: 38932110 PMCID: PMC11209585 DOI: 10.3390/v16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV's involvement remains uncertain. Among 300 HBV-associated HCC serum samples from Taiwan's National Health Research Institutes, 2.7% (8/300) tested anti-HDV positive, with 62.7% (5/8) of these also HDV RNA positive. Genotyping revealed HDV-2 in one sample, HDV-4 in two, and two samples showed mixed HDV-2/HDV-4 infection with RNA recombination. A mixed-genotype infection revealed novel mutations at the polyadenylation signal, coinciding with the ochre termination codon for the L-HDAg. To delve deeper into the possible oncogenic properties of HDV-2, the predominant genotype in Taiwan, which was previously thought to be less associated with severe disease outcomes, an HDV-2 cDNA clone was isolated from HCC for study. It demonstrated a replication level reaching up to 74% of that observed for a widely used HDV-1 strain in transfected cultured cells. Surprisingly, both forms of HDV-2 HDAg promoted cell migration and invasion, affecting the rearrangement of actin cytoskeleton and the expression of epithelial-mesenchymal transition markers. In summary, this study underscores the prevalence of HDV-2, HDV-4, and their mixed infections in HCC, highlighting the genetic diversity in HCC as well as the potential role of both forms of the HDAg in HCC oncogenesis.
Collapse
Affiliation(s)
- Horng-Heng Juang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chao-Wei Hsu
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
| | - Shan-Bei Iang
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
| | - Mei Chao
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
2
|
Abstract
Hepatitis D virus (HDV) infection causes the most severe form of viral hepatitis with rapid progression to cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although discovered > 40 years ago, little attention has been paid to this pathogen from both scientific and public communities. However, effectively combating hepatitis D requires advanced scientific knowledge and joint efforts from multi-stakeholders. In this review, we emphasized the recent advances in HDV virology, epidemiology, clinical feature, treatment, and prevention. We not only highlighted the remaining challenges but also the opportunities that can move the field forward.
Collapse
|
3
|
Pérez-Vargas J, Pereira de Oliveira R, Jacquet S, Pontier D, Cosset FL, Freitas N. HDV-Like Viruses. Viruses 2021; 13:1207. [PMID: 34201626 PMCID: PMC8310214 DOI: 10.3390/v13071207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective human virus that lacks the ability to produce its own envelope proteins and is thus dependent on the presence of a helper virus, which provides its surface proteins to produce infectious particles. Hepatitis B virus (HBV) was so far thought to be the only helper virus described to be associated with HDV. However, recent studies showed that divergent HDV-like viruses could be detected in fishes, birds, amphibians, and invertebrates, without evidence of any HBV-like agent supporting infection. Another recent study demonstrated that HDV can be transmitted and propagated in experimental infections ex vivo and in vivo by different enveloped viruses unrelated to HBV, including hepatitis C virus (HCV) and flaviviruses such as Dengue and West Nile virus. All this new evidence, in addition to the identification of novel virus species within a large range of hosts in absence of HBV, suggests that deltaviruses may take advantage of a large spectrum of helper viruses and raises questions about HDV origins and evolution.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Rémi Pereira de Oliveira
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Stéphanie Jacquet
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - Dominique Pontier
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - François-Loïc Cosset
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Natalia Freitas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| |
Collapse
|
4
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
6
|
Wille M, Netter HJ, Littlejohn M, Yuen L, Shi M, Eden JS, Klaassen M, Holmes EC, Hurt AC. A Divergent Hepatitis D-Like Agent in Birds. Viruses 2018; 10:E720. [PMID: 30562970 PMCID: PMC6315422 DOI: 10.3390/v10120720] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is currently only found in humans and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release, and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and sub-viral agents.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Hans J Netter
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3220, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Littlejohn M, Locarnini S, Yuen L. Origins and Evolution of Hepatitis B Virus and Hepatitis D Virus. Cold Spring Harb Perspect Med 2016; 6:a021360. [PMID: 26729756 DOI: 10.1101/cshperspect.a021360] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the family Hepadnaviridae fall into two subgroups: mammalian and avian. The detection of endogenous avian hepadnavirus DNA integrated into the genomes of zebra finches has revealed a deep evolutionary origin of hepadnaviruses that was not previously recognized, dating back at least 40 million and possibly >80 million years ago. The nonprimate mammalian members of the Hepadnaviridae include the woodchuck hepatitis virus (WHV), the ground squirrel hepatitis virus, and arctic squirrel hepatitis virus, as well as a number of members of the recently described bat hepatitis virus. The identification of hepatitis B viruses (HBVs) in higher primates, such as chimpanzee, gorilla, orangutan, and gibbons that cluster with the human HBV, as well as a number of recombinant forms between humans and primates, further implies a more complex origin of this virus. We discuss the current theories of the origin and evolution of HBV and propose a model that includes cross-species transmissions and subsequent recombination events on a genetic backbone of genotype C HBV infection. The hepatitis delta virus (HDV) is a defective RNA virus requiring the presence of the HBV for the completion of its life cycle. The origins of this virus remain unknown, although some recent studies have suggested an ancient African radiation. The age of the association between HDV and HBV is also unknown.
