1
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
2
|
Li Y, Shen S, Guo H, Zhang Z, Zhang L, Yang Q, Gao Y, Niu J, Wei W. Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Front Microbiol 2021; 12:706241. [PMID: 34733242 PMCID: PMC8559978 DOI: 10.3389/fmicb.2021.706241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long interspersed element 1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome that can serve as an endogenous upstream activator of cytoplasmic nucleic acid sensing pathways to elicit an antiviral immune response. In this study, we investigated the influence of enteroviral infection on L1 mobility. The results showed that infection with different enteroviruses, both EV-D68 and EV-A71, blocked L1 transposition. We screened diverse viral accessory proteins for L1 activity and identified EV-D68 2A, 3A, 3C, and EV-A71 ORF2p proteins as viral L1 inhibitors. EV-D68 2A suppressed L1 mobility by expression suppression of L1 proteins. Viral proteins 3A and 3C restricted ORF2p-mediated L1 reverse transcription in isolated L1 ribonucleoproteins. The newly identified enteroviral protein ORF2p inhibited the expression of L1 ORF1p. Altogether, our findings shed light on the strict modulation of L1 retrotransposons during enterovirus replication.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
3
|
Li Z, Cui B, Liu X, Wang L, Xian Q, Lu Z, Liu S, Cao Y, Zhao Y. Virucidal activity and the antiviral mechanism of acidic polysaccharides against Enterovirus 71 infection in vitro. Microbiol Immunol 2020; 64:189-201. [PMID: 31785100 DOI: 10.1111/1348-0421.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023]
Abstract
Enterovirus 71 (EV71) is the predominant pathogen for severe hand, foot, and mouth disease (HFMD) in children younger than 5 years, and currently no effective drugs are available for EV71. Thus, there is an urgent need to develop new drugs for the control of EV71 infection. In this study, LJ04 was extracted from Laminaria japonica using diethylaminoethyl cellulose-52 with 0.4 mol/l NaCl as the eluent, and its virucidal activity was evaluated based on its cytopathic effects on a microplate. LJ04 is composed of fucose, galactose, and mannose and mainly showed good virucidal activity against EV71. The antiviral mechanisms of LJ04 were the direct inactivation of the virus, the blockage of virus binding, disruptions to viral entry, and weak inhibitory activity against the nonstructural protein 3C. The two most important findings from this study were that LJ04 inhibited EV71 proliferation in HM1900 cells, which are a human microglia cell line, and that LJ04 can directly inactivate EV71 within 2 hr at 37°C. This study demonstrates for the first time the ability of a polysaccharide from L. japonica to inhibit viral and 3C activity; importantly, the inhibition of 3C might have a minor effect on the antiviral effect of LJ04. Consequently, our results identify LJ04 as a potential drug candidate for the control of severe EV71 infection in clinical settings.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Bin Cui
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaowen Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Laicheng Wang
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qingjie Xian
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Zhaoxi Lu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Shuntao Liu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yinguang Cao
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Exploration of sequence space as the basis of viral RNA genome segmentation. Proc Natl Acad Sci U S A 2014; 111:6678-83. [PMID: 24757055 DOI: 10.1073/pnas.1323136111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region. These genomes were infectious and killed cells by complementation. Here we show that the point mutations in the nonstructural protein-coding region (P2, P3) that accumulated in the standard genome before segmentation increased the relative fitness of the segmented version relative to the standard genome. Fitness increase was documented by intracellular expression of virus-coded proteins and infectious progeny production by RNAs with the internal deletions placed in the sequence context of the parental and evolved genome. The complementation activity involved several viral proteins, one of them being the leader proteinase L. Thus, a history of genetic drift with accumulation of point mutations was needed to allow a major variation in the structure of a viral genome. Thus, exploration of sequence space by a viral genome (in this case an unsegmented RNA) can reach a point of the space in which a totally different genome structure (in this case, a segmented RNA) is favored over the form that performed the exploration.
