1
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
2
|
Gilmore TD, Gélinas C. Methods for assessing the in vitro transforming activity of NF-κB transcription factor c-Rel and related proteins. Methods Mol Biol 2015; 1280:427-46. [PMID: 25736765 DOI: 10.1007/978-1-4939-2422-6_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among NF-κB transcription factors, c-Rel and c-Rel-derived proteins, including v-Rel, are the only ones that have shown consistent and frank transforming activity in cell culture. In particular, viral, chicken, mouse, and human Rel proteins can rapidly transform primary chicken spleen and bone marrow cells. Overexpression of a human Rel protein missing a C-terminal transactivation domain can also enhance the transformed state of the human B-lymphoma cell line BJAB. As described in this chapter, these in vitro assays can be used to quantitatively assess the transforming activity of Rel proteins.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA,
| | | |
Collapse
|
3
|
Horst D, Budczies J, Brabletz T, Kirchner T, Hlubek F. Invasion associated up-regulation of nuclear factor kappaB target genes in colorectal cancer. Cancer 2009; 115:4946-58. [PMID: 19658179 DOI: 10.1002/cncr.24564] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND : Colorectal cancer (CRC) displays intratumoral heterogeneity with less differentiated tumor cells at the invasive front (IF) than in the tumor center (TC). The authors previously observed that several genes were overexpressed at the IF of CRC with relations to inflammatory processes. Because nuclear factor kappaB (NF-kappaB), a dimeric transcription factor, is a major regulator of such processes, and because its target genes are involved in immune response, cell growth control, and cell survival, the expression of NF-kappaB target genes was investigated comparatively in CRC. METHODS : By using gene array profiling, NF-kappaB target gene expression was assessed in CRCs that expressed human mutL homolog 1 (hMLH1), hMSH2, and nuclear beta-catenin by comparing expression at the IF, in the TC, and in normal mucosa. In addition, 5 NF-kappaB target genes with high differential expression were validated by using immunohistochemistry. RESULTS : The expression of NF-kappaB target genes in the TC, at the IF, and in normal mucosa was distinct; whereas, specifically at the IF, most differentially expressed NF-kappaB targets were up-regulated. Moreover, the results indicated that the expression diverged between epithelial tumor cells and inflammatory stromal cells. CONCLUSIONS : Because the results demonstrated that inflammation and the activation of NF-kappaB signaling promoted CRC invasiveness, the current study provided further evidence that downstream targets of NF-kappaB signaling may be specifically relevant in invasion and progression of CRC. Finally, as has been suggested for colitis-associated cancer, the authors of this report concluded that the inhibition of NF-kappaB signaling also may be an additional option for the treatment of sporadic CRC. Cancer 2009. (c) 2009 American Cancer Society.
Collapse
Affiliation(s)
- David Horst
- Pathologisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
4
|
Fan Y, Gélinas C. An optimal range of transcription potency is necessary for efficient cell transformation by c-Rel to ensure optimal nuclear localization and gene-specific activation. Oncogene 2006; 26:4038-43. [PMID: 17173064 DOI: 10.1038/sj.onc.1210164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Rel is overexpressed in several B-cell lymphomas and c-rel gene overexpression can transform primary chicken lymphoid cells and induce tumors in animals. Although c-Rel is generally a stronger transcriptional activator than its viral derivative v-Rel, its oncogenic activity is significantly weaker. Among the mutations acquired during c-Rel's evolution into v-Rel are deletion of c-Rel's transactivation domain 2 (cTAD2) and mutations in cTAD1. Given the critical role of the Rel TADs in cell transformation, we investigated how mutations in c-Rel's cTAD1 and cTAD2 contribute to its oncogenicity and that of v-Rel. Mutations in cTAD2 noticeably increased c-Rel's transforming activity by promoting its nuclear localization and gene-specific transactivation, despite an overall decrease in kappaB site-dependent transactivation potency. Conversely, substitution of vTAD by cTAD1 increased v-Rel's transactivation and transforming efficiencies, whereas its substitution by the stronger cTAD2 compromised activation of mip-1beta but not irf-4 and was detrimental to cell transformation. These results suggest that the Rel TADs differentially contribute to gene-specific activation and that an optimal range of transcription potency is necessary for efficient transformation. These findings may have important implications for understanding how Rel TAD mutations can lead to a more oncogenic phenotype.