Collapse
Affiliation(s)
- Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| | - Stephen Locarnini
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| |
Collapse
|
8
|
Hepatitis delta virus: a peculiar virus. Adv Virol 2013; 2013:560105. [PMID: 24198831 PMCID: PMC3807834 DOI: 10.1155/2013/560105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is distributed worldwide and related to the most severe form of viral hepatitis. HDV is a satellite RNA virus dependent on hepatitis B surface antigens to assemble its envelope and thus form new virions and propagate infection. HDV has a small 1.7 Kb genome making it the smallest known human virus. This deceivingly simple virus has unique biological features and many aspects of its life cycle remain elusive. The present review endeavors to gather the available information on HDV epidemiology and clinical features as well as HDV biology.
Collapse
|
9
|
Abstract
This article addresses some of the questions relating to how hepatitis delta virus (HDV), an agent so far unique in the animal world, might have arisen. HDV was discovered in patients infected with hepatitis B virus (HBV). It generally makes HBV infections more damaging to the liver. It is a subviral satellite agent that depends upon HBV envelope proteins for its assembly and ability to infect new cells. In other aspects of replication, HDV is both independent of and very different from HBV. In addition, the small single-stranded circular RNA genome of HDV, and its mechanism of replication, demonstrate an increasing number of similarities to the viroids - a large family of helper-independent subviral agents that cause pathogenesis in plants.
Collapse
Affiliation(s)
- John Taylor
- Chase Cancer Center, PA 19111, USA, Tel.: +1 215 728 2436, Fax: +1 215 728 2412,
| | - Martin Pelchat
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada, Tel.: +1 613 562 5800 ext. 8846, Fax: +1 613 562 5452,
| |
Collapse
|
10
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
11
|
Transcription of subgenomic mRNA of hepatitis delta virus requires a modified hepatitis delta antigen that is distinct from antigenomic RNA synthesis. J Virol 2008; 82:9409-16. [PMID: 18653455 DOI: 10.1128/jvi.00428-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a viroid-like, 1.7-kb circular RNA genome, which replicates via a double-rolling-circle model. However, the exact mechanism involved in HDV genome RNA replication and subgenomic mRNA transcription is still unclear. Our previous studies have shown that the replications of genomic and antigenomic HDV RNA strands have different sensitivities to alpha-amanitin and are associated with different nuclear bodies, suggesting that these two strands are synthesized in different transcription machineries in the cells. In this study, we developed a unique quantitative reverse transcription-PCR (qRT-PCR) procedure for detection of various HDV RNA species from an RNA transfection system. Using this qRT-PCR procedure and a series of HDV mutants, we demonstrated that Arg-13 methylation, Lys-72 acetylation, and Ser-177 phosphorylation of small hepatitis delta antigen (S-HDAg) are important for HDV mRNA transcription. In addition, these three S-HDAg modifications are dispensable for antigenomic RNA synthesis but are required for genomic RNA synthesis. Furthermore, the three RNA species had different sensitivities to acetylation and deacetylation inhibitors, showing that the metabolic requirements for the synthesis of HDV antigenomic RNA are different from those for the synthesis of genomic RNA and mRNA. In sum, our data support the hypothesis that the cellular machinery involved in the synthesis of HDV antigenomic RNA is different from that of genomic RNA synthesis and mRNA transcription, even though the antigenomic RNA and the mRNA are made from the same RNA template. We propose that acetylation and deacetylation of HDAg may provide a molecular switch for the synthesis of the different HDV RNA species.
Collapse
|
12
|
Brown AL, Perrotta AT, Wadkins TS, Been MD. The poly(A) site sequence in HDV RNA alters both extent and rate of self-cleavage of the antigenomic ribozyme. Nucleic Acids Res 2008; 36:2990-3000. [PMID: 18388129 PMCID: PMC2396440 DOI: 10.1093/nar/gkn156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ribozyme self-cleavage site in the antigenomic sequence of hepatitis delta virus (HDV) RNA is 33-nt downstream of the poly(A) site for the delta antigen mRNA. An HDV antigenomic ribozyme precursor RNA that included the upstream poly(A) processing site was used to test the hypothesis that nonribozyme sequence near the poly(A) site could affect ribozyme activity. Relative to ribozyme precursor without the extra upstream sequences, the kinetic profile for self-cleavage of the longer precursor was altered in two ways. First, only half of the precursor RNA self-cleaved. The cleaved fraction could be increased or decreased with mutations in the upstream sequence. These mutations, which were predicted to alter the relative stability of competing secondary structures within the precursor, changed the distribution of alternative RNA structures that are resolved in native-gel electrophoresis. Second, the active fraction cleaved with an observed rate constant that was higher than that of the ribozyme without the upstream sequences. Moreover, the higher rate constants occurred at lower, near-physiological, divalent metal ion concentrations (1–2 mM). Modulation of ribozyme activity, through competing alternative structures, could be part of a mechanism that allows a biologically significant choice between maturation of the mRNA and processing of replication intermediates.
