1
|
Viral mouse models of multiple sclerosis and epilepsy: Marked differences in neuropathogenesis following infection with two naturally occurring variants of Theiler's virus BeAn strain. Neurobiol Dis 2016; 99:121-132. [PMID: 28017800 DOI: 10.1016/j.nbd.2016.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/24/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
Following intracerebral inoculation, the BeAn 8386 strain of Theiler's virus causes persistent infection and inflammatory demyelinating encephalomyelitis in the spinal cord of T-cell defective SJL/J mice, which is widely used as a model of multiple sclerosis. In contrast, C57BL/6 (B6) mice clear the virus and develop inflammation and lesions in the hippocampus, associated with acute and chronic seizures, representing a novel model of viral encephalitis-induced epilepsy. Here we characterize the geno- and phenotype of two naturally occurring variants of BeAn (BeAn-1 and BeAn-2) that can be used to further understand the viral and host factors involved in the neuropathogenesis in B6 and SJL/J mice. Next generation sequencing disclosed 15 single nucleotide differences between BeAn-1 and BeAn-2, of which 4 are coding changes and 3 are in the 5'-UTR (5'-untranslated region). The relatively minor variations in the nucleotide sequence of the two BeAn substrains led to marked differences in neurovirulence. In SJL/J mice, inflammatory demyelination in the spinal cord and its clinical consequences were significantly more marked following infection with BeAn-1 than with BeAn-2. Both BeAn substrains caused lymphocyte infiltration and increase of MAC3-positive cells in the hippocampus, but hippocampal damage and seizures were only observed in B6 mice. Seizures occurred in one third of BeAn-2 infected B6 mice, but not in BeAn-1 infected B6 mice. By comparing individual mice by receiver operating characteristic (ROC) curve analysis, the severity of hippocampal neurodegeneration and amount of MAC3-positive microglia/macrophages discriminated seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. These data add novel evidence to the view that differential outcome of infection may be not invariably linked to a distinct viral burden but to a finely tuned balance between antiviral immune responses that although essential for host resistance can also contribute to immunopathology.
Collapse
|
2
|
Bell MP, Pavelko KD. Enhancing the Tumor Selectivity of a Picornavirus Virotherapy Promotes Tumor Regression and the Accumulation of Infiltrating CD8+ T Cells. Mol Cancer Ther 2016; 15:523-30. [PMID: 26823492 DOI: 10.1158/1535-7163.mct-15-0459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
Picornaviruses have emerged as promising cancer therapies due to their ability to drive cytotoxic cellular immune responses and for promoting oncolysis. These properties include preferential replication in tumor cells, the induction of strong innate and adaptive immune responses, and the ease with which their genomes can be manipulated. We have developed Theiler's murine encephalomyelitis virus (TMEV) as an immunotherapy vector that promotes strong adaptive immune responses to tumor antigens embedded within its genome. To further explore its usefulness as cancer therapy, we investigated whether direct intratumoral delivery of TMEV could promote tumor regression. We generated several picornavirus hybrids using substrains of TMEV that have unique immunopathologic characteristics, despite their extensive sequence homology. These hybrids exhibit a unique propensity to infect and replicate in melanoma. We have identified GD7-KS1, a virus that is particularly effective at replicating and infecting B16 melanoma in vitro and provides benefit as an oncolytic therapy in vivo after intratumoral injection. In addition, this virus promotes the mobilization and accumulation of CD8(+) T cells within treated tumors. Altogether, these findings demonstrate that picornavirus substrains can be used to rationally design virus hybrids that promote antitumor responses and add to the known strategies identified by us and others to further enhance the therapeutic potential of vectors used to treat cancer.
Collapse
Affiliation(s)
- Michael P Bell
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS One 2013; 8:e82176. [PMID: 24349214 PMCID: PMC3861326 DOI: 10.1371/journal.pone.0082176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA) molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method that examines genomic 5′-terminal sequences at different times postinfection. Functional analyses of the leaderless genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to be determined.