Collapse
Affiliation(s)
- Y Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
5
|
Tong S, Liss AS, You M, Bose HR. The activation of TC10, a Rho small GTPase, contributes to v-Rel-mediated transformation. Oncogene 2006; 26:2318-29. [PMID: 17016434 DOI: 10.1038/sj.onc.1210023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
v-Rel is the oncogenic member of the Rel/NF-kappaB family of transcription factors and transforms hematopoietic cells and fibroblasts. Differential display was employed to identify target genes that exhibit altered expression in v-Rel transformed cells. One of the cDNAs identified encodes the chicken ortholog of TC10, a member of the Rho small GTPase family. The expression of TC10 was increased in v-Rel-transformed chicken embryonic fibroblasts (CEFs) 3 to 6-fold relative to control cells at both the RNA and protein levels. An elevated level of active, GTP-bound TC10 was also detected in v-Rel-transformed cells relative to control cells. Expression of a dominant-negative TC10 mutant (TC10T32N) decreased the colony formation potential of v-Rel-transformed cells. Furthermore, overexpression of wild-type TC10 or a gain-of-function mutant (TC10Q76L) greatly enhanced the ability of v-Rel transformed CEFs to form colonies in soft agar. In addition to enhance the transformation potential of v-Rel, the overexpression of wild-type TC10 or the gain-of-function mutant alone enhanced the saturation density of CEFs and was sufficient for their anchorage-independent growth in vitro. These results indicate that elevated TC10 activity contributes to v-Rel-mediated transformation of CEFs and demonstrate for the first time that a Rho factor alone is capable of inducing the in vitro transformation of primary cells.
Collapse
Affiliation(s)
- S Tong
- Section of Molecular Genetics and Microbiology and the Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
6
|
Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004; 100:1578-89. [PMID: 15073843 DOI: 10.1002/cncr.20182] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a collective term that refers to a small class of dimeric transcription factors for a number of genes, including growth factors, angiogenesis modulators, cell-adhesion molecules, and antiapoptotic factors. Although most NF-kappaB proteins promote transcription, some act as inactivating or repressive complexes. The most common p50-RelA (p65) dimer known "specifically" as NF-kappaB, is relatively abundant, controls the expression of numerous genes, and exists as an inactive cytoplasmic complex bound to inhibitory proteins of the NF-kappaB inhibitor (IkappaB) family. The inactive NF-kappaB-IkappaB complex is activated by a variety of stimuli, including proinflammatory cytokines, mitogens, growth factors, and stress-inducing agents. The release of NF-kappaB facilitates its translocation to the nucleus, where it promotes cell survival by initiating the transcription of genes encoding stress-response enzymes, cell-adhesion molecules, proinflammatory cytokines, and antiapoptotic proteins. Constitutive activation of NF-kappaB in the nucleus is observed in some hematologic disorders. With the recent approval of bortezomib for patients with advanced multiple myeloma, NF-kappaB modulation is likely to be a therapeutic endeavor of increasing interest in coming years.
Collapse
Affiliation(s)
- Amit Panwalkar
- Section of Developmental Therapeutics, Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
7
|
Rossi D, Gaidano G. Molecular heterogeneity of diffuse large B-cell lymphoma: implications for disease management and prognosis. ACTA ACUST UNITED AC 2004; 7:239-52. [PMID: 14972786 DOI: 10.1080/1024533021000024058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) accounts for approximately 40% of all B-cell non-Hodgkin lymphomas of the Western world. According to the "WHO classification of tumours of the haematopoietic and lymphoid tissues", the term DLBCL is likely to include more than one disease entity, as suggested by the marked variability of the clinical presentation and response to treatment of this disease. Such heterogeneity may reflect the occurrence of distinct molecular subtypes of DLBCL as well as differences in the host's immune function. In immunocompetent hosts, approximately 50% DLBCL carry one of two primary molecular lesions defining two distinct genotypic subgroups, characterized by activation of either the BCL-6 or the BCL-2 proto-oncogene. Conversely, the remaining DLBCL of immunocompetent hosts display one of several molecular lesions, each associated with a small subset of cases and including activation of the proto-oncogenes REL, MUC-1, BCL-8 and c-MYC. The molecular pathogenesis of immunodeficiency-associated DLBCL differs substantially from that of DLBCL in immunocompetent hosts. In fact, EBV infection is present in a large fraction of immunodeficiency-associated DLBCL, whereas it is consistently negative in DLBCL of immunocompetent hosts, probably reflecting the critical role of disruption of the immune system in this disease. Finally, the application of DNA microarray technology to DLBCL has led to the distinction of two disease variants: a germinal center like DLBCL and an activated peripheral B-cell like DLBCL. Overall the molecular features of DLBCL may identify prognostic categories of the disease and may represent a powerful tool for therapeutic stratification.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- DNA-Binding Proteins/genetics
- Genes, bcl-2
- Genes, myc
- Genes, rel
- Genetic Heterogeneity
- Germinal Center/pathology
- Humans
- Immunocompetence
- Immunocompromised Host
- Lymphoma, AIDS-Related/genetics
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Mucin-1/genetics
- Neoplasm Proteins/genetics
- Postoperative Complications
- Prognosis
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-6
- Proto-Oncogenes
- Somatic Hypermutation, Immunoglobulin
- Transcription Factors/genetics
- Transplantation
Collapse
Affiliation(s)
- Davide Rossi
- Hematology Unit, Division of Internal Medicine, Department of Medical Sciences and IRCAD, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, I-28100, Novara, Italy
| | | |
Collapse
|
8
|
Fan Y, Rayet B, Gélinas C. Divergent C-terminal transactivation domains of Rel/NF-κB proteins are critical determinants of their oncogenic potential in lymphocytes. Oncogene 2003; 23:1030-42. [PMID: 14647412 DOI: 10.1038/sj.onc.1207221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
rel/nf-kappaB genes are amplified, overexpressed, or constitutively activated in many human hematopoietic tumors; however, the molecular mechanisms by which they contribute to tumorigenesis remain to be determined. Here, we explored the oncogenic potential of cellular Rel/NF-kappaB proteins in vitro and in vivo. We show that overexpression of wild-type mouse and human c-rel genes suffices to malignantly transform primary spleen cells in stringent soft agar assays and produce fatal tumors in vivo. In contrast relA and a constitutively active form of IKKbeta did not. Importantly, a hybrid RelA protein with its C-terminal transactivation domain substituted by that of v-Rel was potently oncogenic in vitro and in vivo. The transactivation domain of v-Rel selectively conferred an oncogenic phenotype upon the Rel homology domain (RHD) of RelA, but not to the more divergent RHDs of p50/NF-kappaB1, p52/NF-kappaB2, or RelB. Collectively, our results highlight important differences in the intrinsic oncogenic activity of mammalian c-Rel and RelA proteins, and indicate that critical determinants of their differential oncogenicity reside in their divergent transactivation domains. These findings provide experimental evidence for a role of mammalian Rel/NF-kappaB factors in leukemia/lymphomagenesis in an in vivo animal model, and are consistent with the implication of c-rel in many human lymphomas.
