1
|
Schmidt L, Tüting C, Kyrilis FL, Hamdi F, Semchonok DA, Hause G, Meister A, Ihling C, Stubbs MT, Sinz A, Kastritis PL. Delineating organizational principles of the endogenous L-A virus by cryo-EM and computational analysis of native cell extracts. Commun Biol 2024; 7:557. [PMID: 38730276 PMCID: PMC11087493 DOI: 10.1038/s42003-024-06204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.
Collapse
Affiliation(s)
- Lisa Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Gerd Hause
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Christian Ihling
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale), Germany
| | - Milton T Stubbs
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
2
|
Xiao Y, Wang R, Han X, Wang W, Liang A. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:1766. [PMID: 38339043 PMCID: PMC10855120 DOI: 10.3390/ijms25031766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Xiaxia Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
3
|
Kelly JA, Dinman JD. Shiftless Is a Novel Member of the Ribosome Stress Surveillance Machinery That Has Evolved to Play a Role in Innate Immunity and Cancer Surveillance. Viruses 2023; 15:2296. [PMID: 38140537 PMCID: PMC10747187 DOI: 10.3390/v15122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A longstanding paradox in molecular biology has centered on the question of how very long proteins are synthesized, despite numerous measurements indicating that ribosomes spontaneously shift reading frame at rates that should preclude their ability completely translate their mRNAs. Shiftless (SFL; C19orf66) was originally identified as an interferon responsive gene encoding an antiviral protein, indicating that it is part of the innate immune response. This activity is due to its ability to bind ribosomes that have been programmed by viral sequence elements to shift reading frame. Curiously, Shiftless is constitutively expressed at low levels in mammalian cells. This study examines the effects of altering Shiftless homeostasis, revealing how it may be used by higher eukaryotes to identify and remove spontaneously frameshifted ribosomes, resolving the apparent limitation on protein length. Data also indicate that Shiftless plays a novel role in the ribosome-associated quality control program. A model is proposed wherein SFL recognizes and arrests frameshifted ribosomes, and depending on SFL protein concentrations, either leads to removal of frameshifted ribosomes while leaving mRNAs intact, or to mRNA degradation. We propose that SFL be added to the growing pantheon of proteins involved in surveilling translational fidelity and controlling gene expression in higher eukaryotes.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
4
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
5
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
6
|
Olson AN, Song S, Dinman JD. Deep mutational analysis of elongation factor eEF2 residues implicated in human disease to identify functionally important contacts with the ribosome. J Biol Chem 2022; 299:102771. [PMID: 36470424 PMCID: PMC9830224 DOI: 10.1016/j.jbc.2022.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
An emerging body of research is revealing mutations in elongation factor eEF2 that are implicated in both inherited and de novo neurodevelopmental disorders. Previous structural analysis has revealed that most pathogenic amino acid substitutions map to the three main points of contact between eEF2 and critical large subunit rRNA elements of the ribosome, specifically to contacts with Helix 69, Helix 95, also known as the sarcin-ricin loop, and Helix 43 of the GTPase-associated center. In order to further investigate these eEF2-ribosome interactions, we identified a series of yeast eEF2 amino acid residues based on their proximity to these functionally important rRNA elements. Based on this analysis, we constructed mutant strains to sample the full range of amino acid sidechain biochemical properties, including acidic, basic, nonpolar, and deletion (alanine) residues. These were characterized with regard to their effects on cell growth, sensitivity to ribosome-targeting antibiotics, and translational fidelity. We also biophysically characterized one mutant from each of the three main points of contact with the ribosome using CD. Collectively, our findings from these studies identified functionally critical contacts between eEF2 and the ribosome. The library of eEF2 mutants generated in this study may serve as an important resource for biophysical studies of eEF2/ribosome interactions going forward.
Collapse
Affiliation(s)
- Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Serena Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
7
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Grybchuk D, Procházková M, Füzik T, Konovalovas A, Serva S, Yurchenko V, Plevka P. Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly. Commun Biol 2022; 5:847. [PMID: 35986212 PMCID: PMC9391438 DOI: 10.1038/s42003-022-03793-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA. A 2.9 Å resolution structure of the L-BC virus provides insight into the contacts between capsid proteins and the mechanism of capsid assembly.
Collapse
|
9
|
Abstract
Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCELeishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.
Collapse
|
10
|
Riegger RJ, Caliskan N. Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting. Front Mol Biosci 2022; 9:842261. [PMID: 35281266 PMCID: PMC8915115 DOI: 10.3389/fmolb.2022.842261] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Translation facilitates the transfer of the genetic information stored in the genome via messenger RNAs to a functional protein and is therefore one of the most fundamental cellular processes. Programmed ribosomal frameshifting is a ubiquitous alternative translation event that is extensively used by viruses to regulate gene expression from overlapping open reading frames in a controlled manner. Recent technical advances in the translation field enabled the identification of precise mechanisms as to how and when ribosomes change the reading frame on mRNAs containing cis-acting signals. Several studies began also to illustrate that trans-acting RNA modulators can adjust the timing and efficiency of frameshifting illuminating that frameshifting can be a dynamically regulated process in cells. Here, we intend to summarize these new findings and emphasize how it fits in our current understanding of PRF mechanisms as previously described.
Collapse
Affiliation(s)
- Ricarda J. Riegger
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
- Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
- *Correspondence: Neva Caliskan,
| |
Collapse
|
11
|
Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022; 14:v14020177. [PMID: 35215770 PMCID: PMC8876150 DOI: 10.3390/v14020177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates −1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of −1 PRF in SARS-CoV-2 also inhibited −1 PRF in a range of bat CoVs—the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on −1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed −1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit −1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.