Collapse
Affiliation(s)
- Abigail L Brown
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | |
Collapse
|
13
|
Abstract
While this volume covers many different aspects of hepatitis delta virus (HDV) replication, the focus in this chapter is on studies of the structure and replication of the HDV RNA genome. An evaluation of such studies is not only an integral part of our understanding of HDV infections but it also sheds new light on some important aspects of cell biology, such as the fidelity of RNA transcription by a host RNA polymerase and on various forms of post-transcriptional RNA processing. Representations of the replication of the RNA genome are frequently simplified to a form of rolling-circle model, analogous to what have been described for plant viroids. One theme of this review is that such models, even after some revision, deceptively simplify the complexity of HDV replication and can fail to make clear major questions yet to be solved.
Collapse
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
14
|
Abstract
HDV replicates its circular RNA genome using a double rolling-circle mechanism and transcribes a hepatitis delta antigen-encodeing mRNA from the same RNA template during its life cycle. Both processes are carried out by RNA-dependent RNA synthesis despite the fact that HDV does not encode an RNA-dependent RNA polymerase (RdRP). Cellular RNA polymerase II has long been implicated in these processes. Recent findings, however, have shown that the syntheses of genomic and antigenomic RNA strands have different metabolic requirements, including sensitives to alpha-amanitin and the site of synthesis. Evidence is summarized here for the involvement of other cellular polymerases, probably pol I, in the synthesis of antigenomic RNA strand. The ability of mammalian cells to replicate HDV RNA implies that RNA-dependent RNA synthesis was preserved throughout evolution.
Collapse
Affiliation(s)
- T B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
15
|
Lai MMC. RNA replication without RNA-dependent RNA polymerase: surprises from hepatitis delta virus. J Virol 2005; 79:7951-8. [PMID: 15956541 PMCID: PMC1143735 DOI: 10.1128/jvi.79.13.7951-7958.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael M C Lai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 2011 Zonal Ave., HMR503C, Los Angeles, California 90033, USA.
| |
Collapse
|
16
|
Hsieh SY, Chen WY, Shih TC, Yeh JY, Jeng JT. Dys-regulation of clusterin in human hepatoma is not associated with tumorigenesis but is secondary to cell response to external tresses. Mol Carcinog 2005; 43:100-7. [PMID: 15791650 DOI: 10.1002/mc.20095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It becomes feasible to perform genome-wide differential gene or protein expression in the post genome era. However, little has been addressed on the effects of external stresses and microenvironment alterations on the outcomes of gene and protein expression. To identify downregulated genes during hepatoma development, we combined the cDNA representational difference analysis (RDA) and reverse Northern blot analysis identifying eight genes. Of interest, the expression of the clusterin gene was either down or upregulated in 8 and 7 out of the 20 hepatoma tissues, respectively. Further analysis revealed that its expression was independent of patients' age, gender, causes of liver disease, tumor size, tumor histological stage, or clinical outcome, but was strongly associated with the methods of hepatectomy procedures. In vitro studies disclosed that the clusterin mRNA was increased twofold in early exponential phase of cell proliferation followed by downregulation in the subsequent quiescence phase, whereas it was rapidly increased up to twelvefold upon UV-induced apoptosis. These results suggest that dys-regulation of the clusterin gene in human hepatoma was most likely due to cellular responses to external stresses especially during the procedures for sample collection rather than any correlation to hepatoma development or progression. Our findings that external stresses or microenvironmental changes could greatly affect gene or protein expression offer a general caution to all the studies conducted via genomic and proteomic approaches.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Intrinsic to the life cycle of hepatitis delta virus (HDV) is the fact that its RNAs undergo different forms of posttranscriptional RNA processing. Transcripts of both the genomic RNA and its exact complement, the antigenomic RNA, undergo ribozyme cleavage and RNA ligation. In addition, antigenomic RNA transcripts can undergo 5' capping, 3' polyadenylation, and even RNA editing by an adenosine deaminase. This study focused on the processing of antigenomic RNA transcripts. Two approaches were used to study the relationship between the events of polyadenylation, ribozyme cleavage, and RNA ligation. The first represented an examination under more controlled conditions of mutations in the poly(A) signal, AAUAAA, which is essential for this processing. We found that when a separate stable source of deltaAg-S, the small delta protein, was provided, the replication ability of the mutated RNA was restored. The second approach involved an examination of the processing in transfected cells of specific Pol II DNA-directed transcripts of HDV antigenomic sequences. The DNA constructs used were such that the RNA transcripts were antigenomic and began at the same 5' site as the mRNA produced during RNA-directed HDV genome replication. A series of such constructs was assembled in order to test the relative abilities of the transcripts to undergo processing by polyadenylation or ribozyme cleavage at sites further 3' on a multimer of HDV sequences. The findings from the two experimental approaches led to significant modifications in the rolling-circle model of HDV genome replication.