Collapse
Affiliation(s)
- Ting-Yung Ke
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Wei-Yu Liao
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Hung-Yi Wu
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
- * E-mail:
| |
Collapse
|
4
|
Mu R, Romero TA, Hanley KA, Dawe AL. Conserved and variable structural elements in the 5' untranslated region of two hypoviruses from the filamentous fungus Cryphonectria parasitica. Virus Res 2011; 161:203-8. [PMID: 21884737 DOI: 10.1016/j.virusres.2011.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
Virulence-attenuating viruses (hypoviruses) of the filamentous fungus Cryphonectria parasitica, the causative agent of chestnut blight, have become a premier model for understanding the molecular biology of mycoviruses. However, a major gap exists in current understanding of structure and function of the untranslated regions (UTRs) of the hypovirus RNA genome, despite considerable evidence that secondary and tertiary UTR structure plays a crucial role in the control of translation and genome replication in other systems. In this study we have used structure prediction software coupled with RNase digestion studies to develop validated structural models for the 5' UTRs of the two best-characterized members of the Hypoviridae, CHV1-EP713 and CHV1-Euro7. These two hypovirus strains exhibit significant variation in virulence attenuation despite sharing >90% sequence identity. Our models reveal highly structured regions in the 5' UTR of both strains, with numerous stem-loops suggestive of internal ribosome entry sites. However, considerable differences in the size and complexity of structural elements exist between the two strains. These data will guide future, mutagenesis-based studies of the structural requirements for hypovirus genome replication and translation.
Collapse
Affiliation(s)
- Rong Mu
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
5
|
Leardkamolkarn V, Sirigulpanit W, Kinney RM. Characterization of recombinant dengue-2 virus derived from a single nucleotide substitution in the 5' noncoding region. J Biomed Biotechnol 2010; 2010:934694. [PMID: 20339476 PMCID: PMC2843905 DOI: 10.1155/2010/934694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 10/15/2009] [Accepted: 12/23/2009] [Indexed: 12/25/2022] Open
Abstract
Variants of wild-type dengue serotype 2 (DEN-2) virus containing nucleotide substitutions at positions 14, 15, or 57 in the 5' NCR were constructed by PCR-mediated site-directed mutagenesis. All three viruses containing a single point substitution demonstrated attenuation phenotype as evidenced by decreases replication and plaque size in cell culture assay. All three variants were less neurovirulent in newborn mice compared to the wild type. The mutants were immunogenic in adult mice immunogenicity and maintained stable replication characteristics following passage in mice. The variant viruses were competent for replication in Aedes aegypi mosquito vector, albeit at lower levels of infection and dissemination in the mosquito than the wild-type Den-2 16681 virus. Although all of the viruses, including the wild type, were found transmissible in mosquito life cycles, they were found subsequentially decreased in efficiency of infection, transmission, and dissemination rates along the mosquito generations and all of them remained genetically stable.
Collapse
|
6
|
Yamasaki K, Weihl CC, Roos RP. Alternative translation initiation of Theiler's murine encephalomyelitis virus. J Virol 1999; 73:8519-26. [PMID: 10482605 PMCID: PMC112872 DOI: 10.1128/jvi.73.10.8519-8526.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) produce a chronic demyelinating disease in which the virus persists but has a restricted expression. We previously reported that TO subgroup strains, in addition to synthesizing the picornaviral polyprotein, use an alternative initiation codon just downstream from the polyprotein's AUG to translate an 18-kDa protein called L* that is out of frame with the polyprotein (H. H. Chen et al., Nat. Med. 1:927-931, 1995; W. P. Kong and R. P. Roos, J. Virol. 65:3395-3399, 1991). L* is critically important for virus persistence and the induction of the demyelinating disease (Chen et al., 1995; G. D. Ghadge et al. J. Virol. 72:8605-8612, 1998). We have proposed that variations in the amount of translation initiation from the L* AUG versus the polyprotein AUG may occur in different cell types and therefore affect the degree of expression of viral capsid proteins. We now demonstrate that ribosomal translation initiation at the polyprotein's initiation codon affects initiation at the L* AUG, suggesting that ribosomes land at the polyprotein's initiation codon before scanning downstream and initiating at the L* AUG. We also find that the viral 5' untranslated region affects utilization of the L* AUG. Surprisingly, mutant DA cDNAs were found to be infectious despite the presence of mutations of the polyprotein initiation codon or placement of a stop codon upstream of the L* AUG in the polyprotein's reading frame. Sequencing studies showed that these viruses had a second site mutation, converting the reading frame of L* into the polyprotein's reading frame; the results suggest that translation of the polyprotein during infection of these mutant viruses can be initiated at the L* AUG. These data are important in our understanding of translation initiation of TMEV and other RNAs that contain an internal ribosome entry site.