Collapse
|
12
|
Ramírez M, Martínez A, Molina F. New Insights into the Genome Organization of Yeast Double-Stranded RNA LBC Viruses. Microorganisms 2022; 10:173. [PMID: 35056622 PMCID: PMC8780742 DOI: 10.3390/microorganisms10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
The yeasts Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) may show a killer phenotype that is encoded in dsRNA M viruses (V-M), which require the helper activity of another dsRNA virus (V-LA or V-LBC) for replication. Recently, two TdV-LBCbarr genomes, which share sequence identity with ScV-LBC counterparts, were characterized by high-throughput sequencing (HTS). They also share some similar characteristics with Sc-LA viruses. This may explain why TdV-LBCbarr has helper capability to maintain M viruses, whereas ScV-LBC does not. We here analyze two stretches with low sequence identity (LIS I and LIS II) that were found in TdV-LBCbarr Gag-Pol proteins when comparing with the homologous regions of ScV-LBC. These stretches may result from successive nucleotide insertions or deletions (indels) that allow compensatory frameshift events required to maintain specific functions of the RNA-polymerase, while modifying other functions such as the ability to bind V-M (+)RNA for packaging. The presence of an additional frameshifting site in LIS I may ensure the synthesis of a certain amount of RNA-polymerase until the new compensatory indel appears. Additional 5'- and 3'-extra sequences were found beyond V-LBC canonical genomes. Most extra sequences showed high identity to some stretches of the canonical genomes and can form stem-loop structures. Further, the 3'-extra sequence of two ScV-LBC genomes contains rRNA stretches. The origin and possible functions of these extra sequences are here discussed.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
13
|
Ramírez M, Velázquez R, López-Piñeiro A, Martínez A. Genome Features of a New Double-Stranded RNA Helper Virus (LBCbarr) from Wine Torulaspora delbrueckii Killer Strains. Int J Mol Sci 2021; 22:13492. [PMID: 34948288 PMCID: PMC8709356 DOI: 10.3390/ijms222413492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
The killer phenotype of Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) is encoded in the genome of medium-size dsRNA viruses (V-M). Killer strains also contain a helper large size (4.6 kb) dsRNA virus (V-LA) which is required for maintenance and replication of V-M. Another large-size (4.6 kb) dsRNA virus (V-LBC), without known helper activity to date, may join V-LA and V-M in the same yeast. T. delbrueckii Kbarr1 killer strain contains the killer virus Mbarr1 in addition to two L viruses, TdV-LAbarr1 and TdV-LBCbarr1. In contrast, the T. delbrueckii Kbarr2 killer strain contains two M killer viruses (Mbarr1 and M1) and a LBC virus (TdV-LBCbarr2), which has helper capability to maintain both M viruses. The genomes of TdV-LBCbarr1 and TdV-LBCbarr2 were characterized by high-throughput sequencing (HTS). Both RNA genomes share sequence identity and similar organization with their ScV-LBC counterparts. They contain all conserved motifs required for translation, packaging, and replication of viral RNA. Their Gag-Pol amino-acid sequences also contain the features required for cap-snatching and RNA polymerase activity. However, some of these motifs and features are similar to those of LA viruses, which may explain that at least TdV-LBCbarr2 has a helper ability to maintain M killer viruses. Newly sequenced ScV-LBC genomes contained the same motifs and features previously found in LBC viruses, with the same genome location and secondary structure. Sequence comparison showed that LBC viruses belong to two clusters related to each species of yeast. No evidence for associated co-evolution of specific LBC with specific M virus was found. The presence of the same M1 virus in S. cerevisiae and T. delbrueckii raises the possibility of cross-species transmission of M viruses.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| |
Collapse
|
14
|
Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, Wilen CB, Ho YC, Gilbert WV, Surovtseva YV, Lindenbach BD, Guo JU. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Proc Natl Acad Sci U S A 2021; 118:e2023051118. [PMID: 34185680 PMCID: PMC8256030 DOI: 10.1073/pnas.2023051118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Savannah F Pedersen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Valter Silva Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520;
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
15
|
Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J 2021; 35:e21573. [PMID: 33913206 PMCID: PMC8206714 DOI: 10.1096/fj.202100280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus (CoV) 3-chymotrypsin (C)-like cysteine protease (3CLpro ) is a target for anti-CoV drug development and drug repurposing because along with papain-like protease, it cleaves CoV-encoded polyproteins (pp1a and pp1ab) into nonstructural proteins (nsps) for viral replication. However, the cleavage sites of 3CLpro and their relevant nsps remain unclear, which is the subject of this perspective. Here, we address the subject from three standpoints. First, we explore the inconsistency in the cleavage sites and relevant nsps across CoVs, and investigate the function of nsp11. Second, we consider the nsp16 mRNA overlapping of the spike protein mRNA, and analyze the effect of this overlapping on mRNA vaccines. Finally, we study nsp12, whose existence depends on ribosomal frameshifting, and investigate whether 3CLpro requires a large number of inhibitors to achieve full inhibition. This perspective helps us to clarify viral replication and is useful for developing anti-CoV drugs with 3CLpro as a target in the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| | - Guang Wu
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| |
Collapse
|
16
|
Abstract
Trichomonas vaginalis viruses (TVVs) are double-stranded RNA (dsRNA) viruses that cohabitate in Trichomonas vaginalis, the causative pathogen of trichomoniasis, the most common nonviral sexually transmitted disease worldwide. Featuring an unsegmented dsRNA genome encoding a single capsid shell protein (CSP), TVVs contrast with multisegmented dsRNA viruses, such as the diarrhea-causing rotavirus, whose larger genome is split into 10 dsRNA segments encoding 5 unique capsid proteins. Trichomonas vaginalis, the causative pathogen for the most common nonviral sexually transmitted infection worldwide, is itself frequently infected with one or more of the four types of small double-stranded RNA (dsRNA) Trichomonas vaginalis viruses (TVV1 to 4, genus Trichomonasvirus, family Totiviridae). Each TVV encloses a nonsegmented genome within a single-layered capsid and replicates entirely intracellularly, like many dsRNA viruses, and unlike those in the Reoviridae family. Here, we have determined the structure of TVV2 by cryo-electron microscopy (cryoEM) at 3.6 Å resolution and derived an atomic model of its capsid. TVV2 has an icosahedral, T = 2*, capsid comprised of 60 copies of the icosahedral asymmetric unit (a dimer of the two capsid shell protein [CSP] conformers, CSP-A and CSP-B), typical of icosahedral dsRNA virus capsids. However, unlike the robust CSP-interlocking interactions such as the use of auxiliary “clamping” proteins among Reoviridae, only lateral CSP interactions are observed in TVV2, consistent with an assembly strategy optimized for TVVs’ intracellular-only replication cycles within their protozoan host. The atomic model reveals both a mostly negatively charged capsid interior, which is conducive to movement of the loosely packed genome, and channels at the 5-fold vertices, which we suggest as routes of mRNA release during transcription. Structural comparison of TVV2 to the Saccharomyces cerevisiae L-A virus reveals a conserved helix-rich fold within the CSP and putative guanylyltransferase domain along the capsid exterior, suggesting conserved mRNA maintenance strategies among Totiviridae. This first atomic structure of a TVV provides a framework to guide future biochemical investigations into the interplay between Trichomonas vaginalis and its viruses.