Collapse
Affiliation(s)
- Xingcao Nie
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
18
|
Chang J, Sigal LJ, Lerro A, Taylor J. Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol 2001; 75:3469-73. [PMID: 11238873 PMCID: PMC114140 DOI: 10.1128/jvi.75.7.3469-3473.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As early as 5 days after DNA copies of the hepatitis delta virus (HDV) genome or even in vitro-transcribed HDV RNA sequences were injected into the mouse tail vein using the hydrodynamics-based transfection procedure of F. Liu et al. (Gene Ther. 6:1258-1266, 1999), it was possible to detect in the liver by Northern analyses of RNA, immunoblots of protein, and immunostaining of liver sections what were considered typical features of HDV genome replication. This transfection strategy should have valuable applications for in vivo studies of HDV replication and pathogenesis and may also be useful for studies of other hepatotropic viruses.
Collapse
Affiliation(s)
- J Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | |
Collapse
|
19
|
Modahl LE, Lai MM. The large delta antigen of hepatitis delta virus potently inhibits genomic but not antigenomic RNA synthesis: a mechanism enabling initiation of viral replication. J Virol 2000; 74:7375-80. [PMID: 10906190 PMCID: PMC112257 DOI: 10.1128/jvi.74.16.7375-7380.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.
Collapse
Affiliation(s)
- L E Modahl
- Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | |
Collapse
|
20
|
Modahl LE, Macnaughton TB, Zhu N, Johnson DL, Lai MM. RNA-Dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases. Mol Cell Biol 2000; 20:6030-9. [PMID: 10913185 PMCID: PMC86079 DOI: 10.1128/mcb.20.16.6030-6039.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular DNA-dependent RNA polymerase II (pol II) has been postulated to carry out RNA-dependent RNA replication and transcription of hepatitis delta virus (HDV) RNA, generating a full-length (1.7-kb) RNA genome and a subgenomic-length (0.8-kb) mRNA. However, the supporting evidence for this hypothesis was ambiguous because the previous experiments relied on DNA-templated transcription to initiate HDV RNA synthesis. Furthermore, there is no evidence that the same cellular enzyme is involved in the synthesis of both RNA species. In this study, we used a novel HDV RNA-based transfection approach, devoid of any artificial HDV cDNA intermediates, to determine the enzymatic and metabolic requirements for the synthesis of these two RNA species. We showed that HDV subgenomic mRNA transcription was inhibited by a low concentration of alpha-amanitin (<3 microgram/ml) and could be partially restored by an alpha-amanitin-resistant mutant pol II; however, surprisingly, the synthesis of the full-length (1.7-kb) antigenomic RNA was not affected by alpha-amanitin to a concentration higher than 25 microgram/ml. By several other criteria, such as the differing requirement for the de novo-synthesized hepatitis delta antigen and temperature dependence, we further showed that the metabolic requirements of subgenomic HDV mRNA synthesis are different from those for the synthesis of genomic-length HDV RNA and cellular pol II transcripts. The synthesis of the two HDV RNA species could also be uncoupled under several different conditions. These findings provide strong evidence that pol II, or proteins derived from pol II transcripts, is involved in mRNA transcription from the HDV RNA template. In contrast, the synthesis of the 1.7-kb HDV antigenomic RNA appears not to be dependent on pol II. These results reveal that there are distinct molecular mechanisms for the synthesis of these two RNA species.
Collapse
Affiliation(s)
- L E Modahl
- Departments of Molecular Microbiology and Immunology, Schools of Medicine and Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Infection with hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is associated with severe and sometimes fulminant hepatitis. The traditional methods for the diagnosis of HDV infection, such as detection of serum anti-HD antibodies, are sufficient for the clinical diagnosis of delta infection. However, such techniques lack the sensitivity and specificity required to more accurately characterize the nature of HDV infection and to assess the efficacy of therapies. Recent improvements in molecular techniques, such as HDV RNA hybridization and RT-PCR, have provided increased diagnostic precision and a more thorough understanding of the natural course of HDV infection. These advances have enhanced the clinician's ability to accurately evaluate the stage of HDV infection, response to therapy, and occurrence of reinfection after orthotopic liver transplant. This review focuses on the recent advances in the understanding of the molecular biology of HDV and in the laboratory diagnosis of HDV infection.
