1
|
Kishor A, White EJF, Matsangos AE, Yan Z, Tandukar B, Wilson GM. Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions. J Biol Chem 2017; 292:14122-14133. [PMID: 28679534 PMCID: PMC5572911 DOI: 10.1074/jbc.m117.785394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
Hsp70 is a protein chaperone that prevents protein aggregation and aids protein folding by binding to hydrophobic peptide domains through a reversible mechanism directed by an ATPase cycle. However, Hsp70 also binds U-rich RNA including some AU-rich elements (AREs) that regulate the decay kinetics of select mRNAs and has recently been shown to bind and stabilize some ARE-containing transcripts in cells. Previous studies indicated that both the ATP- and peptide-binding domains of Hsp70 contributed to the stability of Hsp70-RNA complexes and that ATP might inhibit RNA recruitment. This suggested the possibility that RNA binding by Hsp70 might mimic features of its peptide-directed chaperone activities. Here, using purified, cofactor-free preparations of recombinant human Hsp70 and quantitative biochemical approaches, we found that high-affinity RNA binding requires at least 30 nucleotides of RNA sequence but is independent of Hsp70's nucleotide-bound status, ATPase activity, or peptide-binding roles. Furthermore, although both the ATP- and peptide-binding domains of Hsp70 could form complexes with an ARE sequence from VEGFA mRNA in vitro, only the peptide-binding domain could recover cellular VEGFA mRNA in ribonucleoprotein immunoprecipitations. Finally, Hsp70-directed stabilization of VEGFA mRNA in cells was mediated exclusively by the protein's peptide-binding domain. Together, these findings indicate that the RNA-binding and mRNA-stabilizing functions of Hsp70 are independent of its protein chaperone cycle but also provide potential mechanical explanations for several well-established and recently discovered cytoprotective and RNA-based Hsp70 functions.
Collapse
Affiliation(s)
- Aparna Kishor
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Elizabeth J F White
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Aerielle E Matsangos
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zisui Yan
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bishal Tandukar
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M Wilson
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
2
|
Figiel M, Krepl M, Poznanski J, Golab A, Šponer J, Nowotny M. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Res 2017; 45:3341-3352. [PMID: 28108662 PMCID: PMC5389522 DOI: 10.1093/nar/gkx004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Replication of human immunodeficiency virus 1 (HIV-1) involves conversion of its single-stranded RNA genome to double-stranded DNA, which is integrated into the genome of the host. This conversion is catalyzed by reverse transcriptase (RT), which possesses DNA polymerase and RNase H domains. The available crystal structures suggest that at any given time the RNA/DNA substrate interacts with only one active site of the two domains of HIV-1 RT. Unknown is whether a simultaneous interaction of the substrate with polymerase and RNase H active sites is possible. Therefore, the mechanism of the coordination of the two activities is not fully understood. We performed molecular dynamics simulations to obtain a conformation of the complex in which the unwound RNA/DNA substrate simultaneously interacts with the polymerase and RNase H active sites. When the RNA/DNA hybrid was immobilized at the polymerase active site, RNase H cleavage occurred, experimentally verifying that the substrate can simultaneously interact with both active sites. These findings demonstrate the existence of a transient conformation of the HIV-1 RT substrate complex, which is important for modulating and coordinating the enzymatic activities of HIV-1 RT.
Collapse
Affiliation(s)
- Malgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Golab
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jirí Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
3
|
Wang C, Feng B. Research progress on site-oriented and three-dimensional immobilization of protein. Mol Biol 2015. [DOI: 10.1134/s0026893315010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2. Mol Biotechnol 2015; 57:526-38. [DOI: 10.1007/s12033-015-9846-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Das K, Martinez SE, Bandwar RP, Arnold E. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res 2014; 42:8125-37. [PMID: 24880687 PMCID: PMC4081091 DOI: 10.1093/nar/gku487] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In synthesizing a double-stranded DNA from viral RNA, HIV-1 reverse transcriptase (RT) generates an RNA/DNA intermediate. RT also degrades the RNA strand and synthesizes the second DNA strand. The RNase H active site of RT functions as a nuclease to cleave the RNA strand; however, the structural basis for endonucleolytic cleavage of the RNA strand remains elusive. Here we report crystal structures of RT-RNA/DNA-dATP and RT-RNA/DNA-nevirapine (NVP) ternary complexes at 2.5 and 2.9 Å resolution, respectively. The polymerase region of RT-RNA/DNA-dATP complex resembles DNA/DNA ternary complexes apart from additional interactions of 2′-OH groups of the RNA strand. The conformation and binding of RNA/DNA deviates significantly after the seventh nucleotide versus a DNA/DNA substrate. Binding of NVP slides the RNA/DNA non-uniformly over RT, and the RNA strand moves closer to the RNase H active site. Two additional structures, one containing a gapped RNA and another a bulged RNA, reveal that conformational changes of an RNA/DNA and increased interactions with the RNase H domain, including the interaction of a 2′-OH with N474, help to position the RNA nearer to the active site. The structures and existing biochemical data suggest a nucleic acid conformation-induced mechanism for guiding cleavage of the RNA strand.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Sergio E Martinez
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Rajiv P Bandwar
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors. Antimicrob Agents Chemother 2014; 58:4086-93. [PMID: 24798282 DOI: 10.1128/aac.00056-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNase H plays an essential role in the replication of human immunodeficiency virus type 1 (HIV-1). Therefore, it is a promising target for drug development. However, the identification of HIV-1 RNase H inhibitors (RHIs) has been hampered by the open morphology of its active site, the limited number of available RNase H crystal structures in complex with inhibitors, and the fact that, due to the high concentrations of Mg(2+) needed for protein stability, HIV-1 RNase H is not suitable for nuclear magnetic resonance (NMR) inhibitor studies. We recently showed that the RNase H domains of HIV-1 and prototype foamy virus (PFV) reverse transcriptases (RTs) exhibit a high degree of structural similarity. Thus, we examined whether PFV RNase H can serve as an HIV-1 RNase H model for inhibitor interaction studies. Five HIV-1 RHIs inhibited PFV RNase H activity at low-micromolar concentrations similar to those of HIV-1 RNase H, suggesting pocket similarity of the RNase H domains. NMR titration experiments with the PFV RNase H domain and the RHI RDS1643 (6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester) were performed to determine its binding site. Based on these results and previous data, in silico docking analysis showed a putative RDS1643 binding region that reaches into the PFV RNase H active site. Structural overlays were performed with HIV-1 and PFV RNase H to propose the RDS1643 binding site in HIV-1 RNase H. Our results suggest that this approach can be used to establish PFV RNase H as a model system for HIV-1 RNase H in order to identify putative inhibitor binding sites in HIV-1 RNase H.