Collapse
Affiliation(s)
- K Yamasaki
- Department of Neurology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
7
|
Topliff CL, Kelling CL. Virulence markers in the 5' untranslated region of genotype 2 bovine viral diarrhea virus isolates. Virology 1998; 250:164-72. [PMID: 9770430 DOI: 10.1006/viro.1998.9350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virulence markers to distinguish high from low virulence bovine viral diarrhea virus genotype 2 isolates have not been previously reported. The objective of this study was to identify virulence markers by evaluating the primary and secondary structures of the 5'-untranslated region of low and high virulence bovine viral diarrhea virus genotype 2 isolates. The nucleotide sequences of the entire 5'-untranslated region mRNA of eight bovine viral diarrhea virus genotype 2 isolates, four of high virulence and four of low virulence, and two genotype 1 reference isolates were determined using a polymerase chain reaction and a 5' Rapid Amplification of cDNA Ends System. Two nucleotide substitutions were identified in the internal ribosomal entry site that distinguished the high virulence from the low virulence genotype 2 isolates. The low virulence isolates had a cytosine at position 219, whereas the high virulence isolates had a uracil. At position 278, a uracil or cytosine was found in the low and high virulence groups, respectively. The substituted bases are virulence markers that were used to identify bovine viral diarrhea virus genotype 2 isolates of high virulence.
Collapse
Affiliation(s)
- C L Topliff
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, East Campus Loop and Fair Street, Lincoln, Nebraska, 68583-0905, USA
| | | |
Collapse
|
8
|
Rubin SA, Pletnikov M, Carbone KM. Comparison of the neurovirulence of a vaccine and a wild-type mumps virus strain in the developing rat brain. J Virol 1998; 72:8037-42. [PMID: 9733843 PMCID: PMC110140 DOI: 10.1128/jvi.72.10.8037-8042.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior to the adoption of widespread vaccination programs, mumps virus was the leading cause of virus-induced central nervous system (CNS) disease. Mumps virus-associated CNS complications in vaccinees continue to be reported; outside the United States, some of these complications have been attributed to vaccination with insufficiently attenuated neurovirulent vaccine strains. The development of potentially neurovirulent, live, attenuated mumps virus vaccines stems largely from the lack of an animal model that can reliably predict the neurovirulence of mumps virus vaccine candidates in humans. The lack of an effective safety test with which to measure mumps virus neurovirulence has also hindered analysis of the neuropathogenesis of mumps virus infection and the identification of molecular determinants of neurovirulence. In this report we show, for the first time, that mumps virus infection of the neonatal rat leads to developmental abnormalities in the cerebellum due to cerebellar granule cell migration defects. The incidence of the cerebellar abnormalities and other neuropathological and clinical outcomes of mumps virus infection of the neonatal rat brain demonstrated the ability of this model to distinguish neurovirulent (Kilham) from nonneurovirulent (Jeryl Lynn) mumps virus strains. Thus, this neonatal rat model may prove useful in evaluating the neurovirulence potential of new live, attenuated vaccine strains and may also be of value in elucidating the molecular basis of mumps virus neurovirulence.