Collapse
|
6
|
Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 2013; 110:E838-47. [PMID: 23401522 DOI: 10.1073/pnas.1218464110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
Collapse
|
7
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
8
|
Sanz MA, Welnowska E, Redondo N, Carrasco L. Translation driven by picornavirus IRES is hampered from Sindbis virus replicons: rescue by poliovirus 2A protease. J Mol Biol 2010; 402:101-17. [PMID: 20643140 DOI: 10.1016/j.jmb.2010.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023]
Abstract
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5'-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2A(pro)) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2A(pro) variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2A(pro) or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2A(pro). These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM,C/Nicolás Cabrera, 1,Universidad Autónoma,Cantoblanco, 28049 Madrid,Spain.
| | | | | | | |
Collapse
|
9
|
Castelló A, Franco D, Moral-López P, Berlanga JJ, Álvarez E, Wimmer E, Carrasco L. HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage. PLoS One 2009; 4:e7997. [PMID: 19956697 PMCID: PMC2776998 DOI: 10.1371/journal.pone.0007997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022] Open
Abstract
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - David Franco
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Pablo Moral-López
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Juan J. Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Enrique Álvarez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Eckard Wimmer
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
- * E-mail:
| |
Collapse
|
10
|
Morrison JM, Racaniello VR. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 2009; 83:4412-22. [PMID: 19211759 PMCID: PMC2668472 DOI: 10.1128/jvi.02177-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022] Open
Abstract
The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells. The enteroviral 2A proteinase (2A(pro)) is essential for replication in cells pretreated with interferon, because amino acid changes in this protein render poliovirus sensitive to IFN-alpha. The addition of the poliovirus 2A(pro) gene to the EMCV genome allowed EMCV to replicate in IFN-alpha-pretreated cells. These results support an inhibitory role for 2A(pro) in the most downstream event in interferon signaling, the antiviral activities of ISGs.
Collapse
Affiliation(s)
- Juliet M Morrison
- Department of Microbiology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | |
Collapse
|
11
|
Sanz MA, Castelló A, Carrasco L. Viral translation is coupled to transcription in Sindbis virus-infected cells. J Virol 2007; 81:7061-8. [PMID: 17442713 PMCID: PMC1933293 DOI: 10.1128/jvi.02529-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the late phase of Sindbis virus infection, the viral subgenomic mRNA is translated efficiently in BHK cells, whereas host protein synthesis is inhibited. However, transfection of in vitro-generated Sindbis virus subgenomic mRNA leads to efficient translation in uninfected BHK cells, whereas it is a poor substrate in infected cells. Therefore, the structure of the subgenomic mRNA itself is not sufficient to confer its translatability in infected cells. In this regard, translation of the subgenomic mRNA requires synthesis from the viral transcription machinery. The lack of translation of transfected viral mRNAs in infected cells is not due to their degradation nor is it a consequence of competition between viral transcripts and transfected mRNAs, because a replicon that cannot produce subgenomic mRNA also interferes with exogenous mRNA translation. Interestingly, subgenomic mRNA is translated more efficiently when it is transfected into uninfected cells than when it is transcribed from a transfected replicon. Finally, a similar behavior was observed for other RNA viruses, such as vesicular stomatitis virus and encephalomyocarditis virus. These findings support the notion that translation is coupled to transcription in cells infected with different animal viruses.