Collapse
Affiliation(s)
- Yongjun Fan
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638, USA
| | | | | |
Collapse
|
9
|
Kalaitzidis D, Davis RE, Rosenwald A, Staudt LM, Gilmore TD. The human B-cell lymphoma cell line RC-K8 has multiple genetic alterations that dysregulate the Rel/NF-kappaB signal transduction pathway. Oncogene 2002; 21:8759-68. [PMID: 12483529 DOI: 10.1038/sj.onc.1206033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Revised: 08/30/2002] [Accepted: 08/30/2002] [Indexed: 11/09/2022]
Abstract
The human large B-cell lymphoma cell line RC-K8 has a rearranged REL locus that directs the production of a chimeric protein, termed REL-NRG (Non-Rel Gene). In this study, we show that RC-K8 cells have constitutively nuclear heterodimeric and homodimeric DNA-binding complexes that consist of p50, REL, and REL-NRG. In vitro, IkappaBalpha can block the DNA-binding activity of wild-type REL homodimers but not REL-NRG homodimers. In vivo, REL-NRG cannot activate transcription of a kappaB site reporter plasmid, suggesting that it is a transcription repressing or blocking REL protein. By Western blotting, no IkappaBalpha protein can be detected in extracts of RC-K8 cells. The absence of IkappaBalpha protein in RC-K8 cells appears to be due to mutations that cause premature termination of translation in three of the four copies of the IKBA gene in RC-K8 cells. Re-expression of wild-type IkappaBalpha or a super-repressor form of IkappaBalpha in RC-K8 cells is cytotoxic; in contrast, expression of a dominant-negative form of IkappaB kinase does not affect the growth of RC-K8 cells. By cDNA microarray analysis, a number of previously identified Rel/NF-kappaB target genes are overexpressed in RC-K8 cells, consistent with there being transcriptionally active REL complexes. Taken together, our results suggest that the growth of RC-K8 cells is dependent on the activity of nuclear wild-type REL dimers, while the contribution of REL-NRG to the transformed state of RC-K8 cells is less clear. Nevertheless, the RC-K8 cell line is the first tumor cell line identified with mutations in genes encoding multiple proteins in the Rel/NF-kappaB signal transduction pathway.
Collapse
Affiliation(s)
- Demetrios Kalaitzidis
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215, USA
| | | | | | | | | |
Collapse
|
10
|
Kralova J, Liss AS, Bargmann W, Pendleton C, Varadarajan J, Ulug E, Bose HR. Differential regulation of the inhibitor of apoptosis ch-IAP1 by v-rel and the proto-oncogene c-rel. J Virol 2002; 76:11960-70. [PMID: 12414938 PMCID: PMC136878 DOI: 10.1128/jvi.76.23.11960-11970.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The v-rel oncogene encoded by reticuloendotheliosis virus is the acutely transforming member of the Rel/NF-kappaB family of transcription factors. v-Rel is a truncated and mutated form of c-Rel and transforms cells by inducing the aberrant expression of genes regulated by Rel/NF-kappaB proteins. The expression of ch-IAP1, a member of the inhibitor-of-apoptosis family, is highly elevated in cells expressing v-Rel and contributes to the immortalization of cells transformed by this oncoprotein. In this study we demonstrate that the elevated expression of ch-IAP1 in v-Rel-expressing cells is due to an increased rate of transcription. The ch-IAP1 promoter was isolated, and four Rel/NF-kappaB binding sites were identified upstream of the transcription start site. Two kappaB sites proximal to the transcription start site were required for v-Rel to activate the ch-IAP1 promoter. While c-Rel also utilized these sites, a third more-distal kappaB site was required for its full activation of the ch-IAP1 promoter. Differences in the transactivation domains of v-Rel and c-Rel are responsible for their different abilities to utilize these sites and account for their differential activation of the ch-IAP1 promoter. Although c-Rel was a more potent activator of the ch-IAP1 promoter than v-Rel in transient reporter assays, cells stably overexpressing c-Rel failed to maintain high levels of ch-IAP1 expression. The reduction of ch-IAP1 expression in these cells correlated with the efficient regulation of c-Rel by IkappaBalpha. The ability of v-Rel to escape IkappaBalpha regulation allows for the gradual and sustained elevation of ch-IAP1 expression directly contributing to the transforming properties of v-Rel.