Collapse
|
7
|
|
8
|
Leo B, Schweimer K, Rösch P, Hartl MJ, Wöhrl BM. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology 2012; 9:73. [PMID: 22962864 PMCID: PMC3443672 DOI: 10.1186/1742-4690-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/10/2012] [Indexed: 11/13/2022] Open
Abstract
Background The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. Results The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. Conclusions The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
9
|
Leo B, Hartl MJ, Schweimer K, Mayr F, Wöhrl BM. Insights into the structure and activity of prototype foamy virus RNase H. Retrovirology 2012; 9:14. [PMID: 22325739 PMCID: PMC3305377 DOI: 10.1186/1742-4690-9-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNase H is an endonuclease that hydrolyzes the RNA strand in RNA/DNA hybrids. Retroviral reverse transcriptases harbor a C-terminal RNase H domain whose activity is essential for viral replication. The RNase H degrades the viral genomic RNA after the first DNA strand is synthesized. Here, we report the biophysical and enzymatic properties of the RNase H domain of prototype foamy virus (PFV) as an independently purified protein. Sequence comparisons with other retroviral RNases H indicated that PFV RNase H harbors a basic protrusion, including a basic loop and the so-called C-helix, which was suggested to be important for activity and substrate binding and is absent in the RNase H domain of human immunodeficiency virus. So far, no structure of a retroviral RNase H containing a C-helix is available. RESULTS RNase H activity assays demonstrate that the PFV RNase H domain is active, although its activity is about 200-fold reduced as compared to the full length protease-reverse transcriptase enzyme. Fluorescence equilibrium titrations with an RNA/DNA substrate revealed a KD for the RNase H domain in the low micromolar range which is about 4000-fold higher than that of the full-length protease-reverse transcriptase enzyme. Analysis of the RNase H cleavage pattern using a [32P]-labeled substrate indicates that the independent RNase H domain cleaves the substrate non-specifically. The purified RNase H domain exhibits a well defined three-dimensional structure in solution which is stabilized in the presence of Mg2+ ions. CONCLUSIONS Our data demonstrate that the independent PFV RNase H domain is structured and active. The presence of the C-helix in PFV RNase H could be confirmed by assigning the protein backbone and calculating the chemical shift index using NMR spectroscopy.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
10
|
Structural and inhibition studies of the RNase H function of xenotropic murine leukemia virus-related virus reverse transcriptase. Antimicrob Agents Chemother 2012; 56:2048-61. [PMID: 22252812 DOI: 10.1128/aac.06000-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn²⁺ and not Mg²⁺. Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by ∼3.4 Å. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from ∼0.8 to 0.02 μM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 Å) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.
Collapse
|
11
|
Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Antimicrob Agents Chemother 2011; 55:4735-41. [PMID: 21768506 DOI: 10.1128/aac.00658-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg(2+)-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar K(m)s for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H.
Collapse
|
12
|
Nikolenko GN, Kotelkin AT, Oreshkova SF, Ilyichev AA. Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Mol Biol 2011. [DOI: 10.1134/s0026893311010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
14
|
HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Viruses 2010; 2:900-926. [PMID: 21994660 PMCID: PMC3185654 DOI: 10.3390/v2040900] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/16/2022] Open
Abstract
Since the human immunodeficiency virus (HIV) was discovered as the etiological agent of acquired immunodeficiency syndrome (AIDS), it has encouraged much research into antiviral compounds. The reverse transcriptase (RT) of HIV has been a main target for antiviral drugs. However, all drugs developed so far inhibit the polymerase function of the enzyme, while none of the approved antiviral agents inhibit specifically the necessary ribonuclease H (RNase H) function of RT. This review provides a background on structure-function relationships of HIV-1 RNase H, as well as an outline of current attempts to develop novel, potent chemotherapeutics against a difficult drug target.