Collapse
Affiliation(s)
- Miguel A Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
12
|
Differential inhibition of cellular and Sindbis virus translation by brefeldin A. Virology 2007; 363:430-6. [PMID: 17360015 DOI: 10.1016/j.virol.2007.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/04/2007] [Accepted: 02/01/2007] [Indexed: 11/29/2022]
Abstract
Brefeldin A is a macrolide compound that interferes with the secretory pathway and also affects protein synthesis in mammalian cells. As a result, this antibiotic impedes the maturation of viral glycoproteins of enveloped viruses and viral genome replication in several virus species. In the present work, we show that translation of subgenomic mRNA from Sindbis virus, which in contrast to cellular translation is resistant to brefeldin A after prolonged treatment. The phosphorylation of eIF2alpha as a result of brefeldin A treatment correlates with the inhibition of cellular translation, while late viral protein synthesis is resistant to this phosphorylation. The effect of brefeldin A on Sindbis virus replication was also examined using a Sindbis virus replicon. Although brefeldin A delayed viral RNA synthesis, translation by non-replicative viral RNAs was not affected, reinforcing the idea that brefeldin A delays viral RNA replication, but does not directly affect Sindbis virus protein synthesis.
Collapse
|
13
|
Berlanga JJ, Ventoso I, Harding HP, Deng J, Ron D, Sonenberg N, Carrasco L, de Haro C. Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses. EMBO J 2006; 25:1730-40. [PMID: 16601681 PMCID: PMC1440839 DOI: 10.1038/sj.emboj.7601073] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 03/09/2006] [Indexed: 01/09/2023] Open
Abstract
In mammals, four different protein kinases, heme-regulated inhibitor, double-stranded RNA-dependent protein kinase (PKR), general control non-derepressible-2 (GCN2) and PKR-like endoplasmic reticulum kinase, regulate protein synthesis in response to environmental stresses by phosphorylating the alpha-subunit of the initiation factor 2 (eIF2alpha). We now report that mammalian GCN2 is specifically activated in vitro upon binding of two nonadjacent regions of the Sindbis virus (SV) genomic RNA to its histidyl-tRNA synthetase-related domain. Moreover, endogenous GCN2 is activated in cells upon SV infection. Strikingly, fibroblasts derived from GCN2-/- mice possess an increased permissiveness to SV or vesicular stomatitis virus infection. We further show that mice lacking GCN2 are extremely susceptible to intranasal SV infection, demonstrating high virus titers in the brain compared to similarly infected control animals. The overexpression of wild-type GCN2, but not the catalytically inactive GCN2-K618R variant, in NIH 3T3 cells impaired the replication of a number of RNA viruses. We determined that GCN2 inhibits SV replication by blocking early viral translation of genomic SV RNA. These findings point to a hitherto unrecognized role of GCN2 as an early mediator in the cellular response to RNA viruses.
Collapse
Affiliation(s)
- Juan J Berlanga
- Centro de Biología Molecular ‘Severo Ochoa', CSIC-UAM, Facultad de Ciencias, Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Ventoso
- Centro de Biología Molecular ‘Severo Ochoa', CSIC-UAM, Facultad de Ciencias, Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Heather P Harding
- Skirball Institute, Departments of Medicine and Cell Biology and the Kaplan Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Jing Deng
- Skirball Institute, Departments of Medicine and Cell Biology and the Kaplan Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - David Ron
- Skirball Institute, Departments of Medicine and Cell Biology and the Kaplan Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Luis Carrasco
- Centro de Biología Molecular ‘Severo Ochoa', CSIC-UAM, Facultad de Ciencias, Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - César de Haro
- Centro de Biología Molecular ‘Severo Ochoa', CSIC-UAM, Facultad de Ciencias, Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa', CSIC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain. Tel.: +34 91 4978 432; Fax: +34 91 4974 799; E-mail:
| |
Collapse
|
14
|
Ventoso I, Sanz MA, Molina S, Berlanga JJ, Carrasco L, Esteban M. Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev 2006; 20:87-100. [PMID: 16391235 PMCID: PMC1356103 DOI: 10.1101/gad.357006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian kinases that phosphorylates the translation initiation factor 2alpha in response to virus infection. This kinase is induced by interferon and activated by double-stranded RNA (dsRNA). Phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) blocks translation initiation of both cellular and viral mRNA, inhibiting virus replication. To counteract this effect, most viruses express inhibitors that prevent PKR activation in infected cells. Here we report that PKR is highly activated following infection with alphaviruses Sindbis (SV) and Semliki Forest virus (SFV), leading to the almost complete phosphorylation of eIF2alpha. Notably, subgenomic SV 26S mRNA is translated efficiently in the presence of phosphorylated eIF2alpha. This modification of eIF2 does not restrict viral replication; SV 26S mRNA initiates translation with canonical methionine in the presence of high levels of phosphorylated eIF2alpha. Genetic and biochemical data showed a highly stable RNA hairpin loop located downstream of the AUG initiator codon that is necessary to provide translational resistance to eIF2alpha phosphorylation. This structure can stall the ribosomes on the correct site to initiate translation of SV 26S mRNA, thus bypassing the requirement for a functional eIF2. Our findings show the existence of an alternative way to locate the ribosomes on the initiation codon of mRNA that is exploited by a family of viruses to counteract the antiviral effect of PKR.