Collapse
Affiliation(s)
- Jarmila Kralova
- Section of Molecular Genetics and Microbiology and the Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Gilmore TD, Cormier C, Jean-Jacques J, Gapuzan ME. Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene 2001; 20:7098-103. [PMID: 11704834 DOI: 10.1038/sj.onc.1204898] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Revised: 08/01/2001] [Accepted: 08/07/2001] [Indexed: 02/02/2023]
Abstract
Rel/NF-kappaB transcription factors control a variety of cellular processes, such as cell growth and apoptosis, that are relevant to oncogenesis, and mutations in genes encoding Rel/NF-kappaB transcription factors have been found in several human lymphoid cell cancers. In this study, we have used a sensitive cell outgrowth assay to demonstrate that wild-type human c-Rel can malignantly transform primary chicken spleen cells, and that transformation by c-Rel is accelerated by co-expression of Bc1-2. Full-length mouse c-Rel can also transform chicken spleen cells. These results are the first demonstration of a lymphoid cell malignant transforming ability for mammalian Rel/NF-kappaB transcription factors, and implicate c-Rel as a molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- T D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215, USA.
| | | | | | | |
Collapse
|
12
|
Hrdlicková R, Nehyba J, Bose HR. Interferon regulatory factor 4 contributes to transformation of v-Rel-expressing fibroblasts. Mol Cell Biol 2001; 21:6369-86. [PMID: 11533227 PMCID: PMC99785 DOI: 10.1128/mcb.21.19.6369-6386.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian homologue of the interferon regulatory factor 4 (IRF-4) and a novel splice variant lacking exon 6, IRF-4DeltaE6, were isolated and characterized. Chicken IRF-4 is expressed in lymphoid organs, less in small intestine, and lungs. IRF-4DeltaE6 mRNA, though less abundant than full-length IRF-4, was detected in lymphoid tissues, with the highest levels observed in thymic cells. IRF-4 is highly expressed in v-Rel-transformed lymphocytes, and the expression of IRF-4 is increased in v-Rel- and c-Rel-transformed fibroblasts relative to control cells. The expression of IRF-4 from retrovirus vectors morphologically transformed primary fibroblasts, increased their saturation density, proliferation, and life span, and promoted their growth in soft agar. IRF-4 and v-Rel cooperated synergistically to transform fibroblasts. The expression of IRF-4 antisense RNA eliminated formation of soft agar colonies by v-Rel and reduced the proliferation of v-Rel-transformed cells. v-Rel-transformed fibroblasts produced interferon 1 (IFN1), which inhibits fibroblast proliferation. Infection of fibroblasts with retroviruses expressing v-Rel resulted in an increase in the mRNA levels of IFN1, the IFN receptor, STAT1, JAK1, and 2',5'-oligo(A) synthetase. The exogenous expression of IRF-4 in v-Rel-transformed fibroblasts decreased the production of IFN1 and suppressed the expression of several genes in the IFN transduction pathway. These results suggest that induction of IRF-4 expression by v-Rel likely facilitates transformation of fibroblasts by decreasing the induction of this antiproliferative pathway.
Collapse
Affiliation(s)
- R Hrdlicková
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | |
Collapse
|
13
|
Epinat JC, Kazandjian D, Harkness DD, Petros S, Dave J, White DW, Gilmore TD. Mutant envelope residues confer a transactivation function onto N-terminal sequences of the v-Rel oncoprotein. Oncogene 2000; 19:599-607. [PMID: 10698504 DOI: 10.1038/sj.onc.1203376] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retroviral oncoprotein v-Rel is a member of the Rel/ NF-kappaB family of transcription factors. v-Rel has multiple changes as compared to the proto-oncoprotein c-Rel, and these changes render v-Rel highly oncogenic in avian lymphoid cells. Previous results have shown that three mutant residues in the eleven helper virus-derived Envelope (Env) amino acids (aa) at the N-terminus of v-Rel are required for its full oncogenicity. In this report, we show that these mutant Env aa also enable sequences in the N-terminal half of v-Rel to activate transcription in yeast and chicken cells, under conditions where the analogous sequences from c-Rel either do not or only weakly activate transcription. Removal of the Env aa from v-Rel or site-directed mutations that revert the three mutant residues to the residues present in the Rev-A helper virus Env protein abolish this transactivation ability of v-Rel. Addition of mutant Env aa onto c-Rel is not sufficient to fully restore the transactivation function; other sequences in the N-terminal half of v-Rel are needed for full transactivating ability. A C terminally-truncated form of NF-kappaB p100 (p85), produced in HUT-78 human leukemic cells, also activates transcription in yeast, under conditions where the normal p52 and p100 proteins do not. Furthermore, transcriptional activation by p85 in yeast is likely to occur through N-terminal sequences. Taken together, these results are consistent with a model in which transactivation by N-terminal Rel Homology (RH) domain sequences in oncogenic Rel family proteins is influenced by sequences outside the RH domain.