Collapse
|
15
|
Abstract
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
Collapse
Affiliation(s)
- James J Champoux
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
16
|
Bochner R, Duvshani A, Adir N, Hizi A. Mutagenesis of Gln294 of the reverse transcriptase of human immunodeficiency virus type-2 and its effects on the ribonuclease H activity. FEBS Lett 2008; 582:2799-805. [PMID: 18625228 DOI: 10.1016/j.febslet.2008.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 07/04/2008] [Indexed: 11/26/2022]
Abstract
Despite the high homology between human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) reverse transcriptases (RTs), the ribonuclease H (RNase H) level of HIV-2 RT is lower than that of HIV-1 RT, while the DNA polymerase of both RTs is similar. We conducted mutagenesis of HIV-2 RT Gln294 (shown to control the RNase H activity level when modified to a Pro in the smaller p54 subunit and not in the larger p68 subunit) to various residues, and assayed the activities of all mutants. All exhibited an RNase H that is higher than the wild-type (WT) HIV-2 RT level, although the DNA polymerase of all mutants equals WT HIV-2 RT level. These results represent a unique case, where every mutation induces an increase rather than a decrease in an enzyme's activity.
Collapse
Affiliation(s)
- R Bochner
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 62263, Israel
| | | | | | | |
Collapse
|
17
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 PMCID: PMC2464458 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J. Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| | - James J. Champoux
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Delviks-Frankenberry KA, Nikolenko GN, Barr R, Pathak VK. Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3'-azido-3'-deoxythymidine resistance. J Virol 2007; 81:6837-45. [PMID: 17428874 PMCID: PMC1933283 DOI: 10.1128/jvi.02820-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently observed that mutations in the human immunodeficiency type 1 (HIV-1) reverse transcriptase (RT) connection domain significantly increase 3'-azido-3'-deoxythymidine (AZT) resistance up to 536 times over wild-type (WT) RT in the presence of thymidine analog resistance mutations (TAMs). These mutations also decreased RT template switching, suggesting that they altered the balance between nucleotide excision and template RNA degradation, which in turn increased AZT resistance. Several residues in the HIV-1 connection domain contact the primer strand and form an RNase H primer grip structure that helps to position the primer-template at the RNase H and polymerase active sites. To test the hypothesis that connection domain mutations enhanced AZT resistance by influencing the RNase H primer grip, we determined the effects of alanine substitutions in RNase H primer grip residues on nucleoside RT inhibitor resistance in the context of a WT, TAM-containing, or K65R-containing polymerase domain. Ten of the 11 RNase H primer grip mutations increased AZT resistance 20 to 243 times above WT levels in the context of a TAM-containing polymerase domain. Furthermore, all mutations in the RNase H primer grip decreased template switching, suggesting that they reduced RNase H activity. These results demonstrate that mutations in the RNase H primer grip region can significantly enhance AZT resistance and support the hypothesis that mutations in the connection and RNase H domains can increase resistance by altering the RNase H primer grip region, changing interactions between RT and the template-primer complex and/or shifting the balance between the polymerase and RNase H activities.
Collapse
|
19
|
Lim D, Gregorio GG, Bingman C, Martinez-Hackert E, Hendrickson WA, Goff SP. Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol 2006; 80:8379-89. [PMID: 16912289 PMCID: PMC1563865 DOI: 10.1128/jvi.00750-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crystallographic study of the Moloney murine leukemia virus (Mo-MLV) RNase H domain was performed to provide information about its structure and mechanism of action. These efforts resulted in the crystallization of a mutant Mo-MLV RNase H lacking the putative helix C (DeltaC). The 1.6-Angstroms resolution structure resembles the known structures of the human immunodeficiency virus type 1 (HIV-1) and Escherichia coli RNase H. The structure revealed the coordination of a magnesium ion within the catalytic core comprised of the highly conserved acidic residues D524, E562, and D583. Surface charge mapping of the Mo-MLV structure revealed a high density of basic charges on one side of the enzyme. Using a model of the Mo-MLV structure superimposed upon a structure of HIV-1 reverse transcriptase bound to an RNA/DNA hybrid substrate, Mo-MLV RNase H secondary structures and individual amino acids were examined for their potential roles in binding substrate. Identified regions included Mo-MLV RNase H beta1-beta2, alphaA, and alphaB and residues from alphaB to alphaD and its following loop. Most of the identified substrate-binding residues corresponded with residues directly binding nucleotides in an RNase H from Bacillus halodurans as observed in a cocrystal structure with RNA/DNA. Finally, superimposition of RNases H of Mo-MLV, E. coli, and HIV-1 revealed that a loop of the HIV-1 connection domain resides within the same region of the Mo-MLV and E. coli C-helix. The HIV-1 connection domain may serve to recognize and bind the RNA/DNA substrate major groove.
Collapse
Affiliation(s)
- David Lim
- Integrated Program in Cellular, Molecular and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
20
|
Tachedjian G, Radzio J, Sluis-Cremer N. Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase. Proteins 2006; 60:5-13. [PMID: 15852304 DOI: 10.1002/prot.20480] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The multifunctional enzyme human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a heterodimer composed of a 66-kDa (p66) subunit and a p66-derived 51-kDa (p51) subunit. p66/p51 HIV-1 RT contains 1 functional DNA polymerase and 1 ribonuclease H (RNase H) active site, which both reside in the p66 subunit at spatially distinct regions. In this study, we have investigated the relationship between the heterodimeric structure of HIV-1 RT and its enzymatic properties by introducing mutations at RT codon W401 that inhibit the formation of p66/p51 heterodimers. We demonstrate a striking correlation between abrogation of both HIV-1 RT dimerization and DNA polymerase activity. In contrast, the p66 monomers exhibited only moderately slowed catalytic rates of DNA polymerase-dependent and DNA polymerase-independent RNase H cleavage activity compared with the wild-type (WT) enzyme. Furthermore, no major changes in the unique cleavage patterns were observed between the WT and mutant enzymes for the different substrates used in the RNase H cleavage assays. Based on these results, and on our current understanding of HIV-1 RT structure, we propose that the p66 monomer can adopt an open tertiary conformation that is similar to that observed for the subunit in the heterodimeric enzyme. We also propose that the formation of intersubunit interactions in HIV-1 RT regulates the establishment of a functional DNA polymerase active site.