Collapse
Affiliation(s)
- S A Rubin
- DVP/OVRR, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
9
|
Jarousse N, Syan S, Martinat C, Brahic M. The neurovirulence of the DA and GDVII strains of Theiler's virus correlates with their ability To infect cultured neurons. J Virol 1998; 72:7213-20. [PMID: 9696815 PMCID: PMC109943 DOI: 10.1128/jvi.72.9.7213-7220.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strains of Theiler's murine encephalomyelitis virus, a picornavirus, are divided into two groups according to their neurovirulence after intracerebral inoculation. The highly virulent GDVII strain causes an acute, fatal encephalomyelitis, whereas the DA strain causes a mild encephalomyelitis followed by a chronic inflammatory demyelinating disease associated with viral persistence. Studies with recombinant viruses showed that the capsid plays the major role in determining these phenotypes. However, the molecular basis for the effect of the capsid on neurovirulence is still unknown. In this paper, we describe a large difference in the patterns of infection of primary neuron cultures by the GDVII and DA strains. Close to 90% of the neurons were infected 12 h after inoculation with the GDVII strain, and the cytopathic effect was complete 24 h postinoculation. In contrast, with the DA strain, viral antigens were not detected in neurons until 24 h postinoculation. Infected neurons accounted for only 2% of the total number of neurons, even 6 days after inoculation. No cytopathic effect was visible, and the cultures could be kept for the same length of time as the noninfected controls. Because the neurovirulence of the GDVII strain has been mapped to the capsid, we examined the role of the capsid in this difference of phenotype. We showed, using recombinant viruses, that the capsid was indeed responsible for the pattern of infection observed in vitro, most likely through its role in viral entry. Thus, the levels of neurovirulence of the GDVII and DA strains correlate with their abilities to infect cultured neurons, and this ability is controlled by the capsid.
Collapse
Affiliation(s)
- N Jarousse
- Unité des Virus Lents, ERS 572 CNRS, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
10
|
Kim BS, Yauch RL, Bahk YY, Kang JA, Dal Canto MC, Hall CK. A spontaneous low-pathogenic variant of Theiler's virus contains an amino acid substitution within the predominant VP1(233-250) T-cell epitope. J Virol 1998; 72:1020-7. [PMID: 9444995 PMCID: PMC124573 DOI: 10.1128/jvi.72.2.1020-1027.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1997] [Accepted: 10/30/1997] [Indexed: 02/05/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelination after intracerebral inoculation of the virus into susceptible mouse strains. We isolated from a TMEV BeAn 8386 viral stock, a low-pathogenic variant which requires greater than a 10,000-fold increase in viral inoculation for the manifestation of detectable clinical signs. Intracerebral inoculation of this variant virus induced a strong, long-lasting, protective immunity from the demyelinating disease caused by pathogenic TMEV. The levels of antibodies to the whole virus as well as to the major linear epitopes were similar in mice infected with either the variant or wild-type virus. However, persistence of the variant virus in the central nervous system (CNS) of mice was significantly lower than that of the pathogenic virus. In addition, the T-cell response to the predominant VP1 (VP1(233-250)) epitope in mice infected with the variant virus was significantly weaker than that in mice infected with the parent virus, while similar T-cell responses were induced against another predominant epitope (VP2(74-86)). Further analyses indicated that a change of lysine to arginine at position 244 of VP1, which is the only amino acid difference in the P1 region, is responsible for such differential T-cell recognition. Thus, the difference in the T-cell reactivity to this VP1 region as well as the low level of viral persistence in the CNS may account for the low pathogenicity of this spontaneous variant virus.
Collapse
Affiliation(s)
- B S Kim
- Department of Microbiology-Immunology, and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Tam PE, Messner RP. Coxsackievirus-induced chronic inflammatory myopathy: virus variants distinguish between acute cytopathic effects and pathogenesis of chronic disease. Virology 1997; 233:199-209. [PMID: 9201230 DOI: 10.1006/viro.1997.8592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection with the Tucson strain of coxsackievirus B1 (CVB1T) causes the development of chronic inflammatory myopathy (CIM) and hind limb weakness in susceptible strains of mice. In this study, a panel of six plaque-purified viruses exhibiting either small or large plaque phenotypes was derived from parental CVB1T and parental CVB1T that had been passaged through monkey kidney cells. All six variants caused similar acute histopathology in muscle, but three of four passaged viruses (AMP1, AMP2, and AMP3) did not induce CIM while the fourth (MP3) caused some hind limb weakness but without associated muscle inflammation. In contrast, both viruses (MP1 and MP2) isolated directly from the parental CVB1T stock were myopathic. Large plaque MP2 caused higher mortality and more rapid inhibition of host cell biosynthesis, but both MP1 and MP2 induced CIM that was comparable to that induced by parental CVB1T. Plaque size was a stable characteristic of the variants but did not correlate with their ability to induce CIM. Five of the six variants showed equivalent levels of replication in muscle, monkey kidney cells, and GB myoblasts while one, AMP3, was selectively impaired for replication. Receptor binding and virus-induced inhibition of host cell transcription and translation were not linked to myopathogenicity. Thus, most of the passaged variants are robust infectious viruses, suggesting that viral induction of CIM does not depend solely on cytopathogenicity during the acute infection.