Collapse
Affiliation(s)
- Iván Ventoso
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología/CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Castelló A, Sanz MA, Molina S, Carrasco L. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. J Mol Biol 2005; 355:942-56. [PMID: 16343528 DOI: 10.1016/j.jmb.2005.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
16
|
Alvarez E, Menéndez-Arias L, Carrasco L. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J Virol 2004; 77:12392-400. [PMID: 14610163 PMCID: PMC262572 DOI: 10.1128/jvi.77.23.12392-12400.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation factor eIF4G plays a central role in the regulation of translation. In picornaviruses, as well as in human immunodeficiency virus type 1 (HIV-1), cleavage of eIF4G by the viral protease leads to inhibition of protein synthesis directed by capped cellular mRNAs. In the present work, cleavage of both eIF4GI and eIF4GII has been analyzed by employing the proteases encoded within the genomes of several members of the family Retroviridae, e.g., Moloney murine leukemia virus (MoMLV), mouse mammary tumor virus, human T-cell leukemia virus type 1, HIV-2, and simian immunodeficiency virus. All of the retroviral proteases examined were able to cleave the initiation factor eIF4GI both in intact cells and in cell-free systems, albeit with different efficiencies. The eIF4GI hydrolysis patterns obtained with HIV-1 and HIV-2 proteases were very similar to each other but rather different from those obtained with MoMLV protease. Both eIF4GI and eIF4GII were cleaved very efficiently by the MoMLV protease. However, eIF4GII was a poor substrate for HIV proteases. Proteolytic cleavage of eIF4G led to a profound inhibition of cap-dependent translation, while protein synthesis driven by mRNAs containing internal ribosome entry site elements remained unaffected or was even stimulated in transfected cells.
Collapse
Affiliation(s)
- Enrique Alvarez
- Centro de Biología Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
17
|
He Y, Yan W, Coito C, Li Y, Gale M, Katze MG. The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 2003; 84:535-543. [PMID: 12604803 DOI: 10.1099/vir.0.18658-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV), the global leading cause of chronic liver disease, has a positive-sense, ssRNA genome that encodes a large polyprotein. HCV polyprotein translation is initiated by an internal ribosome-entry site (IRES) located at the 5' end of the viral genome, in a cap-independent manner, but the regulatory mechanism of this process remains poorly understood. In this study, we characterized the effect of HCV nonstructural proteins on HCV IRES-directed translation in both HCV replicon cells and transiently transfected human liver cells expressing HCV nonstructural proteins. Using bicistronic reporter gene constructs carrying either HCV or other viral IRES sequences, we found that the HCV IRES-mediated translation was specifically upregulated in HCV replicon cells. This enhancement of HCV IRES-mediated translation by the replicon cells was inhibited by treatment with either type I interferon or ribavirin, drugs that perturb HCV genome replication, suggesting that the enhancement is probably due to HCV-encoded protein function(s). Reduced phosphorylation levels of both eIF2alpha and eIF4E were observed in the replicon cells, which is consistent with our previous findings and indicates that the NS5A nonstructural protein may be involved in the regulatory mechanism(s). Indeed, transient expression of NS5A or NS4B in human liver cells stimulated HCV IRES activity. Interestingly, mutation in the ISDR of NS5A perturbed this stimulation of HCV IRES activity. All these results suggest, for the first time, that HCV nonstructural proteins preferentially stimulate the viral cap-independent, IRES-mediated translation.