Collapse
|
17
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
18
|
Ramírez M, Velázquez R, Maqueda M, Martínez A. Genome Organization of a New Double-Stranded RNA LA Helper Virus From Wine Torulaspora delbrueckii Killer Yeast as Compared With Its Saccharomyces Counterparts. Front Microbiol 2020; 11:593846. [PMID: 33324373 PMCID: PMC7721687 DOI: 10.3389/fmicb.2020.593846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
Wine killer yeasts such as killer strains of Torulaspora delbrueckii and Saccharomyces cerevisiae contain helper large-size (4.6 kb) dsRNA viruses (V-LA) required for the stable maintenance and replication of killer medium-size dsRNA viruses (V-M) which bear the genes that encode for the killer toxin. The genome of the new V-LA dsRNA from the T. delbrueckii Kbarr1 killer yeast (TdV-LAbarr1) was characterized by high-throughput sequencing (HTS). The canonical genome of TdV-LAbarr1 shares a high sequence identity and similar genome organization with its Saccharomyces counterparts. It contains all the known conserved motifs predicted to be necessary for virus translation, packaging, and replication. Similarly, the Gag-Pol amino-acid sequence of this virus contains all the features required for cap-snatching and RNA polymerase activity, as well as the expected regional variables previously found in other LA viruses. Sequence comparison showed that two main clusters (99.2-100% and 96.3-98.8% identity) include most LA viruses from Saccharomyces, with TdV-LAbarr1 being the most distant from all these viruses (61.5-62.5% identity). Viral co-evolution and cross transmission between different yeast species are discussed based on this sequence comparison. Additional 5' and 3' sequences were found in the TdV-LAbarr1 genome as well as in some newly sequenced V-LA genomes from S. cerevisiae. A stretch involving the 5' extra sequence of TdV-LAbarr1 is identical to a homologous stretch close to the 5' end of the canonical sequence of the same virus (self-identity). Our modeling suggests that these stretches can form single-strand stem loops, whose unpaired nucleotides could anneal to create an intramolecular kissing complex. Similar stem loops are also found in the 3' extra sequence of the same virus as well as in the extra sequences of some LA viruses from S. cerevisiae. A possible origin of these extra sequences as well as their function in obviating ssRNA degradation and allowing RNA transcription and replication are discussed.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
19
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Neupane K, Munshi S, Zhao M, Ritchie DB, Ileperuma SM, Woodside MT. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. J Mol Biol 2020; 432:5843-5847. [PMID: 32920049 PMCID: PMC7483078 DOI: 10.1016/j.jmb.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/23/2023]
Abstract
SARS-CoV-2 uses −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins. Because modulating −1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates −1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect −1 PRF efficiency and ligand activity is unknown. Studying a panel of six mutations in key regions of the pseudoknot, we found that most did not change −1 PRF levels, even when base-pairing was disrupted, but one led to a striking 3-fold decrease, suggesting SARS-CoV-2 may be less sensitive to −1 PRF modulation than expected. Examining the effects of a small-molecule −1 PRF inhibitor active against SARS-CoV-2, it had a similar effect on all mutants tested, regardless of basal −1 PRF efficiency, indicating that anti-frameshifting activity can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of −1 PRF.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sneha Munshi
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
21
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
22
|
Mikl M, Pilpel Y, Segal E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 2020; 11:3061. [PMID: 32546731 PMCID: PMC7297798 DOI: 10.1038/s41467-020-16961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
Murata A, Nakamori M, Nakatani K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 2019; 167:78-91. [DOI: 10.1016/j.ymeth.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
|
24
|
Matsumoto S, Caliskan N, Rodnina MV, Murata A, Nakatani K. Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting. Nucleic Acids Res 2019; 46:8079-8089. [PMID: 30085309 PMCID: PMC6144811 DOI: 10.1093/nar/gky689] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/31/2018] [Indexed: 12/02/2022] Open
Abstract
Programmed –1 ribosomal frameshifting (−1PRF) is a recoding mechanism to make alternative proteins from a single mRNA transcript. −1PRF is stimulated by cis-acting signals in mRNA, a seven-nucleotide slippery sequence and a downstream secondary structure element, which is often a pseudoknot. In this study we engineered the frameshifting pseudoknot from the mouse mammary tumor virus to respond to a rationally designed small molecule naphthyridine carbamate tetramer (NCTn). We demonstrate that NCTn can stabilize the pseudoknot structure in mRNA and activate –1PRF both in vitro and in human cells. The results illustrate how NCTn-inducible –1PRF may serve as an important component of the synthetic biology toolbox for the precise control of gene expression using small synthetic molecules.
Collapse
Affiliation(s)
- Saki Matsumoto
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research, Josef-Schneider-Str.2/D15, 97080, Würzburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
25
|
Abstract
Innovation follows discovery. If the 20th century was a golden age of discovery in the biomolecular biosciences, the current century may be remembered by the explosion of beneficial devices and therapies conceived by the bioengineers of the era. Much as the development of solid-state electronic components made possible the information revolution, the rational combining of millions of basic molecular control modules will enable the development of highly sophisticated biomachines that will make today's smartphones appear rudimentary. The molecular toolbox is already well-stocked, particularly in our ability to manipulate DNA, control transcription, generate functionally novel hybrid proteins, and expand the genetic code to include unnatural amino acids. This review focuses on how RNA-based regulatory modules that direct alternative readings of the genetic code can be employed as basic circuit components to expand our ability to control gene expression.