Collapse
Affiliation(s)
- L E Modahl
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Taylor JM. Human hepatitis delta virus: an agent with similarities to certain satellite RNAs of plants. Curr Top Microbiol Immunol 1999; 239:107-22. [PMID: 9893371 DOI: 10.1007/978-3-662-09796-0_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
23
|
Lo K, Hwang SB, Duncan R, Trousdale M, Lai MM. Characterization of mRNA for hepatitis delta antigen: exclusion of the full-length antigenomic RNA as an mRNA. Virology 1998; 250:94-105. [PMID: 9770424 DOI: 10.1006/viro.1998.9364] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis delta virus (HDV) encodes a single protein, the hepatitis delta antigen (HDAg), which is thought to be translated from a 0. 8-kb RNA of antigenomic sense. This subgenomic RNA species is present in very small amounts in HDV-infected liver tissues and in cultured cells infected or transfected with HDV, and in some cases it cannot be detected at all. In contrast, HDAg protein is present in large amounts in all natural and experimental models of HDV infection. This study addresses whether other HDV RNA species, such as the antigenomic-sense, genome-size HDV RNA can also serve as the mRNA for HDAg synthesis. Taking advantage of the ability of herpes simplex virus (HSV) to degrade only polyadenylated mRNAs, we examined the effect of HSV coinfection on HDAg synthesis. It was shown that HSV infection did degrade the subgenomic 0.8-kb HDV mRNA but not HDV genome-length RNA. Under such conditions, HDAg synthesis was completely inhibited. Furthermore, the genome-length HDV RNA was found not to be associated with polysomes. Finally, in vitro translation studies demonstrated that HDAg could not be translated directly from the genome-length antigenomic-sense HDV RNA. These results suggest that only the subgenomic RNA species of HDV possesses properties characteristic of the mRNA for HDAg and that the genome-length RNA cannot be used for translating HDAg. In addition, we found that HDV RNA replication did not depend on de novo HDAg synthesis.
Collapse
Affiliation(s)
- K Lo
- Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles, California, 90033-1054, USA
| | | | | | | | | |
Collapse
|
24
|
Modahl LE, Lai MM. Transcription of hepatitis delta antigen mRNA continues throughout hepatitis delta virus (HDV) replication: a new model of HDV RNA transcription and replication. J Virol 1998; 72:5449-56. [PMID: 9621000 PMCID: PMC110180 DOI: 10.1128/jvi.72.7.5449-5456.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) replicates by RNA-dependent RNA synthesis according to a double rolling circle model. Also synthesized during replication is a 0.8-kb, polyadenylated mRNA encoding the hepatitis delta antigen (HDAg). It has been proposed that this mRNA species represents the initial product of HDV RNA replication; subsequent production of genomic-length HDV RNA relies on suppression of the HDV RNA polyadenylation signal by HDAg. However, this model was based on studies which required the use of an HDV cDNA copy to initiate HDV RNA replication in cell culture, thus introducing an artificial requirement for DNA-dependent RNA synthesis. We have now used an HDV cDNA-free RNA transfection system and a method that we developed to detect specifically the mRNA species transcribed from the HDV RNA template. We established that this polyadenylated mRNA is 0.8 kb in length and its 5' end begins at nucleotide 1631. Surprisingly, kinetic studies showed that this mRNA continued to be synthesized even late in the viral replication cycle and that the mRNA and the genomic-length RNA increased in parallel, even in the presence of HDAg. Thus, a switch from production of the HDAg mRNA to the full-length HDV RNA does not occur in this system, and suppression of the polyadenylation site by HDAg may not significantly regulate the synthesis of the HDAg mRNA, as previously proposed. These findings reveal novel insights into the mechanism of HDV RNA replication. A new model of HDV RNA replication and transcription is proposed.
Collapse
Affiliation(s)
- L E Modahl
- Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
25
|
Perrotta AT, Been MD. A toggle duplex in hepatitis delta virus self-cleaving RNA that stabilizes an inactive and a salt-dependent pro-active ribozyme conformation. J Mol Biol 1998; 279:361-73. [PMID: 9642043 DOI: 10.1006/jmbi.1998.1798] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antigenomic RNA of hepatitis delta virus (HDV) can form a short duplex, P2a, in which a four-nucleotide sequence within the self-cleaving domain pairs with a sequence just outside the previously defined 3'-boundary of the ribozyme. Both sequences that would participate in forming P2a were previously determined to be non-essential for self-cleavage activity. Ribozymes able to form P2a were less active than those lacking the 3' P2a sequence when preincubated under the standard low-Na+ conditions. Chemical probing of the RNA correlated base-pairing in P2a with this inhibition. Furthermore, mutagenesis and 3' truncation experiments mapped the inhibitory sequence to P2a. However, raising the NaCl concentration in the preincubation prior to adding Mg2+ reversed the inhibitory effect. Moreover, with NaCl preincubation, the P2a-containing ribozyme was more active than an otherwise identical ribozyme lacking the 3' P2a sequence. Non-denaturing gels provided evidence for alternative conformations of the P2a-containing precursor with only the faster-migrating species correlating with the active form. A difference in the temperature-dependence for the rate of cleavage of the P2a-containing ribozyme with and without NaCl, together with a difference in the melting behavior of the RNA in NaCl with and without P2a, suggested that P2a favors the native structure in NaCl. Many derivatives of the HDV ribozymes form inactive conformers; however, this study reveals details of a specific structure that stabilizes both inactive and active conformations of the HDV ribozyme.