Collapse
Affiliation(s)
- Yupeng He
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Wei Yan
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos Coito
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yu Li
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael G Katze
- Regional Primate Research Center, University of Washington, Seattle, WA, USA
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Li X, Lu HH, Mueller S, Wimmer E. The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 2001; 82:397-408. [PMID: 11161279 DOI: 10.1099/0022-1317-82-2-397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus proteinase 2A(pro) is an essential enzyme involved in cleavages of viral and cellular proteins during the infectious cycle. Evidence has been obtained that 2A(pro) is also involved in genome replication. All enteroviruses have a negatively charged cluster of amino acids at their C terminus (E(E)/(D)(E)/(D)AMEQ-NH(2)), a common motif suggesting function. When aligned with enterovirus sequences, the 2A(pro) proteinase of human rhinovirus type 2 (HRV2) has a shorter C terminus (EE.Q:-NH(2)) and, indeed, the HRV2 2A(pro) cannot substitute for poliovirus 2A(pro) to yield a viable chimeric virus. Here evidence is provided that the C-terminal cluster of amino acids plays an unknown role in poliovirus genome replication. Deletion of the EEAME sequence from poliovirus 2A(pro) is lethal without significantly influencing proteinase function. On the other hand, addition of EAME to HRV2 2A(pro), yielding a C terminus of this enzyme of EEEAMEQ:, stimulated RNA replication of a poliovirus/HRV2 chimera 100-fold. The novel role of the C-terminal sequence motif is manifested at the level of protein function, since silent mutations in its coding region had no effect on virus proliferation. Poliovirus type 1 Mahoney 2A(pro) could be provided in trans to rescue the lethal deletion EEAME in the poliovirus variant. Encapsidation studies left open the question of whether the C terminus of poliovirus 2A(pro) is involved in particle formation. It is concluded that the C terminus of poliovirus 2A(pro) is an essential domain for viral RNA replication but is not essential for proteolytic processing.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Hui-Hua Lu
- Biochemistry and Molecular Biology, Chiron Corporation, Emeryville, CA 94608, USA2
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| |
Collapse
|
19
|
Rowe A, Ferguson GL, Minor PD, Macadam AJ. Coding changes in the poliovirus protease 2A compensate for 5'NCR domain V disruptions in a cell-specific manner. Virology 2000; 269:284-93. [PMID: 10753707 DOI: 10.1006/viro.2000.0244] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polioviruses are single-stranded RNA viruses with an unusually long noncoding region (NCR) at the 5' end predicted to have an elaborate secondary structure made up of six domains. Mutations in domain V of the poliovirus 5'NCR that disrupt secondary structure are responsible for attenuation of the virus and a temperature-sensitive (ts) phenotype in vitro. In addition to direct back mutation or compensatory second site mutation in the 5'NCR as previously documented, the ts phenotype was found to be compensated for in monkey kidney cells in vitro by a coding change in the protease 2A. These coding changes were found throughout the protease with no obvious pattern or trend. They were not all found to be equivalent and limited in ability to compensate for the severest domain V disruption. The compensatory effect of the 2A changes was found to be cell specific, having no effect on monkey neurovirulence and in a mouse cell line but a significant effect in two monkey cell lines and a human epithelial line.