Collapse
Affiliation(s)
- G Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
21
|
Gaidamakov SA, Gorshkova II, Schuck P, Steinbach PJ, Yamada H, Crouch RJ, Cerritelli SM. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain. Nucleic Acids Res 2005; 33:2166-75. [PMID: 15831789 PMCID: PMC1079969 DOI: 10.1093/nar/gki510] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/14/2022] Open
Abstract
Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA-DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.
Collapse
Affiliation(s)
- Sergei A. Gaidamakov
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Inna I. Gorshkova
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
- Protein Biophysics Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of the DirectorBethesda, MD 20892, USA
| | - Peter Schuck
- Protein Biophysics Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of the DirectorBethesda, MD 20892, USA
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Department of Health and Human ServicesBethesda, MD 20892, USA
| | - Hirofumi Yamada
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Robert J. Crouch
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| | - Susana M. Cerritelli
- Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentBethesda, MD 20892, USA
| |
Collapse
|
22
|
Julias JG, Boyer PL, McWilliams MJ, Alvord WG, Hughes SH. Mutations at position 184 of human immunodeficiency virus type-1 reverse transcriptase affect virus titer and viral DNA synthesis. Virology 2004; 322:13-21. [PMID: 15063112 DOI: 10.1016/j.virol.2004.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/29/2003] [Accepted: 01/08/2004] [Indexed: 11/24/2022]
Abstract
Methionine at position 184 of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) was changed to valine, isoleucine, threonine, or alanine in an HIV-1-based vector. The vectors were analyzed for replication capacity and for resistance to the nucleoside analog 2',3'-dideoxy-3'thiacytidine (3TC) using a single-cycle assay. Viruses containing the valine or isoleucine mutations were highly resistant to 3TC and replicated almost as well as the wild-type virus. The virus containing the threonine mutation was resistant to 3TC, but replicated about 30% as well as the wild-type. The alanine mutation conferred partial resistance to 3TC, but replicated poorly. The amounts of viral DNA synthesized decreased in 3TC-treated cells when the cells were infected with wild-type virus and the M184A mutant. The effect of these mutations on the generation of the ends of the linear viral DNA was determined using the sequence of the 2-LTR circle junctions. The M184T mutation increased the proportion of 2-LTR circle junctions containing a tRNA insertion, suggesting that the mutation affected the RNase H activity of RT.
Collapse
Affiliation(s)
- John G Julias
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
23
|
Hehl EA, Joshi P, Kalpana GV, Prasad VR. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol 2004; 78:5056-67. [PMID: 15113887 PMCID: PMC400328 DOI: 10.1128/jvi.78.10.5056-5067.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptase (RT) and integrase (IN) are two key catalytic enzymes encoded by all retroviruses. It has been shown that a specific interaction occurs between the human immunodeficiency virus type 1 (HIV-1) RT and IN proteins (X. Wu, H. Liu, H. Xiao, J. A. Conway, E. Hehl, G. V. Kalpana, V. R. Prasad, and J. C. Kappes, J. Virol. 73:2126-2135, 1999). We have now further examined this interaction to map the binding domains and to determine the effects of interaction on enzyme function. Using recombinant purified proteins, we have found that both a HIV-1 RT heterodimer (p66/p51) and its individual subunits, p51 and p66, are able to bind to HIV-1 IN. An oligomerization-defective mutant of IN, V260E, retained the ability to bind to RT, showing that IN oligomerization may not be required for interaction. Furthermore, we report that the C-terminal domain of IN, but not the N-terminal zinc-binding domain or the catalytic core domain, was able to bind to heterodimeric RT. Deletion analysis to map the IN-binding domain on RT revealed two separate IN-interacting domains: the fingers-palm domain and the carboxy-terminal half of the connection subdomain. The carboxy-terminal domain of IN alone retained its interaction with both the fingers-palm and the connection-RNase H fragments of RT, but not with the half connection-RNase H fragment. This interaction was not bridged by nucleic acids, as shown by micrococcal nuclease treatment of the proteins prior to the binding reaction. The influences of IN and RT on each other's activities were investigated by performing RT processivity and IN-mediated 3' processing and joining reactions in the presence of both proteins. Our results suggest that, while IN had no influence on RT processivity, RT stimulated the IN-mediated strand transfer reaction in a dose-dependent manner up to 155-fold. Thus, a functional interaction between these two viral enzymes may occur during viral replication.