Collapse
Affiliation(s)
- A T Perrotta
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Cunha C, Monjardino J, Cheng D, Krause S, Carmo-Fonseca M. Localization of hepatitis delta virus RNA in the nucleus of human cells. RNA (NEW YORK, N.Y.) 1998; 4:680-693. [PMID: 9622127 PMCID: PMC1369650 DOI: 10.1017/s135583829898013x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hepatitis delta virus (HDV) is a human pathogen that can greatly increase the severity of liver damage caused by an hepatitis B infection. HDV contains a circular, single-stranded RNA genome that encodes a unique protein, the delta antigen. Two forms of the delta antigen, deltaAg-S and deltaAg-L, are derived from a single open reading frame by RNA editing. Here we analyze the subcellular distribution of HDV RNA and its spatial relationship to known intranuclear structures. The human hepatoma cell line Huh7 was stably transfected with wild-type HDV cDNA and the viral RNAs were localized by in situ hybridization and fluorescence confocal microscopy. HDV RNA is detected throughout the nucleoplasm, with additional concentration in focal structures closely associated with nuclear speckles or clusters of interchromatin granules. Both the smaller form of the delta antigen (deltaAg-S), which is required for HDV genomic replication, and the larger form of the delta antigen (deltaAg-L), which represses replication, co-localize with delta RNA throughout the nucleoplasm and in the foci. However, the foci do not incorporate bromo-UTP and do not concentrate either RNA polymerase II or cleavage and polyadenylation factors required for viral RNA synthesis and 3' end processing, respectively. Thus, it is unlikely that the delta foci represent major sites of viral transcription or replication. In conclusion, the data show that viral RNA-protein complexes accumulate in structures closely associated with interchromatin granules, a subnuclear domain highly enriched in small nuclear ribonucleoproteins, poly(A+) RNA, and RNA splicing protein factors. This implies a specific compartmentalization of ribonucleoproteins in the nucleus.
Collapse
Affiliation(s)
- C Cunha
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal
| | | | | | | | | |
Collapse
|
27
|
Langon T, Pichoud C, Hantz O, Trépo C, Kay A. A novel vector for the study of hepatitis delta virus replication. J Virol Methods 1998; 70:19-28. [PMID: 9506809 DOI: 10.1016/s0166-0934(97)00163-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to study HDV replication without the difficulties caused by the use of a multimeric construction and to obtain a selectable expression vector, a minimal amount of antigenomic HDV cDNA, sufficient to initiate RNA dependent replication was cloned into the plasmid pUTSV1. The first plasmid, pUTdelta1.7, contained 1.7 genomes of HDV cDNA. After transfection of pUTdelta1.7 into HuH7 cells, antigenomic HDV RNA was produced, processed and could enter into the replicative cycle of HDV. However, after transfection of an antigenomic ribozyme mutant (pUTdelta1.7(AGR)) constructed on the same model, plasmid DNA dependent production of genomic HDV RNA was observed, especially in COS7 cells. It seems that a promoter within vector sequences downstream from the HDV insert may initiate counter-clockwise transcription of the plasmid. The presence of two genomic ribozymes in the insert permits the excision of a genome length genomic HDV RNA from this counter-clockwise transcript. In order to allow quantitative analysis of HDV replication, this problem was eliminated by removing the second genomic ribozyme from the insert to give the vector pUTdelta1.5. This vector can be used conveniently for transfection experiments to explore HDV biology.
Collapse
|
28
|
Abstract
The hepatitis D virus (HDV) relies on the helper hepatitis B virus (HBV) for the provision of its envelope, which consists of hepatitis B surface antigen (HBsAg). The RNA genome of HDV is a circular rod-like structure due to its extensive intramolecular base-pairing. HDV-RNA has ribozyme activity which includes autocatalytic cleavage and self-ligation properties, essential in virus replication via the rolling circle mechanism. Replication of the RNA is thought to be effected by cellular RNA polymerase II. Hepatitis D antigen (HDAg) is the only protein encoded by HDV-RNA and its long and short forms have a regulatory role in the replication and morphogenesis of the virus. Superinfected HBV carriers who become chronically infected with HDV are at increased risk of developing cirrhosis. Attempts to treat such carriers with interferon have not been particularly successful. In recent years the epidemiology of HDV has changed primarily due to the impact of HBV vaccination in preventing an increase in the pool of susceptible individuals. Copyright 1998 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- P Karayiannis
- Department of Medicine, Division of Medicine, Imperial College School of Medicine at St. Mary's, South Wharf Road, London W2 1NY, UK
| |
Collapse
|
29
|
Wang HW, Wu HL, Chen DS, Chen PJ. Identification of the functional regions required for hepatitis D virus replication and transcription by linker-scanning mutagenesis of viral genome. Virology 1997; 239:119-31. [PMID: 9426452 DOI: 10.1006/viro.1997.8818] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To define the important cis-elements in hepatitis delta virus (HDV) RNA, the viral genome was mutated by a linker-scanning mutagenesis strategy that maintained the native rod-like structure of HDV RNA. Mutant HDV cDNAs or their corresponding RNA transcripts were transfected into a Huh-7-derived cell line which continuously expressed small hepatitis delta antigen to study the viral replication and transcription. Here we report the following findings. (i) Although most of the mutant RNAs could self-process to generate the 1.7-kb genomic RNA and all their stabilities were similar, positions which surround the genomic ribozyme domain were found to be important for the self-processing of the dimeric RNA. (ii) The replication of viral RNA was greatly diminished in many mutants, suggesting that multiple regions in HDV RNA were required for replication. (iii) In certain mutants, replication of the HDV antigenomic RNA was selectively abolished but that of the genomic RNA was not. Therefore, this was the first report to show that the cis-elements needed for the replication of genomic or antigenomic HDV RNA could be different. (iv) A continuous region (nt 1625 to nt 431), spanning the HDAg mRNA initiation site and containing the in vitro identified RNA promoter, was found to be important for mRNA production in vivo. (v) The HDV RNA replication and transcription was previously proposed to be governed by a single "double-acting promoter." However, two mutants which were deficient in mRNA synthesis still retained active viral RNA replication. It suggested that the HDV replication could initiate from sites other than this single promoter. This study therefore provided an insight into the cis-elements required for HDV RNA replication and transcription and further contributed to our understanding of HDV life cycle.