Collapse
Affiliation(s)
- Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
26
|
Kendra JA, Advani VM, Chen B, Briggs JW, Zhu J, Bress HJ, Pathy SM, Dinman JD. Functional and structural characterization of the chikungunya virus translational recoding signals. J Biol Chem 2018; 293:17536-17545. [PMID: 30242123 DOI: 10.1074/jbc.ra118.005606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
Climate change and human globalization have spurred the rapid spread of mosquito-borne diseases to naïve populations. One such emerging virus of public health concern is chikungunya virus (CHIKV), a member of the Togaviridae family, genus Alphavirus CHIKV pathogenesis is predominately characterized by acute febrile symptoms and severe arthralgia, which can persist in the host long after viral clearance. CHIKV has also been implicated in cases of acute encephalomyelitis, and its vertical transmission has been reported. Currently, no FDA-approved treatments exist for this virus. Recoding elements help expand the coding capacity in many viruses and therefore represent potential therapeutic targets in antiviral treatments. Here, we report the molecular and structural characterization of two CHIKV translational recoding signals: a termination codon read-through (TCR) element located between the nonstructural protein 3 and 4 genes and a programmed -1 ribosomal frameshift (-1 PRF) signal located toward the 3' end of the CHIKV 6K gene. Using Dual-Luciferase and immunoblot assays in HEK293T and U87MG mammalian cell lines, we validated and genetically characterized efficient TCR and -1 PRF. Analyses of RNA chemical modification data with selective 2'-hydroxyl acylation and primer extension (SHAPE) assays revealed that CHIKV -1 PRF is stimulated by a tightly structured, triple-stem hairpin element, consistent with previous observations in alphaviruses, and that the TCR signal is composed of a single large multibulged hairpin element. These findings illuminate the roles of RNA structure in translational recoding and provide critical information relevant for design of live-attenuated vaccines against CHIKV and related viruses.
Collapse
Affiliation(s)
- Joseph A Kendra
- From the Department of Cell Biology and Molecular Genetics and
| | - Vivek M Advani
- From the Department of Cell Biology and Molecular Genetics and.,First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Bin Chen
- From the Department of Cell Biology and Molecular Genetics and
| | - Joseph W Briggs
- From the Department of Cell Biology and Molecular Genetics and
| | - Jinyi Zhu
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Hannah J Bress
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | - Sushrut M Pathy
- First-Year Innovation and Research Experience Program, University of Maryland, College Park, Maryland 20742
| | | |
Collapse
|
27
|
Capsid Structure of dsRNA Fungal Viruses. Viruses 2018; 10:v10090481. [PMID: 30205532 PMCID: PMC6164181 DOI: 10.3390/v10090481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Most fungal, double-stranded (ds) RNA viruses lack an extracellular life cycle stage and are transmitted by cytoplasmic interchange. dsRNA mycovirus capsids are based on a 120-subunit T = 1 capsid, with a dimer as the asymmetric unit. These capsids, which remain structurally undisturbed throughout the viral cycle, nevertheless, are dynamic particles involved in the organization of the viral genome and the viral polymerase necessary for RNA synthesis. The atomic structure of the T = 1 capsids of four mycoviruses was resolved: the L-A virus of Saccharomyces cerevisiae (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). These capsids show structural variations of the same framework, with 60 asymmetric or symmetric homodimers for ScV-L-A and PsV-F, respectively, monomers with a duplicated similar domain for PcV, and heterodimers of two different proteins for RnQV1. Mycovirus capsid proteins (CP) share a conserved α-helical domain, although the latter may carry different peptides inserted at preferential hotspots. Insertions in the CP outer surface are likely associated with enzymatic activities. Within the capsid, fungal dsRNA viruses show a low degree of genome compaction compared to reoviruses, and contain one to two copies of the RNA-polymerase complex per virion.
Collapse
|
28
|
Ramírez M, Velázquez R, López-Piñeiro A, Naranjo B, Roig F, Llorens C. New Insights into the Genome Organization of Yeast Killer Viruses Based on "Atypical" Killer Strains Characterized by High-Throughput Sequencing. Toxins (Basel) 2017; 9:E292. [PMID: 28925975 PMCID: PMC5618225 DOI: 10.3390/toxins9090292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/04/2023] Open
Abstract
Viral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of Saccharomyces cerevisiae and Torulaspora delbrueckii. All dsRNAs expected to be present in a given yeast strain were reliably detected and sequenced, and the previously-known sequences were confirmed. The few discrepancies between viral variants were mostly located around the central poly(A) region. A continuous sequence of the ScV-M2 genome was obtained for the first time. M1 virus was found for the first time in wine yeasts, coexisting with Mbarr-1 virus in T. delbrueckii. Extra 5'- and 3'-sequences were found in all M-genomes. The presence of repeated short sequences in the non-coding 3'-region of most M-genomes indicates that they have a common phylogenetic origin. High identity between amino acid sequences of killer toxins and some unclassified proteins of yeast, bacteria, and wine grapes suggests that killer viruses recruited some sequences from the genome of these organisms, or vice versa, during evolution.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Belén Naranjo
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Francisco Roig
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| | - Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| |
Collapse
|
29
|
Ritchie DB, Cappellano TR, Tittle C, Rezajooei N, Rouleau L, Sikkema WKA, Woodside MT. Conformational dynamics of the frameshift stimulatory structure in HIV-1. RNA (NEW YORK, N.Y.) 2017; 23:1376-1384. [PMID: 28522581 PMCID: PMC5558907 DOI: 10.1261/rna.061655.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Abstract
Programmed ribosomal frameshifting (PRF) in HIV-1 is thought to be stimulated by a hairpin in the mRNA, although a pseudoknot-like triplex has also been proposed. Because the conformational dynamics of the stimulatory structure under tension applied by the ribosomal helicase during translation may play an important role in PRF, we used optical tweezers to apply tension to the HIV stimulatory structure and monitor its unfolding and refolding dynamics. The folding and unfolding kinetics and energy landscape of the hairpin were measured by ramping the force on the hairpin up and down, providing a detailed biophysical characterization. Unexpectedly, whereas unfolding reflected the simple two-state behavior typical of many hairpins, refolding was more complex, displaying significant heterogeneity. Evidence was found for multiple refolding pathways as well as previously unsuspected, partially folded intermediates. Measuring a variant mRNA containing only the sequence required to form the proposed triplex, it behaved largely in the same way. Nonetheless, very rarely, high-force unfolding events characteristic of pseudoknot-like structures were observed. The rare occurrence of the triplex suggests that the hairpin is the functional stimulatory structure. The unusual heterogeneity of the hairpin dynamics under tension suggests a possible functional role in PRF similar to the dynamics of other stimulatory structures.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Tonia R Cappellano
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Collin Tittle
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Negar Rezajooei
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Logan Rouleau
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton AB T6G 2M9, Canada
| |
Collapse
|
30
|
Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations. Appl Environ Microbiol 2017; 83:AEM.02991-16. [PMID: 27940540 DOI: 10.1128/aem.02991-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 02/04/2023] Open
Abstract
Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The "killer phenomenon" depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these helper viruses have nucleotide sequences that may be as much as 26% different, suggesting coevolution. In wine environments, K2 and Klus strains frequently coexist. We have previously characterized the association of Mlus and L-A-lus. Here we sequence and characterize L-A-2, the helper virus of M2, establishing the helper virus requirements of M2, which had not been completely elucidated. We also report the existence of two specific L-BC totiviruses in Klus and K2 strains with about 10% of their nucleotides different, suggesting different evolutionary histories from those of L-A viruses.