Collapse
Affiliation(s)
- P E Tam
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
12
|
Chen W, Baric RS. Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro. J Virol 1995; 69:7529-40. [PMID: 7494259 PMCID: PMC189691 DOI: 10.1128/jvi.69.12.7529-7540.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistently infected cultures of DBT cells were established with mouse hepatitis virus strain A59 (MHV-A59), and the evolution of the MHV leader RNA and 5' end of the genome was studied through 119 days postinfection. Sequence analysis of independent clones demonstrated an overall mutation frequency approaching 1.2 x 10(-3) to 6.7 x 10(-3). The rate of fixation of mutations was about 1.2 x 10(-5) to 7.6 x 10(-5) per nucleotide (nt) per day. In contrast to finding in bovine coronavirus, the MHV leader RNA sequences were extremely stable and did not evolve significantly during persistent infection. Rather, a 5' untranslated region (UTR) A-to-G mutation at nt 77 in the genomic RNA emerged by day 56 and accumulated until 50 to 80% of the genome-length molecules retained the mutation by 119 days postinfection. Although other 5'-end mutations were noted, only the nt 77 mutation was significantly associated with viral persistence in vitro. Mutations were also found in the 5' end of the p28 coding region, but no specific alterations accumulated in genome-length molecules through 119 days postinfection. The 5' UTR nt 77 mutation resulted in an 18-amino-acid open reading frame (ORF) upstream of the ORF 1a AUG start site. By in vitro translation assays, the small ORF was not translated into detectable product but the mutation significantly enhanced translation of the downstream p28 ORF about 2.5-fold. Variant viruses, containing either the nt 77 A-to-G mutation (V16-ATG+) or wild-type sequences at this locus (V1-ATG-), were isolated at 119 days postinfection. The variant viruses replicated more efficiently than wild-type virus and were extremely cytolytic in DBT cells, suggesting that the A-to-G mutation did not encode a nonlytic or attenuated phenotype. Consistent with the in vitro translation results, a significant increase (approximately 3.5-fold) in p28 expression was also observed with the mutant virus (V16-ATG+) in DBT cells compared with that in wild-type controls. These data indicate that MHV persistence was significantly associated with mutation and evolution in the 5'-end UTR which enhanced the translation of the ORF 1a and potentially ORF 1b polyproteins which function in virus transcription and replication.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill 27599-7400, USA
| | | |
Collapse
|
13
|
Zhang H, Blake NW, Ouyang X, Pandolfino YA, Morgan-Capner P, Archard LC. A single amino acid substitution in the capsid protein VP1 of coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch Virol 1995; 140:959-66. [PMID: 7605207 DOI: 10.1007/bf01314972] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously described a large plaque attenuant (p14V-1) derived from a cardiovirulent Coxsackievirus B3 (CVB3) and showed that there were no major determinants of either attenuation or plaque phenotype in the 5' nontranslated region (5'NTR). Part of the region encoding the last 124 amino acids of VP3 and the first 106 amino acids of VP1 of the attenuant was then sequenced and compared to the wild-type. Three nucleotide changes were found in the VP1 coding region: a silent single base change at nucleotide position 2467 (C to U) and a double-base change at position 2690-1 (AA to GT), which leads to a change from lysine to serine at amino acid position 80. This mutation maps to the begining of B-C loop of the three-dimensional structure of VP1 of CVB3, where a distinct surface projection is formed. Two infectious chimeric cDNA clones were constructed, based on a cardiovirulent cDNA construct. In one construct, the 5'NTR and the VP3-VP1 region were from p14V-1 and in the other, only the VP3-VP1 region was from this attenuant. Both chimeric viruses produced large plaques on Vero cell monolayers, similar to p14V-1 but larger than the prototypic cardiovirulent virus. In vivo experiments showed that both chimeric viruses induced myocarditis in a murine model, similar to wild-type virus. We conclude that mutation serine-80 in capsid protein VP1 of p14V-1 is a determinant of the large plaque phenotype but is not responsible for attenuation.