Collapse
Affiliation(s)
- Eric A Hehl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
24
|
Julias JG, McWilliams MJ, Sarafianos SG, Alvord WG, Arnold E, Hughes SH. Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity. J Virol 2003; 77:8548-54. [PMID: 12857924 PMCID: PMC165255 DOI: 10.1128/jvi.77.15.8548-8554.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 05/03/2003] [Indexed: 01/18/2023] Open
Abstract
The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in a complex with an RNA-DNA template-primer identified amino acids in the connection domain that make specific contacts with the nucleic acid. We analyzed the effects of mutations in these amino acids by using a one-round HIV-1 vector. Mutations in amino acids in the connection domain generally had small effects on virus titers. To determine whether the mutations affected the level of RNase H activity or the specificity of RNase H cleavage, we used the two-long-terminal-repeat circle junction as a surrogate for the ends of linear viral DNA; specific RNase H cleavages determine the ends of the viral DNA. Several of the mutations in the connection domain affected the frequency of the generation of viral DNAs with aberrant ends. The mutation H361A had the largest effect on the titer and on the generation of DNAs with aberrant ends. H361 contacts the phosphate backbone of the nucleic acid in the same location as amino acid Y501 in the RNase H primer grip. Mutations at Y501 have been shown to decrease the virus titer and affect the specificity of RNase H cleavage. H361A affected the frequency of the generation of linear viral DNAs with aberrant ends, but in general the connection domain mutations had subtle effects on the efficiency of RNase H cleavage. The results of this study suggest that, in addition to its primary role in linking the polymerase and RNase H domains, the connection subdomain has a modest role in binding and positioning the nucleic acid.
Collapse
Affiliation(s)
- John G Julias
- HIV Drug Resistance Program, Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wisniewski M, Chen Y, Balakrishnan M, Palaniappan C, Roques BP, Fay PJ, Bambara RA. Substrate requirements for secondary cleavage by HIV-1 reverse transcriptase RNase H. J Biol Chem 2002; 277:28400-10. [PMID: 12023278 DOI: 10.1074/jbc.m201645200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During and after minus-strand DNA synthesis, human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) degrades the RNA genome. To remove RNA left after polymerization, the RT aligns to cut 18 nucleotides in from the 5' RNA end. The enzyme then repositions, making a secondary cut 8 nucleotides from the RNA 5' end. Transfer of the minus strong stop DNA during viral replication requires cleavage of template RNA. Removal of the terminal RNA segment is a special case because the RNA-DNA hybrid forms a blunt end, shown previously to resist cleavage when tested in vitro. We show here that the structure of the substrate extending beyond the RNA 5' end is an important determinant of cleavage efficiency. A short single-stranded DNA extension greatly stimulated the secondary cleavage. Annealing an RNA segment to the DNA extension was even more stimulatory. Recessing the DNA from a blunt end by even one nucleotide caused the RT to reorient its binding, preventing secondary cleavage. The presence of the cap at the 5' end of the viral RNA did not improve the efficiency of secondary cleavage. However, NC protein greatly facilitated the secondary cut on the blunt-ended substrate, suggesting that NC compensates for the unfavorable substrate structure.
Collapse
Affiliation(s)
- Michele Wisniewski
- Department of Biochemistry and Biophysics and the Cancer Center, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lim D, Orlova M, Goff SP. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. J Virol 2002; 76:8360-73. [PMID: 12134040 PMCID: PMC155118 DOI: 10.1128/jvi.76.16.8360-8373.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both the RNase H domain of Moloney murine leukemia virus (Mo-MLV) reverse transcriptase (RT) and Escherichia coli RNase H possess a positively charged alpha-helix (C helix) and a loop that are not present in the RNase H domains of human immunodeficiency virus (HIV) RT or avian sarcoma virus RT. Although a mutant Mo-MLV RT lacking the C helix (DeltaC RT) retains DNA polymerase activity on homopolymeric substrates and partial RNase H activity, reverse transcription of the viral RNA genome in vivo is defective. To identify the essential features of the C helix, a panel of Mo-MLV RT mutants was generated. Analyses of these mutant viruses revealed the importance of residues H594, I597, R601, and G602. The mutants were tested for their ability to synthesize viral DNA after acute infections and to form proper 5' and 3' viral DNA ends. The mutant RTs were tested in vitro for exogenous RT activity, minus-strand strong-stop DNA synthesis in endogenous RT reactions, nonspecific RNase H activity, and finally, proper cleavage at the polypurine tract-U3 junction. The R601A mutant was the most defective mutant both in vivo and in vitro and possessed very little RNase H activity. The H594A, I597A, and G602A mutants had significant reductions in RNase H activity and in their rates of viral replication. Many of the mutants formed improper viral DNA ends and were less efficient in PPT-U3 recognition and cleavage in vitro. The data show that the C helix plays a crucial role for overall RNase H cleavage activity. The data also suggest that the C helix may play an important role in polypurine tract recognition and proper formation of the plus-strand DNA's 5' end.