Collapse
|
31
|
Ablation of Programmed -1 Ribosomal Frameshifting in Venezuelan Equine Encephalitis Virus Results in Attenuated Neuropathogenicity. J Virol 2017; 91:JVI.01766-16. [PMID: 27852852 DOI: 10.1128/jvi.01766-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
The alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) are arthropod-borne positive-strand RNA viruses that are capable of causing acute and fatal encephalitis in many mammals, including humans. VEEV was weaponized during the Cold War and is recognized as a select agent. Currently, there are no FDA-approved vaccines or therapeutics for these viruses. The spread of VEEV and other members of this family due to climate change-mediated vector range expansion underscores the need for research aimed at developing medical countermeasures. These viruses utilize programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the viral trans-frame (TF) protein, which has previously been shown to be important for neuropathogenesis in the related Sindbis virus. Here, the alphavirus -1 PRF signals were characterized, revealing novel -1 PRF stimulatory structures. -1 PRF attenuation mildly affected the kinetics of VEEV accumulation in cultured cells but strongly inhibited its pathogenesis in an aerosol infection mouse model. Importantly, the decreased viral titers in the brains of mice infected with the mutant virus suggest that the alphavirus TF protein is important for passage through the blood-brain barrier and/or for neuroinvasiveness. These findings suggest a novel approach to the development of safe and effective live attenuated vaccines directed against VEEV and perhaps other closely related -1 PRF-utilizing viruses. IMPORTANCE Venezuelan equine encephalitis virus (VEEV) is a select agent that has been weaponized. This arthropod-borne positive-strand RNA virus causes acute and fatal encephalitis in many mammals, including humans. There is no vaccine or other approved therapeutic. VEEV and related alphaviruses utilize programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the viral trans-frame (TF) protein, which is important for neuropathogenesis. -1 PRF attenuation strongly inhibited VEEV pathogenesis in mice, and viral replication analyses suggest that the TF protein is critical for neurological disease. These findings suggest a new approach to the development of safe and effective live attenuated vaccines directed against VEEV and other related viruses.
Collapse
|
32
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Collier AM, Lyytinen OL, Guo YR, Toh Y, Poranen MM, Tao YJ. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus. PLoS Pathog 2016; 12:e1005523. [PMID: 27078841 PMCID: PMC4831847 DOI: 10.1371/journal.ppat.1005523] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023] Open
Abstract
During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.
Collapse
Affiliation(s)
- Aaron M. Collier
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Outi L. Lyytinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Yusong R. Guo
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Yukimatsu Toh
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (YJT); (MMP)
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail: (YJT); (MMP)
| |
Collapse
|
34
|
Suresh S, Ahn HW, Joshi K, Dakshinamurthy A, Kananganat A, Garfinkel DJ, Farabaugh PJ. Ribosomal protein and biogenesis factors affect multiple steps during movement of the Saccharomyces cerevisiae Ty1 retrotransposon. Mob DNA 2015; 6:22. [PMID: 26664557 PMCID: PMC4673737 DOI: 10.1186/s13100-015-0053-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A large number of Saccharomyces cerevisiae cellular factors modulate the movement of the retrovirus-like transposon Ty1. Surprisingly, a significant number of chromosomal genes required for Ty1 transposition encode components of the translational machinery, including ribosomal proteins, ribosomal biogenesis factors, protein trafficking proteins and protein or RNA modification enzymes. RESULTS To assess the mechanistic connection between Ty1 mobility and the translation machinery, we have determined the effect of these mutations on ribosome biogenesis and Ty1 transcriptional and post-transcriptional regulation. Lack of genes encoding ribosomal proteins or ribosome assembly factors causes reduced accumulation of the ribosomal subunit with which they are associated. In addition, these mutations cause decreased Ty1 + 1 programmed translational frameshifting, and reduced Gag protein accumulation despite at least normal levels of Ty1 mRNA. Several ribosome subunit mutations increase the level of both an internally initiated Ty1 transcript and its encoded truncated Gag-p22 protein, which inhibits transposition. CONCLUSIONS Together, our results suggest that this large class of cellular genes modulate Ty1 transposition through multiple pathways. The effects are largely post-transcriptional acting at a variety of levels that may include translation initiation, protein stability and subcellular protein localization.
Collapse
Affiliation(s)
- Susmitha Suresh
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
- />Present address: Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Hyo Won Ahn
- />Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Kartikeya Joshi
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| | - Arun Dakshinamurthy
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
- />Present address: Department of Nanosciences and Technology, Karunya University, Karunya Nagar, Coimbatore, 641 114 Tamil Nadu India
| | - Arun Kananganat
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| | - David J. Garfinkel
- />Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Philip J. Farabaugh
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| |
Collapse
|
35
|
Bowen AM, Musalgaonkar S, Moomau CA, Gulay SP, Mirvis M, Dinman JD. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. ACTA ACUST UNITED AC 2015; 3:e1117703. [PMID: 26824029 PMCID: PMC4721500 DOI: 10.1080/21690731.2015.1117703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023]
Abstract
Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges.