Collapse
Affiliation(s)
- H W Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
30
|
|
31
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
32
|
|
33
|
Ashe MP, Griffin P, James W, Proudfoot NJ. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev 1995; 9:3008-25. [PMID: 7498796 DOI: 10.1101/gad.9.23.3008] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In common with all retroviruses, the human immunodeficiency virus type 1 (HIV-1) contains duplicated long terminal repeat (LTR) sequences flanking the proviral genome. These LTRs contain identical poly(A) signals, which are both transcribed into RNA. Therefore, to allow efficient viral expression, a mechanism must exist to either restrict promoter-proximal poly(A) site use or enhance the activity of the promoter-distal poly(A) site. We have examined the use of both poly(A) sites using proviral clones. Mutation of the previously defined upstream activatory sequences of the 3' LTR poly(A) site decreases the efficiency of polyadenylation when placed in competition with an efficient downstream processing signal. However, in the absence of competition, these mutations have no effect on HIV-1 polyadenylation. In addition, the 5' LTR poly(A) site is inactive, whereas a heterologous poly(A) site positioned in its place is utilized efficiently. Furthermore, transcription initiating from the 3' LTR promoter utilizes the 3' LTR poly(A) signal efficiently. Therefore, the main determinant of the differential poly(A) site use appears to be neither proximity to a promoter element in the 5' LTR nor the presence of upstream activating sequences at the 3' LTR. Instead, we show that the major splice donor site that is immediately downstream of the 5' LTR inhibits cleavage and polyadenylation at the promoter-proximal site. The fact that this poly(A) site is active in a proviral clone when the major splice donor site is mutated suggests that the selective use of poly(A) signals in HIV-1 is mediated by a direct inhibition of the HIV-1 poly(A) site by downstream splicing events or factors involved in splicing.
Collapse
Affiliation(s)
- M P Ashe
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
34
|
Netter HJ, Wu TT, Bockol M, Cywinski A, Ryu WS, Tennant BC, Taylor JM. Nucleotide sequence stability of the genome of hepatitis delta virus. J Virol 1995; 69:1687-92. [PMID: 7853505 PMCID: PMC188769 DOI: 10.1128/jvi.69.3.1687-1692.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cultured cells were cotransfected with a fully sequenced 1,679-base cDNA clone of human hepatitis delta virus (HDV) RNA genome and a cDNA for the genome of woodchuck hepatitis virus (WHV). The HDV particles released were able to infect a woodchuck that was chronically infected with WHV. The HDV so produced was passaged a total of six times in woodchucks in order to determine the stability of the HDV nucleotide sequence. During a final chronic infection with such virus, liver RNA was extracted, and the HDV nucleotide sequence for the 352-base region, positions 905 to 1256, was obtained. By means of PCR, we obtained double-stranded cDNA both for direct sequencing and also for molecular cloning followed by sequencing. By direct sequencing, we found that a consensus sequence existed and was identical to the original sequence. From the sequences of 31 clones, we found 32% (10 of 31) to be identical to the original single nucleotide sequence. For the remainder, there were neither insertions nor deletions but there was a small number of single-nucleotide changes. These changes were predominantly transitions rather than transversions. Furthermore, the transitions were largely of just two types, uridine to cytidine and adenosine to guanosine. Of the 40 changes detected on HDV, 35% (14 of 40) occurred within an eight-nucleotide region that included position 1012, previously shown to be a site of RNA editing. These findings may have significant implications regarding both the stability of the HDV RNA genome and the mechanism of RNA editing.
Collapse
Affiliation(s)
- H J Netter
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Hsieh SY, Yang PY, Ou JT, Chu CM, Liaw YF. Polyadenylation of the mRNA of hepatitis delta virus is dependent on the structure of the nascent RNA and regulated by the small or large delta antigen. Nucleic Acids Res 1994; 22:391-6. [PMID: 8127676 PMCID: PMC523594 DOI: 10.1093/nar/22.3.391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.