Collapse
Affiliation(s)
- J C Epinat
- Department of Biology, Boston University, Massachusetts 02215-2406, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The avian Rev-T retrovirus encodes the v-Rel oncoprotein, which is a member of the Rel/NF-kappaB transcription factor family. v-Rel induces a rapidly fatal lymphoma/leukemia in young birds, and v-Rel can transform and immortalize a variety of avian cell types in vitro. Although Rel/NF-kappaB transcription factors have been associated with oncogenesis in mammals, v-Rel is the only member of this family that is frankly oncogenic in animal model systems. The potent oncogenicity of v-Rel is the consequence of a number of mutations that have altered its activity and regulation: for example, certain mutations decrease its ability to be regulated by IkappaBalpha, change its DNA-binding site specificity, and endow it with new transactivation properties. The study of v-Rel will continue to increase our knowledge of how cellular Rel proteins contribute to oncogenesis by affecting cell growth, altering cell-cycle regulation, and blocking apoptosis. This review will discuss biological and molecular activities of v-Rel, with particular attention to how these activities relate to structure - function aspects of the Rel/NF-kappaB transcription factors.
Collapse
Affiliation(s)
- T D Gilmore
- Biology Department, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215-2406, USA
| |
Collapse
|
15
|
Abstract
Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.
Collapse
Affiliation(s)
- B Rayet
- Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, NJ 08854-5638, USA
| | | |
Collapse
|
16
|
Chen C, Agnès F, Gélinas C. Mapping of a serine-rich domain essential for the transcriptional, antiapoptotic, and transforming activities of the v-Rel oncoprotein. Mol Cell Biol 1999; 19:307-16. [PMID: 9858554 PMCID: PMC83888 DOI: 10.1128/mcb.19.1.307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
The v-Rel oncoprotein belongs to the Rel/NF-kappaB family of transcription factors and induces aggressive lymphomas in chickens and transgenic mice. Current models for cell transformation by v-Rel invoke the combined activation of gene expression and the dominant inhibition of transcription mediated by its cellular homologs. Here, we mapped a serine-rich transactivation domain in the C terminus of v-Rel that is necessary for its biological activity. Specific serine-to-alanine substitutions within this region impaired the transcriptional activity of v-Rel, whereas a double mutant abolished its function. In contrast, substitutions with phosphomimetic aspartate residues led to a complete recovery of the transcriptional potential. The transforming activity of v-Rel mutants correlated with their ability to inhibit programmed cell death. The transforming and antiapoptotic activities of v-Rel were abolished by defined Ser-to-Ala mutations and restored by most Ser-to-Asp substitutions. However, one Ser-to-Asp mutant showed wild-type transactivation ability but failed to block apoptosis and to transform cells. These results show that the transactivation function of v-Rel is necessary but not sufficient for cell transformation, adding an important dimension to the transformation model. It is possible that defined protein-protein interactions are also required to block apoptosis and transform cells. Since v-Rel is an acutely oncogenic member of the Rel/NF-kappaB family, our data raise the possibility that phosphorylation of its serine-rich transactivation domain may regulate its unique biological activity.
Collapse
Affiliation(s)
- C Chen
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5638, USA
| | | | | |
Collapse
|
17
|
You M, Bose HR. Identification of v-Rel oncogene-induced inhibitor of apoptosis by differential display. Methods 1998; 16:373-85. [PMID: 10049645 DOI: 10.1006/meth.1998.0692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The v-Rel oncoprotein is a member of the Rel/NF-kappaB family of transcription factors. v-Rel induces oncogenic transformation and inhibits apoptosis. To identify aberrantly expressed cellular genes in v-Rel transformed cells, gene expression patterns in normal and v-Rel transformed cells were compared by mRNA differential display. Northern blotting analysis with radiolabeled cDNAs from differential display confirmed the reproducible differential expression of 10 transcripts in v-Rel transformed cells. One of the identified genes, termed ch-IAP1, encodes a chicken homolog of the inhibitor-of-apoptosis protein (IAP) family. ch-IAP1 contains N-terminal baculovirus IAP repeats (BIR), the hallmark of IAPs, and has a C-terminal RING finger motif commonly present in the other IAPs. Like other IAPs, ch-IAP1 is expressed predominantly in the cytoplasm of cells. ch-IAP1 is highly expressed in v-Rel transformed fibroblasts, B- and T-cell lines, and spleen cell lines. In contrast, ch-IAP1 expression levels were low in chicken cell lines transformed by several other unrelated tumor viruses. Additionally, ch-IAP1 expression is downregulated in temperature-sensitive (ts) v-Rel transformed spleen cells at the nonpermissive temperature. Overexpression of the full-length ch-IAP1 suppresses mammalian cell apoptosis induced by the interleukin-1-converting enzyme (ICE), a member of the mammalian caspase family of cysteine proteases. Furthermore, expression of exogenous ch-IAP1 inhibits apoptosis of ts v-Rel transformed spleen cells at the nonpermissive temperature.