Collapse
Affiliation(s)
- David Lim
- Integrated Program in Cellular, Molecular and Biophysical Studies, Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
27
|
Snyder CS, Roth MJ. Assays for retroviral RNase H. Methods Enzymol 2002; 341:440-52. [PMID: 11582797 DOI: 10.1016/s0076-6879(01)41169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C S Snyder
- Department of Molecular Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | |
Collapse
|
28
|
Brincat JL, Pfeiffer JK, Telesnitsky A. RNase H activity is required for high-frequency repeat deletion during Moloney murine leukemia virus replication. J Virol 2002; 76:88-95. [PMID: 11739674 PMCID: PMC135712 DOI: 10.1128/jvi.76.1.88-95.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been postulated that retroviral recombination, like strong stop template switching, requires the RNase H activity of reverse transcriptase. To address this hypothesis, Moloney murine leukemia virus-based vectors, which were designed to test the recombination-related property of direct repeat deletion, were encapsidated in virions engineered to contain phenotypic mixtures of wild-type and RNase H catalytic site point mutant reverse transcriptase. Integrated provirus titers per milliliter were determined for these phenotypically mixed virions, and vector proviruses were screened to determine what percentage contained repeat deletions. The results revealed a steady decline in direct repeat deletion frequency that correlated with decreases in functional RNase H, with greater than fourfold decreases in repeat deletion frequency observed when 95% of virion reverse transcriptase was RNase H defective. Parallel experiments were performed to address effects of molar excesses of RNase H relative to functional DNA polymerase. These experiments demonstrated that increasing the stoichiometry of RNase H relative to the amount of functional DNA polymerase had minimal effects on direct repeat deletion frequency. DNA synthesis was error prone when directed principally by RNase H mutant reverse transcriptase, suggesting a role for RNase H catalytic integrity in the fidelity of intracellular reverse transcription.
Collapse
Affiliation(s)
- Jennifer L Brincat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | |
Collapse
|
29
|
Julias JG, Ferris AL, Boyer PL, Hughes SH. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 2001; 75:6537-46. [PMID: 11413321 PMCID: PMC114377 DOI: 10.1128/jvi.75.14.6537-6546.2001] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amount of excess polymerase and RNase H activity in human immunodeficiency virus type 1 virions was measured by using vectors that undergo a single round of replication. Vectors containing wild-type reverse transcriptase (RT), vectors encoding the D110E mutation to inactivate polymerase, and vectors encoding mutations D443A and E478Q to inactivate RNase H were constructed. 293 cells were cotransfected with different proportions of plasmids encoding these vectors to generate phenotypically mixed virions. The resulting viruses were used to infect human osteosarcoma cells, and the relative infectivity of the viruses was determined by measuring transduction of the murine cell surface marker CD24, which is encoded by the vectors. The results indicated that there is an excess of both polymerase and RNase H activities in virions. Viral replication was reduced to 42% of wild-type levels in virions with where half of the RT molecules were predicted to be catalytically active but dropped to 3% of wild-type levels when 25% of the RT molecules were active. However, reducing RNase H activity had a lesser effect on viral replication. As expected, based on previous work with murine leukemia virus, there was relatively inefficient virus replication when the RNase H and polymerase activities were encoded on separate vectors (D110E plus E478Q and D110E plus D443A). To determine how virus replication failed when polymerase and RNase H activities were reduced, reverse transcription intermediates were measured in vector-infected cells by using quantitative real-time PCR. The results indicated that using the D11OE mutation to reduce the amount of active polymerase reduced the number of reverse transcripts that were initiated and also reduced the amounts of products from the late stages of reverse transcription. If the E478Q mutation was used to reduce RNase H activity, the number of reverse transcripts that were initiated was reduced; there was also a strong effect on minus-strand transfer.
Collapse
Affiliation(s)
- J G Julias
- HIV Drug Resistance Program, NCI-Frederick, Building 539, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
30
|
Malik HS, Eickbush TH. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 2001; 11:1187-97. [PMID: 11435400 DOI: 10.1101/gr.185101] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have conducted a phylogenetic analysis of the Ribonuclease HI (RNH) domains present in Eubacteria, Eukarya, all long-term repeat (LTR)-bearing retrotransposons, and several late-branching clades of non-LTR retrotransposons. Analysis of this simple yet highly conserved enzymatic domain from these disparate sources provides surprising insights into the evolution of eukaryotic retrotransposons. First, it indicates that the lineage of elements leading to vertebrate retroviruses acquired a new RNH domain either from non-LTR retrotransposons or from a eukaryotic host genome. The preexisting retroviral RNH domain degenerated to become the tether (connection) domain of the reverse transcriptase (RT)-RNH complex. Second, it indicates that all LTR retrotransposons arose in eukaryotes well after the origin of the non-LTR retrotransposons. Because of the younger age of the LTR retrotransposons, their complex structure, and the absence of any prokaryotic precursors, we propose that the LTR retrotransposons originated as a fusion between a DNA-mediated transposon and a non-LTR retrotransposon. The resulting two-step mechanism of LTR retrotransposition, in which RNA is reverse transcribed away from the chromosomal target site, rather than directly onto the target site, was probably an adaptation to the uncoupling of transcription and translation in eukaryotic cells.
Collapse
Affiliation(s)
- H S Malik
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
31
|
Wisniewski M, Balakrishnan M, Palaniappan C, Fay PJ, Bambara RA. The sequential mechanism of HIV reverse transcriptase RNase H. J Biol Chem 2000; 275:37664-71. [PMID: 10956669 DOI: 10.1074/jbc.m007381200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of the minus strand of viral DNA by human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase is accompanied by RNase H degradation of the viral RNA genome. RNA fragments remain after synthesis and are degraded by the polymerase-independent mode of RNase H cleavage. Recently, we showed that this mode of cleavage occurs by a specific ordered mechanism in which primary cuts are first, secondary and 5-nucleotide cuts are next, and second primary cuts occur last (Wisniewski, M., Balakrishnan, M., Palaniappan, C., Fay, P., J., and Bambara, R., A. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 11978-11983). Ultimately the RNAs are cleaved into small fragments that can dissociate from the DNA template. Because the cleavage mechanism is an ordered series of events, we determined in this study whether any earlier cut is required for a later cut. By precisely inhibiting cleavage at each site, we examined the dependence of later cuts on cleavage at that site. We found that each cut is independent of the other cuts, demonstrating that the order of this stepwise mechanism is based on the rates of each cut. A mechanism for unlinked ordered cleavage consistent with these results is presented.