Collapse
Affiliation(s)
- H Zhang
- Department of Biochemistry, Charing Cross and Westminster Medical School, London, U.K
| | | | | | | | | | | |
Collapse
|
14
|
Oleszak EL, Kuzmak J, Good RA, Platsoucas CD. Immunology of Theiler's murine encephalomyelitis virus infection. Immunol Res 1995; 14:13-33. [PMID: 7561339 DOI: 10.1007/bf02918495] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that belongs to the family of picornaviruses. Intracranial inoculation of susceptible mouse strains with TMEV results in biphasic disease, consisting of early acute disease that resembles poliomyelitis, followed by late chronic demyelinating disease that is characterized by the appearance of chronic inflammatory demyelinating lesions. Susceptibility to TMEV infection is genetically controlled by three loci: one that maps to the H-2D region of the major histocompatibility complex, one to the beta-chain constant region of the T-cell antigen receptor, and one located on chromosome 3. Both early acute and chronic late demyelinating diseases are immunologically mediated. T cells appear to play an important role in the pathogenesis of the disease. TMEV-induced demyelinating disease in mice has extensive similarities with multiple sclerosis, and it is considered one of the best experimental animal models for multiple sclerosis.
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pa 19140, USA
| | | | | | | |
Collapse
|
15
|
Pilipenko EV, Gmyl AP, Maslova SV, Khitrina EV, Agol VI. Attenuation of Theiler's murine encephalomyelitis virus by modifications of the oligopyrimidine/AUG tandem, a host-dependent translational cis element. J Virol 1995; 69:864-70. [PMID: 7815554 PMCID: PMC188653 DOI: 10.1128/jvi.69.2.864-870.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A set of Theiler's murine encephalomyelitis virus mutants with engineered alterations in the conserved oligopyrimidine/AUG tandem (E. V. Pilipenko, A. P. Gmyl, S. V. Maslova, G. A. Belov, A. N. Sinyakov, M. Huang, T. D. K. Brown, and V. I. Agol, J. Mol. Biol. 241:398-414, 1994) were assayed for their growth potential in BHK-21 cells (as reflected in plaque size) and for neurovirulence upon intracerebral inoculation of mice. Tandem-destroying mutations, which included substitutions in the oligopyrimidine moiety and extended insertions into the oligopyrimidine/AUG spacer, exerted relatively little effect on the plaque size but ensured a high level of attenuation. The attenuated mutants exhibited remarkable genetic stability upon growth in BHK-21 cells. However, the brains of rare animals that developed symptoms after the inoculation with high doses of these mutants invariably contained pseudorevertants with the oligopyrimidine/AUG tandem restored by diverse deletions or an AUG-generating point mutation. The AUG moiety of the tandem in the revertant genomes was represented by either a cryptic codon or initiator codon. The results demonstrate that the tandem, while dispensable for the Theiler's murine encephalomyelitis virus growth in BHK-21 cells, is essential for neurovirulence in mice. Thus, the oligopyrimidine/AUG tandem is a host-dependent cis-acting control element that may be essential for virus replication under certain conditions. The functional activity of the tandem was retained when its oligopyrimidine or AUG moieties were made double stranded. A possible role of the tandem in the cap-independent internal initiation of translation on the picornavirus RNA templates is discussed.