Collapse
Affiliation(s)
- M You
- Department of Microbiology and the Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712-1095, USA
| | | |
Collapse
|
18
|
Kralova J, Liss AS, Bargmann W, Bose HR. AP-1 factors play an important role in transformation induced by the v-rel oncogene. Mol Cell Biol 1998; 18:2997-3009. [PMID: 9566919 PMCID: PMC110679 DOI: 10.1128/mcb.18.5.2997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Accepted: 01/29/1998] [Indexed: 02/07/2023] Open
Abstract
v-rel is the oncogenic member of the Rel/NF-kappaB family of transcription factors. The mechanism by which v-Rel induces transformation of avian lymphoid cells and fibroblasts is not precisely known. However, most models propose that v-rel disrupts the normal transcriptional regulatory network. In this study we evaluated the role of AP-1 family members in v-Rel-mediated transformation. The overexpression of v-Rel, c-Rel, and c-Rel delta resulted in a prolonged elevation of c-fos and c-jun expression and in a sustained repression of fra-2 at both the mRNA and protein levels in fibroblasts and lymphoid cells. Moreover, the transforming abilities of these Rel proteins correlated with their ability to alter the expression of these AP-1 factors. v-Rel exhibited the most pronounced effect, whereas c-Rel, with poor transforming ability, elicited only moderate changes in AP-1 levels. Furthermore, c-Rel delta, which exhibits enhanced transforming potential relative to c-Rel, induced intermediate changes in AP-1 expression. To directly evaluate the role of AP-1 family members in the v-Rel transformation process, a supjun-1 transdominant mutant was used. The supjun-1 mutant functions as a general inhibitor of AP-1 activity by inhibiting AP-1-mediated transactivation and by reducing AP-1 DNA-binding activity. Coinfection or sequential infection of fibroblasts or lymphoid cells with viruses carrying rel oncogenes and supjun-1 resulted in a reduction of the transformation efficiency of the Rel proteins. The expression of supjun-1 inhibited the ability of v-Rel transformed lymphoid cells and fibroblasts to form colonies in soft agar by over 70%. Furthermore, the expression of supjun-1 strongly interfered with the ability of v-Rel to morphologically transform avian fibroblasts. This is the first report showing that v-Rel might execute its oncogenic potential through modulating the activity of early response genes.
Collapse
Affiliation(s)
- J Kralova
- Department of Microbiology and the Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712-1095, USA
| | | | | | | |
Collapse
|
19
|
You M, Ku PT, Hrdlicková R, Bose HR. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 1997; 17:7328-41. [PMID: 9372964 PMCID: PMC232589 DOI: 10.1128/mcb.17.12.7328] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncoprotein v-Rel, a member of the Rel/NF-kappaB family of transcription factors, induces neoplasias and inhibits apoptosis. To identify differentially regulated cellular genes and to evaluate their relevance to transformation and apoptosis in v-Rel-transformed cells, mRNA differential display has been used. One of the recovered cDNAs corresponds to a gene that was highly expressed in v-Rel-transformed fibroblasts. Analysis of the isolated full-length cDNA of a chicken inhibitor-of-apoptosis protein (ch-IAP1) revealed that it encodes a 68-kDa protein that is highly homologous to members of the IAP family, such as human c-LAP1. Like other IAPs, ch-IAP1 contains the N-terminal baculovirus IAP repeats and C-terminal RING finger motifs. Northern blot analysis identified a 3.3-kb ch-IAP1 transcript expressed at relatively high levels in the spleen, thymus, bursa, intestine, and lungs. Expression of v-Rel in fibroblasts, a B-cell line, and spleen cells up-regulated the expression of ch-IAP1. In contrast, ch-IAP1 expression levels were low in chicken cell lines transformed by several other unrelated tumor viruses. ch-IAP1 was expressed predominantly in the cytoplasm of the v-Rel-transformed cells. ch-IAP1 suppressed mammalian cell apoptosis induced by the overexpression of the interleukin-1-converting enzyme. Expression of exogenous ch-IAP1 in temperature-sensitive v-Rel transformed spleen cells inhibited apoptosis of these cells at the nonpermissive temperature. Collectively, these results suggest that ch-IAP1 is induced during the v-Rel-mediated transformation process and functions as a suppressor of apoptosis in v-Rel-transformed cells.
Collapse
Affiliation(s)
- M You
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-1095, USA
| | | | | | | |
Collapse
|
20
|
Bell EJ, Brickell PM. Replication-competent retroviral vectors for expressing genes in avian cells in vitro and in vivo. Mol Biotechnol 1997; 7:289-98. [PMID: 9219242 DOI: 10.1007/bf02740819] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication-competent retroviral vectors based on Rous sarcoma virus (RSV) are becoming increasingly popular for expressing genes in both primary cell cultures and embryonic chick tissues in ovo. In this article, we review the features of RSV and its life cycle that make it suitable for use as a vector. We describe the design and use of the RCAS and RCAS (BP) series of vectors, which are currently the most widely used RSV-based vectors, illustrating both their strengths and weakness. Finally, we outline laboratory protocols suitable for the banding of these retroviral vectors.