Collapse
Affiliation(s)
- M Wisniewski
- Department of Biochemistry and Biophysics and the Cancer Center, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
32
|
Böldicke T, Struck F, Schaper F, Tegge W, Sobek H, Villbrandt B, Lankenau P, Böcher M. A new peptide-affinity tag for the detection and affinity purification of recombinant proteins with a monoclonal antibody. J Immunol Methods 2000; 240:165-83. [PMID: 10854611 DOI: 10.1016/s0022-1759(00)00167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A monoclonal anti-peptide antibody (2E11) was raised against the synthetic peptide 38 (C-L-D-K-S-G-L-P-S-D-R-F-F-A) representing a part of the variable region of the Vbeta 6.2 T-cell receptor. This mAb (IgG(1), kappa light chain) bound very specifically to peptide 38 as shown by ELISA but did not recognize the corresponding native Vbeta 6.2 T-cell receptor on T-cells. For epitope analysis, overlapping peptides of 4-10 amino acids in length corresponding to the sequence of peptide 38 were synthesized and assayed by SPOT synthesis on cellulose sheets. The shortest peptide recognized was L-P-S-D-R. The specificity of mAb 2E11 was examined with 100 different peptides comprising other parts of the different variable Vbeta domains of the human T-cell receptor that do not include the epitope region L-P-S-D-R. None of these peptides were recognized. The chemical synthesis of a peptide with the sequence L-P-S-D-R on Sepharose beads allowed to efficiently purify the mAb 2E11 in a single step by affinity chromatography. An equilibrium binding constant of 4.9x10(6) l/mol was determined for mAb 2E11 by using rhodamine-green-labelled peptide 38 in fluorescence correlation spectroscopy. In order to demonstrate that peptide 38 can be used as an affinity-tag, it was fused to the carboxyl-terminus of interferon regulatory factor-1 (IRF-1). It could be shown that in vitro translated peptide 38 tagged IRF-1 was immunoprecipitated by the mAb 2E11 and that the fusion protein could be purified by immunoaffinity chromatography. Additionally peptide 38 was fused to the amino-terminus of the Taq polymerase. This recombinant protein was expressed in E. coli and specifically detected in a Dot blot and Western blot using mAb 2E11.
Collapse
Affiliation(s)
- T Böldicke
- Gesellschaft für Biotechnologische Forschung mbH, Department of Applied Genetics, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith CM, Leon O, Smith JS, Roth MJ. Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain. J Virol 1998; 72:6805-12. [PMID: 9658129 PMCID: PMC109889 DOI: 10.1128/jvi.72.8.6805-6812.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviral reverse transcriptase-associated RNase H enzymes are responsible for degradation of viral RNA, including removal of the tRNA primer after plus-strand strong-stop synthesis and cleavage of the polypurine tract primer. These activities are required for the complex viral replication and result in generation of the long terminal repeats. The human immunodeficiency virus type 1 (HIV-1) RNase H domain has been expressed independently of the polymerase domain and possesses Mn2+-dependent activity with a hexahistidine tag. The isolated domain maintains the ability to specifically remove a tRNA primer mimic. In this study, the substrate determinants for recognition of the cognate tRNA3Lys are defined. Model substrates were constructed which mimic the RNA-DNA hybrid obtained from plus-strand strong-stop synthesis. Deletion substrates containing only 12, 9, or 6 positions of the tRNA primer were capable of being cleaved by the isolated RNase H domain. Mismatch and bromodeoxyuridine mutagenesis analysis indicated that positions 2, 3, 4, and 6, when mutated, affected the specificity of RNase H activity. Substitution substrates indicated that positions 4 and 6 within the RNA primer were important for recognition and cleavage by the HIV-1 isolated RNase H domain. Moloney murine leukemia virus-HIV-1 hybrid substrates were constructed which demonstrated that changes to HIV-1 sequences at positions 4 and 6 were sufficient but not optimal for regaining cleavage by the isolated HIV-1 RNase H domain. Optimal site-specific cleavage between the terminal ribonucleotide A and ribonucleotide C requires additional sequences beyond the first six positions but less than nine.
Collapse
Affiliation(s)
- C M Smith
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
34
|
Zhan X, Crouch RJ. The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity. J Biol Chem 1997; 272:22023-9. [PMID: 9268341 DOI: 10.1074/jbc.272.35.22023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral RNases H are similar in sequence and structure to Escherichia coli RNase HI and yet have differences in substrate specificities, metal ion requirements, and specific activities. Separation of reverse transcriptase (RT) into polymerase and RNase H domains yields an active RNase H from murine leukemia virus (MuLV) but an inactive human immunodeficiency virus (HIV) RNase H. The "handle region" present in E. coli RNase HI but absent in HIV RNase H contributes to the binding to its substrate and when inserted into HIV RNase H results in an active enzyme retaining some degree of specificity. Here, we show MuLV protein containing the C-terminal 175 amino acids with its own handle region or that of E. coli RNase HI has the same specific activity as the RNase H of RT, retains a preference for Mn2+ as the cation required for activity, and has association rate (KA) 10% that of E. coli RNase HI. However, with model substrates, specificities for removal of the tRNAPro primer and polypurine tract stability are lost, indicating specificity of RNase H of MuLV requires the remainder of the RT. Differences in KA, while significant, appear insufficient to account for the differences in specific activities of the bacterial and viral RNases H.