Collapse
Affiliation(s)
- Alicia M Bowen
- Department of Chemistry and Biochemistry; University of Maryland ; College Park, MD USA
| | - Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Christine A Moomau
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Suna P Gulay
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Mary Mirvis
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| |
Collapse
|
36
|
Ramírez M, Velázquez R, Maqueda M, López-Piñeiro A, Ribas JC. A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Front Microbiol 2015; 6:983. [PMID: 26441913 PMCID: PMC4569859 DOI: 10.3389/fmicb.2015.00983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Wine Torulaspora delbrueckii strains producing a new killer toxin (Kbarr-1) were isolated and selected for wine making. They killed all the previously known Saccharomyces cerevisiae killer strains, in addition to other non-Saccharomyces yeasts. The Kbarr-1 phenotype is encoded by a medium-size 1.7 kb dsRNA, TdV-Mbarr-1, which seems to depend on a large-size 4.6 kb dsRNA virus (TdV-LAbarr) for stable maintenance and replication. The TdV-Mbarr-1 dsRNA was sequenced by new generation sequencing techniques. Its genome structure is similar to those of S. cerevisiae killer M dsRNAs, with a 5'-end coding region followed by an internal A-rich sequence and a 3'-end non-coding region. Mbarr-1 RNA positive strand carries cis acting signals at its 5' and 3' termini for transcription and replication respectively, similar to those RNAs of yeast killer viruses. The ORF at the 5' region codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No relevant sequence identity was found either between the full sequence of Mbarr-1 dsRNA and other yeast M dsRNAs, or between their respective toxin-encoded proteins. However, a relevant identity of TdV-Mbarr-1 RNA regions to the putative replication and packaging signals of most of the M-virus RNAs suggests that they are all evolutionarily related.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Matilde Maqueda
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de SalamancaSalamanca, Spain
| |
Collapse
|
37
|
Caliskan N, Peske F, Rodnina MV. Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting. Trends Biochem Sci 2015; 40:265-74. [PMID: 25850333 PMCID: PMC7126180 DOI: 10.1016/j.tibs.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022]
Abstract
–1PRF occurs when ribosomes move over a slippery sequence. A frameshifting pseudoknot/stem-loop element stalls ribosomes in a metastable state. –1PRF may contribute to the quality-control machinery in eukaryotes. Trans-acting factors (proteins, miRNAs, or antibiotics) can modulate –1PRF.
Programmed −1 ribosomal frameshifting (−1PRF) is an mRNA recoding event commonly utilized by viruses and bacteria to increase the information content of their genomes. Recent results have implicated −1PRF in quality control of mRNA and DNA stability in eukaryotes. Biophysical experiments demonstrated that the ribosome changes the reading frame while attempting to move over a slippery sequence of the mRNA – when a roadblock formed by a folded downstream segment in the mRNA stalls the ribosome in a metastable conformational state. The efficiency of −1PRF is modulated not only by cis-regulatory elements in the mRNA but also by trans-acting factors such as proteins, miRNAs, and antibiotics. These recent results suggest a molecular mechanism and new important cellular roles for −1PRF.
Collapse
Affiliation(s)
- Neva Caliskan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| |
Collapse
|
38
|
Single-molecule measurements of the CCR5 mRNA unfolding pathways. Biophys J 2014; 106:244-52. [PMID: 24411256 DOI: 10.1016/j.bpj.2013.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a -1 programmed ribosomal frameshift (-1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human -1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the -1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.
Collapse
|
39
|
Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014; 512:265-9. [PMID: 25043019 PMCID: PMC4369343 DOI: 10.1038/nature13429] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Abstract
Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.
Collapse
Affiliation(s)
- Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Department of Biotechnology and Microbiology, Vilnius University, Vilnius, LT 03101 Lithuania
| | - Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Vivek M. Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Sergey O. Sulima
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Present Address: Present address: VIB Center for the Biology of Disease, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 602, 3000 Leuven, Belgium.,
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, 21702 Maryland USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, 21702 Maryland USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| |
Collapse
|
40
|
Modulation of stop codon read-through efficiency and its effect on the replication of murine leukemia virus. J Virol 2014; 88:10364-76. [PMID: 24991001 PMCID: PMC4178896 DOI: 10.1128/jvi.00898-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translational readthrough—suppression of termination at a stop codon—is exploited in the replication cycles of several viruses and represents a potential target for antiviral intervention. In the gammaretroviruses, typified by Moloney murine leukemia virus (MuLV), gag and pol are in the same reading frame, separated by a UAG stop codon, and termination codon readthrough is required for expression of the viral Gag-Pol fusion protein. Here, we investigated the effect on MuLV replication of modulating readthrough efficiency. We began by manipulating the readthrough signal in the context of an infectious viral clone to generate a series of MuLV variants in which readthrough was stimulated or reduced. In carefully controlled infectivity assays, it was found that reducing the MuLV readthrough efficiency only 4-fold led to a marked defect and that a 10-fold reduction essentially abolished replication. However, up to an ∼8.5-fold stimulation of readthrough (up to 60% readthrough) was well tolerated by the virus. These high levels of readthrough were achieved using a two-plasmid system, with Gag and Gag-Pol expressed from separate infectious clones. We also modulated readthrough by silencing expression of eukaryotic release factors 1 and 3 (eRF1 and eRF3) or by introducing aminoglycosides into the cells. The data obtained indicate that gammaretroviruses tolerate a substantial excess of viral Gag-Pol synthesis but are very sensitive to a reduction in levels of this polyprotein. Thus, as is also the case for ribosomal frameshifting, antiviral therapies targeting readthrough with inhibitory agents are likely to be the most beneficial. IMPORTANCE Many pathogenic RNA viruses and retroviruses use ribosomal frameshifting or stop codon readthrough to regulate expression of their replicase enzymes. These translational “recoding” processes are potential targets for antiviral intervention, but we have only a limited understanding of the consequences to virus replication of modulating the efficiency of recoding, particularly for those viruses employing readthrough. In this paper, we describe the first systematic analysis of the effect of increasing or decreasing readthrough efficiency on virus replication using the gammaretrovirus MuLV as a model system. We find unexpectedly that MuLV replication is only slightly inhibited by substantial increases in readthrough frequency, but as with other viruses that use recoding strategies, replication is quite sensitive to even modest reductions. These studies provide insights into both the readthrough process and MuLV replication and have implications for the selection of antivirals against gammaretroviruses.