Collapse
Affiliation(s)
- E J Bell
- Department of Developmental Neurobiology, UMDS, Guy's Hospital, London, UK
| | | |
Collapse
|
21
|
Rottjakob EM, Sachdev S, Leanna CA, McKinsey TA, Hannink M. PEST-dependent cytoplasmic retention of v-Rel by I(kappa)B-alpha: evidence that I(kappa)B-alpha regulates cellular localization of c-Rel and v-Rel by distinct mechanisms. J Virol 1996; 70:3176-88. [PMID: 8627798 PMCID: PMC190181 DOI: 10.1128/jvi.70.5.3176-3188.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Association of c-Rel with the inhibitor of kappaB-alpha (IkappaB-alpha) protein regulates both cellular localization and DNA binding. The ability of v-Rel, the oncogenic viral counterpart of avian c-Rel, to evade regulation by p40, the avian IkappaB-alpha protein, contributes to v-Rel-mediated oncogenesis. The yeast two-hybrid system was utilized to dissect Rel:IkappaB-alpha interactions in vivo. We find that distinct domains in c-Rel and v-Rel are required for association with p40. Furthermore, while the ankyrin repeat domain of p40 is sufficient for association with c-Rel, both the ankyrin repeat domain and the PEST domain are required for association with v-Rel. Two amino acid differences between c-Rel and v-Rel that are principally responsible for PEST-dependent association of v-Rel with p40 were identified. These same amino acids were principally responsible for PEST-dependent cytoplasmic retention of v-Rel by p40. The presence of mutations in c-Rel that were sufficient to confer PEST-dependent association of the mutant c-Rel protein with p40 did not increase the weak oncogenicity of c-Rel. However, the introduction of these two c-Rel-derived amino acids into v-Rel markedly reduced the oncogenicity of v-Rel. Deletion of the NLS of either c-Rel or v-Rel did not abolish association with p40, but did confer PEST-dependent association of c-Rel with p40. Surprisingly, deletion of the nuclear localization signal in v-Rel did not affect oncogenicity by v-Rel. Analysis of several mutant c-Rel and v-Rel proteins demonstrated that association of Rel proteins with p40 is necessary but not sufficient for cytoplasmic retention. These results are not consistent with the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by the same mechanism. Rather, these results support the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by distinct mechanisms.
Collapse
Affiliation(s)
- E M Rottjakob
- Department of Biochemistry, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
22
|
Krishnan VA, Schatzle JD, Hinojos CM, Bose HR. Structure and regulation of the gene encoding avian inhibitor of nuclear factor kappa B-alpha. Gene 1995; 166:261-6. [PMID: 8543172 DOI: 10.1016/0378-1119(95)00547-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Rel/NF-kappa B family of transcription factors exist in the cytoplasm as inactive complexes in association with an inhibitory protein called I kappa B-alpha. We have isolated a clone containing the avian I kappa B-alpha gene from a chicken genomic library. Avian I kappa B-alpha is devoid of any recognizable promoter elements, i.e., TATA and CAAT boxes; however, the 5'-UTR of the gene contains the initiator elements frequently found in TATA-less genes. Avian I kappa B-alpha contains seven putative Rel/NF-kappa B binding sites. A CAT reporter construct containing the 5' upstream region of I kappa B-alpha was expressed when transfected into cells which produce I kappa B-alpha. This construct, however, was not expressed in cells in which I kappa B-alpha activity was not induced, indicating that the regulatory elements which promote I kappa B-alpha expression are contained within 1000 nt of the transcription start site. Southern analysis suggests that I kappa B-alpha is present as a single-copy gene per haploid genome and is expressed in avian hematopoietic tissues, as well as lymphoid cells transformed by avian reticuloendotheliosis virus (REV-T).
Collapse
Affiliation(s)
- V A Krishnan
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | | | |
Collapse
|
23
|
Schatzle JD, Kralova J, Bose HR. Avian I kappa B alpha is transcriptionally induced by c-Rel and v-Rel with different kinetics. J Virol 1995; 69:5383-90. [PMID: 7636983 PMCID: PMC189381 DOI: 10.1128/jvi.69.9.5383-5390.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rel/NF-kappa B family of transcription factors participates in the regulation of genes involved in defense responses, inflammation, healing and regeneration processes, and embryogenesis. The control of the transcriptional activation potential of the Rel/NF-kappa B proteins is mediated, in part, by their association with inhibitory proteins of the I kappa B family. This association results in the cytoplasmic retention of these factors until the cell receives a proper stimulatory signal. The I kappa B alpha gene is a target for regulation by the Rel/NF-kappa B proteins and is in fact upregulated in response to Rel/NF-kappa B activation. A naturally occurring oncogenic variant of the Rel/NF-kappa B family, v-rel, transforms avian lymphocytes, bone marrow cells, monocytes, and fibroblasts. Avian I kappa B alpha expression is upregulated in cells transformed by v-Rel. Avian I kappa B alpha is also upregulated in fibroblasts overexpressing c-Rel and oncogenic variants of c-Rel. c-Rel, a carboxy-terminally truncated variant of c-Rel, and v-Rel are all able to directly transactivate the expression of the avian I kappa B alpha gene. However, c-Rel was the most potent activator of this gene, and the induction of I kappa B alpha expression showed faster kinetics in cells overexpressing c-Rel than in those overexpressing v-Rel. The regulation of I kappa B alpha induction by the Rel proteins was shown to be dependent on a 362-bp region of the I kappa B alpha promoter that contains two potential NF-kappa B binding sites and one AP-1-like binding site. Results of electrophoretic mobility shift assays using these NF-kappa B binding sites indicate that major changes in the profile of DNA binding complexes in fibroblasts overexpressing v-Rel correlated temporally with the kinetic changes in v-Rel's ability to activate the expression of the I kappa B alpha gene.