Collapse
Affiliation(s)
- X Zhan
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Palaniappan C, Wisniewski M, Jacques PS, Le Grice SF, Fay PJ, Bambara RA. Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function. J Biol Chem 1997; 272:11157-64. [PMID: 9111014 DOI: 10.1074/jbc.272.17.11157] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus (HIV) DNA synthesis is accompanied by degradation of genomic RNA by the RNase H of reverse transcriptase (RT). Two different modes of RNase H activity appear necessary for complete RNA removal. In one, occurring during minus strand synthesis, positioning of the RNase H is determined by binding of the polymerase active site to the DNA 3'-end. In the other, used for removal of remaining RNA fragments, positioning of RT for RNase H-directed cleavage is determined by the RNA 5'-ends. We attempted to identify RT amino acids responsible for these modes of positioning. Twelve RT mutants, each with one alanine replacement in residues 224 to 235, known as the primer grip region, were examined for catalytic abilities. Six of the examined primer grip mutants, although distant from the RNase H active site were altered in their ability to cleave RNA. The mutants P226A, F227A, G231A, Y232A, E233A, and H235A failed to perform RNA 5'-end-directed RNase H cleavage in heparin-challenged reactions. The last four mutants also lacked DNA synthesis and DNA 3'-end-directed RNase H cleavage activities in challenged reactions. Since mutants P226A and F227A carried out these latter reactions normally, these two residues specifically influence 5'-RNA-directed RNase H catalysis.
Collapse
Affiliation(s)
- C Palaniappan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
36
|
Smith CM, Potts WB, Smith JS, Roth MJ. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases. Virology 1997; 229:437-46. [PMID: 9126256 DOI: 10.1006/viro.1997.8454] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RNA-DNA hybrid model substrates which mimic an intermediate of Moloney murine leukemia virus (M-MuLV) reverse transcription at the stage where the tRNAPro is removed were constructed. This substrate was used to assay the ability of M-MuLV reverse transcriptase (RT) to cleave the RNA portion of the substrate. The cleavage specificities of the cognate M-MuLV RT and the heterologous enzyme from the human immunodeficiency virus type-1 (HIV-1) were compared. M-MuLV and HIV-1 RT recognize and cleave the RNA at distinct positions. The site of the initial RNase H cleavage in vitro was determined using 3' end nearest neighbor analysis of the initial cleavage product. M-MuLV RT/RNase H removed the model tRNAPro between the terminal ribo-A and ribo-C, resulting in a terminal ribo-A attached to the viral DNA, whereas HIV-1 RT/RNase H was shown to cleave at the RNA-DNA junction. Analysis of the DNA over time indicated that the ribo-A is subsequently removed by M-MuLV RT. In vivo analysis from double-LTR circle junctions illustrated that 16 of the 23 clones isolated possessed the predicted junction if complete removal of the tRNA primer were to occur. The predicted junction for complete removal of the tRNA primer was CATT-AATG. One aberrant circle junction was isolated which could result from the use of an alternative primer. In contrast with HIV, no M-MuLV circle junctions were isolated which indicated processing of a single-LTR terminus by integrase. Analysis from in vivo and in vitro studies indicate that the M-MuLV tRNAPro primer is completely removed after plus-strand strong-stop synthesis.
Collapse
Affiliation(s)
- C M Smith
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | |
Collapse
|
37
|
Schultz SJ, Champoux JJ. RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity. J Virol 1996; 70:8630-8. [PMID: 8970988 PMCID: PMC190956 DOI: 10.1128/jvi.70.12.8630-8638.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The reverse transcriptase-associated RNase H activity of Moloney murine leukemia virus specifically cleaves within the polypurine tract region of the viral genome to generate the primer for plus-strand DNA synthesis and removes the tRNA primer after minus-strand initiation by preferentially cleaving the RNA one nucleotide before the RNA-DNA junction. Moreover, the enzyme is unable to cleave the extended tRNA substrate at the RNA-DNA junction even at high enzyme concentrations. The RNase H domain of the reverse transcriptase was expressed as a glutathione S-transferase fusion protein and purified from Escherichia coli extracts. Following removal of the glutathione S-transferase portion of the protein, the specificity of the isolated RNase H domain was determined in the plus-strand primer reaction and in the tRNA primer removal reaction. Although the isolated domain lacked specificity in both cases, it was still unable to cleave the tRNA substrate precisely at the RNA-DNA junction. Specificity in both cases could be restored by adding back a truncated form of Moloney murine leukemia virus reverse transcriptase lacking the RNase H domain. These results implicate the polymerase domain as a specificity determinant for the RNase H activity of reverse transcriptase. The isolated RNase H domain had higher activity in the presence of Mn2+ than in the presence of Mg2+, but neither the RNase H domain alone nor the RNase H domain coupled to the polymerase domain in wild-type protein exhibited the normal cleavage specificities in the presence of the nonphysiological divalent cation.
Collapse
Affiliation(s)
- S J Schultz
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195-7242, USA
| | | |
Collapse
|