Collapse
Affiliation(s)
- A Rowe
- Department of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, EN6 3QG, United Kingdom
| | | | | | | |
Collapse
|
20
|
Barco A, Feduchi E, Carrasco L. A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression. J Virol 2000; 74:2383-92. [PMID: 10666269 PMCID: PMC111720 DOI: 10.1128/jvi.74.5.2383-2392.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2A(pro)) under the control of tetracycline has been obtained. Synthesis of 2A(pro) induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2A(pro) cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2A(pro), prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2A(pro) still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2A(pro). Moreover, synthesis of 2A(pro) in 2A7d cells complements the translational defect of a poliovirus 2A(pro)-defective variant. These results show that poliovirus 2A(pro) expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2A(pro) functions, to complement poliovirus 2A(pro) mutants, and to test antiviral compounds.
Collapse
Affiliation(s)
- A Barco
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
21
|
Novoa I, Carrasco L. Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2Apro in HeLa cells: effects on gene expression. Mol Cell Biol 1999; 19:2445-54. [PMID: 10082510 PMCID: PMC84037 DOI: 10.1128/mcb.19.4.2445] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient cleavage of both forms of eukaryotic initiation factor 4G (eIF4G-1 and eIF4G-2) has been achieved in HeLa cells by incubation with hybrid proteins containing poliovirus 2Apro. Entry of these proteins into cells is promoted by adenovirus particles. Substantial levels of ongoing translation on preexisting cellular mRNAs still continue for several hours after eIF4G degradation. Treatment of control HeLa cells with hypertonic medium causes an inhibition of translation that is reversed upon restoration of cells to normal medium. Protein synthesis is not restored in cells lacking intact eIF4G after hypertonic treatment. Notably, induction of synthesis of heat shock proteins still occurs in cells pretreated with poliovirus 2Apro, suggesting that transcription and translation of these mRNAs takes place even in the presence of cleaved eIF4G. Finally, the synthesis of luciferase was examined in a HeLa cell line bearing the luciferase gene under control of a tetracycline-regulated promoter. Transcription of the luciferase gene and transport of the mRNA to the cytoplasm occurs at control levels in eIF4G-deficient cells. However, luciferase synthesis is strongly inhibited in these cells. These findings indicate that intact eIF4G is necessary for the translation of mRNAs not engaged in translation with the exception of heat shock mRNAs but is not necessary for the translation of mRNAs that are being translated.
Collapse
Affiliation(s)
- I Novoa
- Centro de Biología Molecular, UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
22
|
Abstract
The yeast two-hybrid system has been used to identify mammalian clones that interact with poliovirus 2A proteinase (2Apro). Eight clones which encode previously unidentified human proteins were selected from a HeLa cell cDNA expression library. In addition, five clones encoding short peptides that interact with poliovirus 2Apro were also identified. The lengths of these peptides range from 6 to 30 amino acids, but all of them contain the Leu-X-Thr-Z motif (X represents any amino acid; Z represents a hydrophobic residue). This sequence is invariably located just at the carboxy terminus of each peptide. This approach raises the possibility of designing substrate analogue inhibitors of 2Apro. Thus, two nonhydrolyzable peptides containing the Leu-X-Thr-Z motif prevented cleavage of eukaryotic initiation factor 4G by poliovirus 2Apro in vitro. A more general method for identifying peptides with antiproteinase activity is discussed.