Collapse
|
41
|
Salaipeth L, Chiba S, Eusebio-Cope A, Kanematsu S, Suzuki N. Biological properties and expression strategy of rosellinia necatrix megabirnavirus 1 analysed in an experimental host, Cryphonectria parasitica. J Gen Virol 2014; 95:740-750. [DOI: 10.1099/vir.0.058164-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Rosellinia necatrix megabirnavirus 1 (RnMBV1) with a bipartite dsRNA genome (dsRNA1 and dsRNA2) confers hypovirulence to its natural host, the white root rot fungus, and is thus regarded as a potential virocontrol (biocontrol) agent. Each segment has two large ORFs: ORF1 and partially overlapping ORF2 on dsRNA1 encode the major capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), whilst ORF3 and ORF4 on dsRNA2 encode polypeptides with unknown functions. Here, we report the biological and molecular characterization of this virus in the chestnut blight fungus, Cryphonectria parasitica, a filamentous fungus that has been used as a model for mycovirus research. Transfection with purified RnMBV1 particles into an RNA-silencing-defective strain (Δdcl-2) of C. parasitica and subsequent anastomosis with the WT strain (EP155) resulted in stable persistent infection in both host strains. However, accumulation levels in the two strains were different, being ~20-fold higher in Δdcl-2 than in EP155. Intriguingly, whilst RnMBV1 reduced both virulence and growth rate in Δdcl-2, it attenuated virulence without affecting significantly other traits in EP155. Western blot analysis using antiserum against recombinant proteins encoded by either ORF1 or ORF2 demonstrated the presence of a 250 kDa protein in purified virion preparations, suggesting that RdRp is expressed as a CP fusion product via a −1 frameshift. Antiserum against the ORF3-encoded protein allowed the detection of 150, 30 and 23 kDa polypeptides specifically in RnMBV1-infected mycelia. Some properties of an RnMBV1 mutant with genome rearrangements, which occurred after transfection of Δdcl-2 and EP155, were also presented. This study provides an additional example of C. parasitica serving as a versatile, heterologous fungus for exploring virus–host interactions and virus gene expression strategies.
Collapse
Affiliation(s)
- Lakha Salaipeth
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Ana Eusebio-Cope
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Satoko Kanematsu
- Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), Morioka, Iwate 020-0123, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
42
|
Anti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot. J Am Chem Soc 2014; 136:2196-9. [PMID: 24446874 DOI: 10.1021/ja410344b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) stimulated by mRNA pseudoknots regulates gene expression in many viruses, making pseudoknots potential targets for anti-viral drugs. The mechanism by which pseudoknots trigger -1 PRF, however, remains controversial, with several competing models. Recent work showed that high -1 PRF efficiency was linked to high pseudoknot conformational plasticity via the formation of alternate conformers. We tested whether pseudoknots bound with an anti-frameshifting ligand exhibited a similar correlation between conformational plasticity and -1 PRF efficiency by measuring the effects of a ligand that was found to inhibit -1 PRF in the SARS coronavirus on the conformational dynamics of the SARS pseudoknot. Using single-molecule force spectroscopy to unfold pseudoknots mechanically, we found that the ligand binding effectively abolished the formation of alternate conformers. This result extends the connection between -1 PRF and conformational dynamics and, moreover, suggests that targeting the conformational dynamics of pseudoknots may be an effective strategy for anti-viral drug design.
Collapse
|
43
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
44
|
Kumar V, Jung YS, Liang PH. Anti-SARS coronavirus agents: a patent review (2008 - present). Expert Opin Ther Pat 2013; 23:1337-48. [PMID: 23905913 DOI: 10.1517/13543776.2013.823159] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. AREAS COVERED To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. EXPERT OPINION The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.
Collapse
Affiliation(s)
- Vathan Kumar
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica , Taipei 115 , Taiwan R.O.C
| | | | | |
Collapse
|
45
|
L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl Environ Microbiol 2013; 79:4661-74. [PMID: 23728812 DOI: 10.1128/aem.00500-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast killer viruses are widely distributed in nature. Several toxins encoded in double-stranded RNA (dsRNA) satellites of the L-A totivirus have been described, including K1, K2, K28, and Klus. The 4.6-kb L-A genome encodes the Gag major structural protein that forms a 39-nm icosahedral virion and Gag-Pol, a minor fusion protein. Gag-Pol has transcriptase and replicase activities responsible for maintenance of L-A (or its satellite RNAs). Recently we reported a new killer toxin, Klus. The L-A virus in Klus strains showed poor hybridization to known L-A probes, suggesting substantial differences in their sequences. Here we report the characterization of this new L-A variant named L-A-lus. At the nucleotide level, L-A and L-A-lus showed only 73% identity, a value that increases to 86% in the amino acid composition of Gag or Gag-Pol. Two regions in their genomes, however, the frameshifting region between Gag and Pol and the encapsidation signal, are 100% identical, implying the importance of these two cis signals in the virus life cycle. L-A-lus shows higher resistance than L-A to growth at high temperature or to in vivo expression of endo- or exonucleases. L-A-lus also has wider helper activity, being able to maintain not only Mlus but also M1 or a satellite RNA of L-A called X. In a screening of 31 wine strains, we found that none of them had L-A; they carried either L-A-lus or a different L-A variant in K2 strains. Our data show that distinct M killer viruses are specifically associated with L-As with different nucleotide compositions, suggesting coevolution.
Collapse
|
46
|
Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR. Altering SARS coronavirus frameshift efficiency affects genomic and subgenomic RNA production. Viruses 2013; 5:279-94. [PMID: 23334702 PMCID: PMC3564121 DOI: 10.3390/v5010279] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronaviruses with mutations in the programmed ribosomal frameshift signal of ORF1a/b were observed. It was not clear if these differences were due to changes in genomic sequence, the protein sequence or the frequency of frameshifting. Here, viruses with synonymous codon changes are shown to produce different ratios of genomic and subgenomic RNA. These findings demonstrate that the protein sequence is not the primary cause of altered genomic and subgenomic RNA production. The synonymous codon changes affect both the structure of the frameshift signal and frameshifting efficiency. Small differences in frameshifting efficiency result in dramatic differences in genomic RNA production and TCID50 suggesting that the frameshifting frequency must stay above a certain threshold for optimal virus production. The data suggest that either the RNA sequence or the ratio of viral proteins resulting from different levels of frameshifting affects viral replication.