Collapse
Affiliation(s)
- S Y Hsieh
- Department of Microbiology and Immunology, Chang Gung College of Medicine and Technology, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj LW. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 1994; 76:531-41. [PMID: 8313473 DOI: 10.1016/0092-8674(94)90116-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human U1 snRNP-specific U1A protein autoregulates its production by binding its own pre-mRNA and inhibiting polyadenylation. The mechanism of this regulation has been elucidated by in vitro studies. U1A protein is shown not to prevent either binding of cleavage and polyadenylation specificity factor (CPSF) to its recognition sequence (AUUAAA) or to prevent cleavage of U1A pre-mRNA. Instead, U1A protein bound to U1A pre-mRNA inhibits both specific and nonspecific polyadenylation by mammalian, but not by yeast, poly(A) polymerase (PAP). Domains are identified in both proteins whose removal uncouples the polyadenylation activity of mammalian PAP from its inhibition via RNA-bound U1A protein. Finally, U1A protein is shown to specifically interact with mammalian PAP in vitro. The possibility that this interaction may reflect a broader role of the U1A protein in polyadenylation is discussed.
Collapse
Affiliation(s)
- S I Gunderson
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- D W Lazinski
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
39
|
Abstract
Human hepatitis delta virus has a single-stranded circular RNA genome that replicates by RNA-directed RNA synthesis. The virus encodes only a single protein, the delta antigen, which both is small (22 kDa) and lacks sequence homology to known RNA polymerases, suggesting that the virus employs a cellular polymerase for replication. Consistent with this suggestion, we have used homogenized nuclei from a human hepatoma cell line, HepG2, to demonstrate RNA-directed RNA synthesis from both genomic hepatitis delta virus RNA and its complement, the antigenomic RNA. RNA polymerase II was responsible for this transcription because the reaction was inhibited both by low doses of alpha-amanitin and by a monoclonal antibody specific for polymerase II. In addition, it was found that the majority of the RNA products were processed, presumably by self-cleavage and self-ligation, to produce covalently closed circular molecules.
Collapse
Affiliation(s)
- T B Fu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497
| | | |
Collapse
|
40
|
Macnaughton TB, Wang YJ, Lai MM. Replication of hepatitis delta virus RNA: effect of mutations of the autocatalytic cleavage sites. J Virol 1993; 67:2228-34. [PMID: 8445730 PMCID: PMC240348 DOI: 10.1128/jvi.67.4.2228-2234.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatitis delta virus (HDV) contains a circular RNA genome of 1.7 kb. HDV RNA replication is thought to proceed via a rolling-circle mechanism that is dependent on autocatalytic cleavage and ligation reactions. However, it has never been established that these ribozyme activities are indeed involved in HDV RNA replication. To investigate the possible biological significance of HDV RNA self-cleavage, we constructed several HDV dimer cDNAs containing single-base substitutions of the 3' nucleotide of the genomic and the antigenomic self-cleavage sites. These mutations were known to affect self-cleavage in vitro to various extents. The effects of these mutations on HDV RNA replication were examined in hepatic and nonhepatic cell lines. The results showed that all of the mutants which had lost the in vitro self-cleavage activity could not replicate. The only mutant which retained full cleavage activity replicated as efficiently as the wild-type RNA. Thus, this study established that self-cleavage activity is required for HDV RNA replication in cells. Interestingly, the level of HDV RNA detected in cells transfected with this replication-competent mutant and that detected in cells transfected with the wild-type construct were similar in COS-7 cells but vastly different in HepG2 and Huh-7 cells, suggesting that HDV RNA self-cleavage activity may be modulated by cell-specific factors. We also compared the effects of mutations when the primary transcripts of these constructs were of either genomic or antigenomic sense. In constructs which synthesize primary transcripts of genomic sense, all of the antigenomic self-cleavage mutants produced as much hepatitis delta antigen (HDAg) as did the wild-type construct, even in the absence of detectable HDV RNA replication, whereas the genomic self-cleavage mutants produced very little HDAg. These and other data suggest that (i) the primary HDV RNA transcripts of both genomic and antigenomic polarities must first be processed to serve as a template for HDV RNA transcription, (ii) efficient cleavage at the antigenomic self-cleavage site is not required for HDAg expression, and (iii) HDV RNA replication most likely occurs by a double-rolling-circle mechanism.
Collapse
Affiliation(s)
- T B Macnaughton
- Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054
| | | | | |
Collapse
|
41
|
Taylor J, Negro F, Rizzetto M. Hepatitis delta virus: From structure to disease expression. Rev Med Virol 1992. [DOI: 10.1002/rmv.1980020306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
An indexed bibliography of antisense literature, 1991. ANTISENSE RESEARCH AND DEVELOPMENT 1992; 2:63-107. [PMID: 1422087 DOI: 10.1089/ard.1992.2.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|