Collapse
Affiliation(s)
- I Ventoso
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | |
Collapse
|
23
|
Ventoso I, Barco A, Carrasco L. Mutational analysis of poliovirus 2Apro. Distinct inhibitory functions of 2apro on translation and transcription. J Biol Chem 1998; 273:27960-7. [PMID: 9774410 DOI: 10.1074/jbc.273.43.27960] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient expression of poliovirus 2Apro in mammalian cells by means of the recombinant vaccinia virus vT7 expression system leads to drastic inhibition of both cellular and vaccinia virus gene expression (Aldabe, R., Feduchi, E., Novoa, I., and Carrasco, L. (1995) FEBS Lett. 377, 1-5; Aldabe, R., Feduchi, E., Novoa, I., and Carrasco, L. (1995) Biochem. Biophys. Res. Commun. 215, 928-936). To obtain further insights into the molecular basis of this inhibition, a number of 2Apro variants were generated and expressed in COS-1 cells. The effect of these variants on cellular translation, on vaccinia virus-specific translation, and on transcription of the reporter gene luciferase was analyzed. The ability of the different 2Apro variants to block cellular translation depends on their capacities to cleave eIF-4G. The blockade exerted by 2Apro on transcription of the luciferase gene reinforces the notion that this protease is a potent inhibitor of RNA polymerase II-mediated transcription. Some of the 2Apro variants tested failed to block luciferase transcription, despite the fact that eIF-4G cleavage and inhibition of translation were observed. Two reconstituted polioviruses mutated in 2Apro were defective in inhibiting luciferase transcription, yet were still able to cleave eIF-4G and block translation. These findings indicate that 2Apro interferes with cellular gene expression at both the transcriptional and translational levels. Moreover, these two effects probably reflect the inactivation of different host proteins by poliovirus 2Apro.
Collapse
Affiliation(s)
- I Ventoso
- Centro de Biología Molecular (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
24
|
Zaragoza C, Ocampo CJ, Saura M, McMillan A, Lowenstein CJ. Nitric oxide inhibition of coxsackievirus replication in vitro. J Clin Invest 1997; 100:1760-7. [PMID: 9312175 PMCID: PMC508360 DOI: 10.1172/jci119702] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide is a radical molecule with antibacterial, -parasitic, and -viral properties. We investigated the mechanism of NO inhibition of Coxsackievirus B3 (CVB3) replication in vitro by determining the effect of NO upon a single replicative cycle of CVB3 grown in HeLa cells. Transfection of inducible NO synthase cDNA into HeLa cells reduces the number of viral particles produced during a single cycle of growth. Similarly, a noncytotoxic concentration of the NO donor S-nitroso-amino-penicillamine reduces the number of viral particles in a dose-dependent manner. To explore the mechanisms by which NO exerts its antiviral effect, we assayed the attachment, replication, and translation steps of the CVB3 life cycle. NO does not affect the attachment of CVB3 to HeLa cells. However, NO inhibits CVB3 RNA synthesis, as shown by a [3H]uridine incorporation assay, reverse transcription-PCR, and Northern analysis. In addition, NO inhibits CVB3 protein synthesis, as shown by [35S]methionine protein labeling and Western blot analysis of infected cells. Thus, NO inhibits CVB3 replication in part by inhibiting viral RNA synthesis by an unknown mechanism.
Collapse
Affiliation(s)
- C Zaragoza
- Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
25
|
Novoa I, Martínez-Abarca F, Fortes P, Ortín J, Carrasco L. Cleavage of p220 by purified poliovirus 2A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs. Biochemistry 1997; 36:7802-9. [PMID: 9201923 DOI: 10.1021/bi9631172] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poliovirus protease 2A(pro) has been obtained in soluble form as a fusion protein with maltose binding protein (MBP). Addition of MBP-2A(pro) to rabbit reticulocyte cell-free systems gives rise to efficient cleavage of the initiation factor of translation p220 (eIF-4G). Translation of capped mRNA encoding the influenza virus NP protein is severely impaired in lysates in which p220 has been proteolytically cleaved. This inhibition is dependent on the concentration of mRNA added to the lysate. Thus, increasing the concentrations of mRNA substantially overcomes the blockade of NP synthesis after p220 cleavage. Notably, translation of uncapped NP mRNA is also compromised in p220-deficient rabbit reticulocyte lysates, suggesting that p220 participates in the translation of both capped and uncapped NP mRNAs. The effects of p220 proteolysis by poliovirus 2A(pro) have also been assayed on luciferase mRNA translation. Three types of mRNAs encoding for luciferase have been examined: capped, uncapped, and mRNA bearing the poliovirus 5' leader region (leader luc mRNA). Synthesis of luciferase directed by any of these mRNAs was inhibited after cleavage of p220 in rabbit reticulocyte lysates. Interestingly, supplementation of the lysate with HeLa cell extracts stimulates leader luc mRNA translation by poliovirus 2A(pro). These results indicate that activation of translation of mRNAs bearing the poliovirus leader region promoted by this poliovirus protease requires a factor present in HeLa cell extracts. These findings agree well with recent experiments implicating p220 not only in protein synthesis directed by capped mRNAs but also in the translation of naturally uncapped mRNAs.