Collapse
Affiliation(s)
- Ewan P. Plant
- Laboratory of Emerging Pathogens, Division of Transfusion-Transmitted Diseases, Food and Drug Administration, Bethesda, Maryland 20892, USA; E-Mail: (E.P.)
| | - Amy C. Sims
- Departments of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; E-Mails: (A.S.); (R.B.)
| | - Ralph S. Baric
- Departments of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; E-Mails: (A.S.); (R.B.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA; E-Mail: (J.D.)
| | - Deborah R. Taylor
- Laboratory of Emerging Pathogens, Division of Transfusion-Transmitted Diseases, Food and Drug Administration, Bethesda, Maryland 20892, USA; E-Mail: (E.P.)
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1-301-827-3660; Fax: +1-301 480-4757
| |
Collapse
|
47
|
Ghabrial SA, Dunn SE, Li H, Xie J, Baker TS. Viruses of Helminthosporium (Cochlioblus) victoriae. Adv Virus Res 2013; 86:289-325. [PMID: 23498911 DOI: 10.1016/b978-0-12-394315-6.00011-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enigma of the transmissible disease of Helminthosporium victoriae has almost been resolved. Diseased isolates are doubly infected with two distinct viruses, the victorivirus Helminthosporium victoriae virus 190S and the chrysovirus HvV145S. Mixed infection, however, is not required for disease development. DNA transformation experiments and transfection assays using purified HvV190S virions strongly indicate that HvV190S alone is necessary for inducing disease symptoms. HvV145, like other chrysoviruses, appears to have no effect on colony morphology. This chapter will discuss the molecular biology of the two viruses and summarize recent results of characterization of host gene products upregulated by virus infection. Furthermore, the novel structural features of HvV190S capsid will be highlighted.
Collapse
|
48
|
Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Natl Acad Sci U S A 2012; 109:16167-72. [PMID: 22988073 DOI: 10.1073/pnas.1204114109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Programmed -1 frameshifting, whereby the reading frame of a ribosome on messenger RNA is shifted in order to generate an alternate gene product, is often triggered by a pseudoknot structure in the mRNA in combination with an upstream slippery sequence. The efficiency of frameshifting varies widely for different sites, but the factors that determine frameshifting efficiency are not yet fully understood. Previous work has suggested that frameshifting efficiency is related to the resistance of the pseudoknot against mechanical unfolding. We tested this hypothesis by studying the mechanical properties of a panel of pseudoknots with frameshifting efficiencies ranging from 2% to 30%: four pseudoknots from retroviruses, two from luteoviruses, one from a coronavirus, and a nonframeshifting bacteriophage pseudoknot. Using optical tweezers to apply tension across the RNA, we measured the distribution of forces required to unfold each pseudoknot. We found that neither the average unfolding force, nor the unfolding kinetics, nor the parameters describing the energy landscape for mechanical unfolding of the pseudoknot (energy barrier height and distance to the transition state) could be correlated to frameshifting efficiency. These results indicate that the resistance of pseudoknots to mechanical unfolding is not a primary determinant of frameshifting efficiency. However, increased frameshifting efficiency was correlated with an increased tendency to form alternate, incompletely folded structures, suggesting a more complex picture of the role of the pseudoknot involving the conformational dynamics.
Collapse
|
49
|
Modulation of ribosomal frameshifting frequency and its effect on the replication of Rous sarcoma virus. J Virol 2012; 86:11581-94. [PMID: 22896611 DOI: 10.1128/jvi.01846-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is widely used in the expression of RNA virus replicases and represents a potential target for antiviral intervention. There is interest in determining the extent to which frameshifting efficiency can be modulated before virus replication is compromised, and we have addressed this question using the alpharetrovirus Rous sarcoma virus (RSV) as a model system. In RSV, frameshifting is essential in the production of the Gag-Pol polyprotein from the overlapping gag and pol coding sequences. The frameshift signal is composed of two elements, a heptanucleotide slippery sequence and, just downstream, a stimulatory RNA structure that has been proposed to be an RNA pseudoknot. Point mutations were introduced into the frameshift signal of an infectious RSV clone, and virus replication was monitored following transfection and subsequent infection of susceptible cells. The introduced mutations were designed to generate a range of frameshifting efficiencies, yet with minimal impact on encoded amino acids. Our results reveal that point mutations leading to a 3-fold decrease in frameshifting efficiency noticeably reduce virus replication and that further reduction is severely inhibitory. In contrast, a 3-fold stimulation of frameshifting is well tolerated. These observations suggest that small-molecule inhibitors of frameshifting are likely to have potential as agents for antiviral intervention. During the course of this work, we were able to confirm, for the first time in vivo, that the RSV stimulatory RNA is indeed an RNA pseudoknot but that the pseudoknot per se is not absolutely required for virus viability.
Collapse
|
50
|
Brakier-Gingras L, Charbonneau J, Butcher SE. Targeting frameshifting in the human immunodeficiency virus. Expert Opin Ther Targets 2012; 16:249-58. [PMID: 22404160 DOI: 10.1517/14728222.2012.665879] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION HIV-1 uses a programmed –1 ribosomal frameshift to generate Gag-Pol, the precursor of its enzymes, when its full-length mRNA is translated by the ribosomes of the infected cells. This change in the reading frame occurs at a so-called slippery sequence that is followed by a specific secondary structure, the frameshift stimulatory signal. This signal controls the frameshift efficiency. The synthesis of HIV-1 enzymes is critical for virus replication and therefore, the –1 ribosomal frameshift could be the target of novel antiviral drugs. AREAS COVERED Various approaches were used to select drugs interfering with the –1 frameshift of HIV-1. These include the selection and modification of chemical compounds that specifically bind to the frameshift stimulatory signal, the use of antisense oligonucleotides targeting this signal and the selection of compounds that modulate HIV-1 frameshift, by using bicistronic reporters where the expression of the second cistron depends upon HIV-1 frameshift. EXPERT OPINION The most promising approach is the selection and modification of compounds specifically targeting the HIV-1 frameshift stimulatory signal. The use of antisense oligonucleotides binding to the frameshift stimulatory signal is still questionable. The use of bicistronic reporters preferentially selects compounds that modulate the frameshift by targeting the ribosomes, which is less promising.
Collapse
|