Collapse
Affiliation(s)
- J D Schatzle
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | |
Collapse
|
24
|
Hrdlicková R, Nehyba J, Bose HR. Mutations in the DNA-binding and dimerization domains of v-Rel are responsible for altered kappa B DNA-binding complexes in transformed cells. J Virol 1995; 69:3369-80. [PMID: 7745683 PMCID: PMC189049 DOI: 10.1128/jvi.69.6.3369-3380.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-rel proto-oncogene encodes a member of the Rel/NF-kappa B family of transcription factors. The oncogenic viral form, v-rel, transduced by avian reticuloendotheliosis virus T, induces lymphoid tumors. v-Rel transformation may be mediated directly by binding of v-Rel to cognate DNA sites, resulting in altered gene expression, and/or indirectly by releasing Rel/NF-kappa B transcription factors from cytoplasmic retention molecules, resulting in their translocation to the nucleus and the inappropriate expression of genes under kappa B control. v-Rel-transformed cell lines of different phenotypes contained v-Rel as well as endogenous kappa B DNA-binding proteins in nuclear extracts. Kinetic analysis with avian leukosis virus-transformed B-cell lines expressing v-Rel or c-Rel indicated that the presence of endogenous kappa B DNA-binding proteins in the nucleus is temporally correlated with the relocalization of v-Rel to the cytoplasm. Supershift analysis of these DNA-binding complexes revealed that v-Rel was present in all of the nuclear DNA-binding complexes heterodimerized with c-Rel, NF-kappa B1, and other proteins. In contrast, c-Rel-transformed cells exhibited a less-complex pattern of nuclear kappa B DNA-binding complexes, and the nuclear appearance of these endogenous complexes was not observed. Studies with c-/v-Rel hybrids suggest that the induction of the endogenous kappa B DNA-binding complexes is the result of the mutations in the C-terminal region of the Rel homology (RH) domain of v-Rel. Moreover, v-Rel differed from c-Rel in its DNA-binding specificity. The altered DNA-binding specificity of v-Rel was associated with mutations located in the N-terminal part of the RH domain of v-Rel. These results suggest that two different regions of v-Rel (both located in the RH domain) influence the formation of kappa B DNA-binding complexes differently.
Collapse
Affiliation(s)
- R Hrdlicková
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | |
Collapse
|
25
|
Hrdlicková R, Nehyba J, Roy A, Humphries EH, Bose HR. The relocalization of v-Rel from the nucleus to the cytoplasm coincides with induction of expression of Ikba and nfkb1 and stabilization of I kappa B-alpha. J Virol 1995; 69:403-13. [PMID: 7983736 PMCID: PMC188588 DOI: 10.1128/jvi.69.1.403-413.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The v-Rel oncogene induces the expression of major histocompatibility complex class I and II proteins and the interleukin-2 receptor more efficiently than does c-Rel (R. Hrdlicková, J. Nehyba, and E. H. Humphries, J. Virol. 68:308-319, 1994). The kinetics with which these immunoregulatory receptors are induced in B- and T-lymphoid cell lines and chicken embryo fibroblast cultures expressing c-Rel or v-Rel have been examined. v-Rel induced the expression of major histocompatibility complex classes I and II and interleukin-2 receptor more efficiently than did c-Rel at later times after infection. In all three cell types, this increased efficiency was accompanied by a shift in the majority of v-Rel from the nucleus of the cytoplasm. The concomitant relocalization of v-Rel was also demonstrated during the in vitro transformation of spleen cells. The translocation coincided with increased steady-state levels of I kappa B-alpha. Coninfection by retroviral vectors expressing v-Rel, I kappa B-alpha, or NF-kappa B1 demonstrated that either I kappa B-alpha can contribute to the shift of v-Rel to the cytoplasmic compartment. The induction of nfkb1 and Ikba mRNA and the stabilization of I kappa B-alpha by v-Rel were shown to be responsible for these effects. In comparison with c-Rel, the expression of v-Rel was associated with lower levels of transcription of these genes. However, the ability of v-Rel to stabilize I kappa B-alpha remained unchanged. The ability of v-Rel to stabilize I kappa B-alpha but poorly induce Ikba mRNA expression relative to c-Rel may play a role in regulating gene expression, thereby leading to transformation.
Collapse
Affiliation(s)
- R Hrdlicková
- Department of Microbiology, University of Texas at Austin 78712-1095
| | | | | | | | | |
Collapse
|