Collapse
Affiliation(s)
- E V Pilipenko
- Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region
| | | | | | | | | |
Collapse
|
16
|
Atkins GJ, Balluz IM, Glasgow GM, Mabruk MJ, Natale VA, Smyth JM, Sheahan BJ. Analysis of the molecular basis of neuropathogenesis of RNA viruses in experimental animals: relevance for human disease? Neuropathol Appl Neurobiol 1994; 20:91-102. [PMID: 8072672 PMCID: PMC7194306 DOI: 10.1111/j.1365-2990.1994.tb01167.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1993] [Accepted: 08/31/1993] [Indexed: 01/28/2023]
Abstract
RNA viruses with segmented genomes were the first model used for molecular analysis of viral neuropathogenesis, since they could be analysed genetically by reassortment. Four viruses with non-segmented genomes have been used as models of neurovirulence and demyelinating disease: JHM coronavirus, Theiler's virus, Sindbis virus and Semliki Forest virus (SFV). Virus gene expression in the central nervous system of infected animals has been measured by in situ hybridization and immunocytochemistry. Cell tropism has been analysed by neural cell culture. Infectious clones have been constructed for Theiler's virus, Sindbis virus and SFV, and these allow analysis of the sequences involved in the determination of neuropathogenesis, through the construction of chimeric viruses and site-specific mutagenesis. Measles and rubella viruses have been studied in animal systems because of their importance for human disease. The importance of two recently discovered mechanisms of neuropathogenesis, antibody-induced modulation of virus multiplication, and persistence of virus in the absence of multiplication, remains to be assessed.
Collapse
Affiliation(s)
- G J Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
17
|
Antoni BA, Stein SB, Rabson AB. Regulation of human immunodeficiency virus infection: implications for pathogenesis. Adv Virus Res 1994; 43:53-145. [PMID: 8191958 DOI: 10.1016/s0065-3527(08)60047-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B A Antoni
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | |
Collapse
|
18
|
Hofmann MA, Senanayake SD, Brian DA. A translation-attenuating intraleader open reading frame is selected on coronavirus mRNAs during persistent infection. Proc Natl Acad Sci U S A 1993; 90:11733-7. [PMID: 8265618 PMCID: PMC48058 DOI: 10.1073/pnas.90.24.11733] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Short open reading frames within the 5' leader of some eukaryotic mRNAs are known to regulate the rate of translation initiation on the downstream open reading frame. By employing the polymerase chain reaction, we learned that the 5'-terminal 5 nt on the common leader sequence of bovine coronavirus subgenomic mRNAs were heterogeneous and hypervariable throughout early infection in cell culture and that as a persistent infection became established, termini giving rise to a common 33-nt intraleader open reading frame were selected. Since the common leader is derived from the genomic 5' end during transcription, a common focus of origin for the heterogeneity is expected. The intraleader open reading frame was shown by in vitro translation studies to attenuate translation of downstream open reading frames in a cloned bovine coronavirus mRNA molecule. Selection of an intraleader open reading frame resulting in a general attenuation of mRNA translation and a consequent attenuation of virus replication may, therefore, be a mechanism by which coronaviruses and possibly other RNA viruses with a similar transcriptional strategy maintain a persistent infection.
Collapse
Affiliation(s)
- M A Hofmann
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| | | | | |
Collapse
|
19
|
Zhang HY, Yousef GE, Cunningham L, Blake NW, OuYang X, Bayston TA, Kandolf R, Archard LC. Attenuation of a reactivated cardiovirulent coxsackievirus B3: The 5'-nontranslated region does not contain major attenuation determinants. J Med Virol 1993; 41:129-37. [PMID: 8283174 DOI: 10.1002/jmv.1890410208] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To investigate the molecular basis of pathogenicity of Coxsackieviruses, a virus was reactivated by transfection from a full-length cDNA clone derived from cardiovirulent Coxsackievirus B3 (CVB3). The reactivated virus, rCVB3, was passaged serially in human dermatofibroblasts (HDF). No cytopathic effect was observed up to 12 days after inoculation with rCVB3 or early-passage virus, although disintegration of the monolayers was observed with late-passage virus (10th to 14th passages). Approximately 10% of HDF inoculated with rCVB3 were positive for viral antigens by immunofluorescence using enterovirus- or CVB3-specific monoclonal antibodies. These observations, together with the low infectivity titre of rCVB3 in HDF, suggests that HDF initially support only carrier state infection. After the 14th passage, the cardiovirulence of passaged virus (p14V) in mice was attenuated by a factor of > 10(4). Phenotypic changes of plaque size were also noticed in p14V: An attenuated variant (p14V-1) that produced larger plaques than rCVB3 in Vero cells has been plaque purified. The 5'-terminus of the genome of attenuant p14V-1 was amplified by polymerase chain reaction (PCR) and its sequence determined. Only one point mutation was found within the 5'-nontranslated region (5'NTR) at position 690 (A to U) compared to the viral RNA sequence obtained for rCVB3. An intertypic chimeric virus was reactivated from a cDNA clone after replacing the 5'-terminal 891 nucleotides of the wild-type genome with the corresponding region of the attenuant p14V-1. This chimeric virus, CB3/p14V-1/1, produced wild-type plaques in Vero cells and showed cardiovirulence similar to that of rCVB3 in mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Y Zhang
- Department of Biochemistry, Charing Cross and Westminister Medical School, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pritchard AE, Jensen K, Lipton HL. Assembly of Theiler's virus recombinants used in mapping determinants of neurovirulence. J Virol 1993; 67:3901-7. [PMID: 8510210 PMCID: PMC237756 DOI: 10.1128/jvi.67.7.3901-3907.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A major determinant of neurovirulence for the GDVII strain of Theiler's virus, a murine picornavirus, was mapped to the P1 capsid protein region. Chimeric viruses were constructed by using sequences from the 5' noncoding and P1 regions of the virulent GDVII strain to replace equivalent regions of the less virulent BeAn strain. Neurovirulence in mice progressively increased as larger regions of BeAn capsid protein-encoding sequences were replaced. The in vitro growth characteristics of the chimeras showed that some chimeras were growth delayed in BHK-21 cells even though the viral constructs exhibited larger plaque sizes, were less temperature sensitive, and were more thermally stable than BeAn. Examination of assembly intermediates revealed an altered pentamer conformation and delayed empty capsid formation for the growth-compromised viruses. For these constructs, their chimeric nature inadvertently resulted in virion assembly defects that complicated finer-scale mapping of the determinants of virulence within the capsid region. These results demonstrate the importance of determining in vitro growth characteristics of chimeras to correctly decipher the significance of their phenotypes. VP1 does not contain a complete determinate for virulence because a chimera with VP1-encoding sequences from GDVII in an otherwise BeAn virus has an attenuated phenotype but is not growth compromised in vitro. The source of sequences, BeAn or GDVII, in the 5' noncoding region had only slight effects on the virulence of recombinant constructs.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
21
|
Zhang L, Senkowski A, Shim B, Roos RP. Chimeric cDNA studies of Theiler's murine encephalomyelitis virus neurovirulence. J Virol 1993; 67:4404-8. [PMID: 8510228 PMCID: PMC237815 DOI: 10.1128/jvi.67.7.4404-4408.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA.
Collapse
Affiliation(s)
- L Zhang
- Department of Neurology/MC2030, University of Chicago Medical Center, Illinois 60637
| | | | | | | |
Collapse
|
22
|
Bandyopadhyay PK, Pritchard A, Jensen K, Lipton HL. A three-nucleotide insertion in the H stem-loop of the 5' untranslated region of Theiler's virus attenuates neurovirulence. J Virol 1993; 67:3691-5. [PMID: 7684472 PMCID: PMC237727 DOI: 10.1128/jvi.67.6.3691-3695.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The highly structured 5' untranslated region (5' UTR) of Theiler's murine encephalomyelitis virus is involved in cap-independent translation of the viral RNA. Previously, we reported that the bicistronic mRNA chloramphenicol acetyltransferase-5' UTR-luciferase (Luc) efficiently expressed Luc both in a rabbit reticulocyte lysate and when transfected into BHK-21 cells. Insertion of 3 nucleotides at position 665 in the 5' UTR of this bicistronic mRNA resulted in greatly reduced Luc expression in BHK-21 cells but had little effect on expression of Luc in rabbit reticulocyte lysate. This mutation was also introduced into a virulent Theiler's murine encephalomyelitis virus chimera, Chi-VL. The kinetics of viral RNA and protein synthesis and virus production in BHK-21 cells were slower for the mutant chimera [Chi-VL(IN668)] than for Chi-VL; however, the final virus yields were comparable. Intracerebral inoculation of mice with the chimeras revealed that Chi-VL(IN668) was completely attenuated in neurovirulence. The reduced neurovirulence of Chi-VL(IN668) may be ascribed to its reduced growth in the central nervous system, most likely due to an impaired ability to synthesize viral proteins.
Collapse
Affiliation(s)
- P K Bandyopadhyay
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|