Collapse
Affiliation(s)
- I Novoa
- Centro de Biología Molecular, UAM-CSIC, y Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | | | | |
Collapse
|
26
|
Barco A, Ventoso I, Carrasco L. The yeast Saccharomyces cerevisiae as a genetic system for obtaining variants of poliovirus protease 2A. J Biol Chem 1997; 272:12683-91. [PMID: 9139725 DOI: 10.1074/jbc.272.19.12683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The inducible expression of poliovirus protease 2A (2Apro) blocks the growth of Saccharomyces cerevisiae. A number of yeast colonies that grow after 2Apro induction have been isolated. The majority of these clones express 2Apro to control levels, suggesting that their ability to divide is not due to the loss of 2Apro gene inducibility. The sequences of the 2Apro genes isolated from 22 clones were determined. Most of the 2Apro sequences from these colonies contain point mutations in the poliovirus protease. The different variant protease sequences were transferred to an infectious poliovirus cDNA clone. Translation of genomic RNA obtained from these poliovirus mutants in cell-free systems revealed that some of them had defects in their ability to cleave P1-2A in cis. In addition, several of these variants cleaved the translation initiation factor eIF-4G inefficiently. Transfection of the RNA generated from the full-length poliovirus genomes mutated in 2Apro yielded five viable polioviruses with a small plaque phenotype. These five polioviruses efficiently cleaved p220 but showed defects in viral protein synthesis, transactivation of a leader-luciferase mRNA, and 3CD cleavage to 3C' and 3D'. All 2Apro mutant sequences, including those that did not yield viable viruses, were cloned in pTM1 vector under a T7 promoter. Only the 2Apro variants that have activity to cleave 3CD produced viable poliovirus. Our findings indicate that S. cerevisiae represents a useful system for obtaining poliovirus 2Apro variants that may provide further insight into the role of this protease during the poliovirus replication cycle.
Collapse
Affiliation(s)
- A Barco
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas-UAM, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
27
|
Gorbalenya AE, Snijder EJ. Viral cysteine proteinases. PERSPECTIVES IN DRUG DISCOVERY AND DESIGN : PD3 1996; 6:64-86. [PMID: 32288276 PMCID: PMC7104566 DOI: 10.1007/bf02174046] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/1996] [Accepted: 06/13/1996] [Indexed: 11/26/2022]
Abstract
Dozens of novel cysteine proteinases have been identified in positive single-stranded RNA viruses and, for the first time, in large double-stranded DNA viruses. The majority of these proteins are distantly related to papain or chymotrypsin and may be direct descendants of primordial proteolytic enzymes. Virus genome synthesis and expression, virion formation, virion entry into the host cell, as well as cellular architecture and functioning can be under the control of viral cysteine proteinases during infection. RNA virus proteinases mediate their liberation from giant multidomain precursors in which they tend to occupy conserved positions. These proteinases possess a narrow substrate specificity, can cleave in cis and in trans, and may also have additional, nonproteolytic functions. The mechanisms of catalysis, substrate recognition and RNA binding were highlighted by the recent analysis of the three-dimensional structure of the chymotrypsin-like cysteine proteinases of two RNA viruses.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- 1M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782 Moscow Region
- 2A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | - Eric J Snijder
- 3Department of Virology, Institute of Medical Microbiology, Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|