1
|
Huang J, Zhang X, Nie X, Zhang X, Wang Y, Huang L, Geng X, Li D, Zhang L, Gao G, Gao P. Assembly and activation of EBV latent membrane protein 1. Cell 2024; 187:4996-5009.e14. [PMID: 38996527 DOI: 10.1016/j.cell.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.
Collapse
Affiliation(s)
- Jiafeng Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Nie
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlong Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
2
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
3
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
4
|
Kang HR, Han JH, Ng YC, Ryu S, Park JY, Chung WC, Song YJ, Chen ST, Brickey WJ, Ting JPY, Song MJ. Dynamic bidirectional regulation of NLRC3 and gammaherpesviruses during viral latency in B lymphocytes. J Med Virol 2024; 96:e29504. [PMID: 38445794 DOI: 10.1002/jmv.29504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.
Collapse
Affiliation(s)
- Hye-Ri Kang
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Ho Han
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yee Ching Ng
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungbo Ryu
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji-Yeon Park
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - W June Brickey
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mallorson R, Miyagi E, Kao S, Sukegawa S, Saito H, Fabryova H, Morellatto Ruggieri L, Mediouni S, Valente ST, Strebel K. Transcriptional regulation of the HIV-1 inhibitory factor human mannose receptor 1 by the myeloid-specific transcription factor PU.1. J Virol 2024; 98:e0170223. [PMID: 38078733 PMCID: PMC10804955 DOI: 10.1128/jvi.01702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.1, which normally upregulates hMRC1 expression in macrophages and other myeloid cells. We cloned a 284-bp fragment of the hMRC1 promoter, and within it, we identified four PU.1 box elements. We assessed the relative contribution of each of the four PU.1 boxes to PU.1-dependent transcriptional regulation and, surprisingly, found that only one of the four PU.1 boxes [PU.1(b)] was critically required for PU.1-mediated upregulation of luciferase expression. Transfer of this PU.1 box to a heterologous promoter conferred PU.1 responsiveness to an otherwise PU.1 insensitive promoter. Electrophoretic mobility shift assays identified this PU.1 box as a direct binding site for PU.1 both in the context of the hMRC1 promoter and the heterologous promoter. Furthermore, mutational analysis of the PU.1 protein identified the C-terminal DNA-binding domain in PU.1 as the region responsible for interaction with the PU.1 box. Recombinant HIV-1 Tat protein did not bind to the hMRC1 promoter element but efficiently interfered with the binding of PU.1 protein to the hMRC1 promoter. Thus, Tat is likely to inhibit the formation of active PU.1 transcription complexes, presumably by binding to and depleting common transcriptional cofactors.IMPORTANCEHIV-1 infection of cells results in the modulation of cellular gene expression by virus-encoded proteins in a manner that benefits the virus. We reported that HIV-1 transactivator of transcription (Tat) dysregulates the expression of the human mannose receptor 1 (hMRC1). hMRC1 is involved in the innate immune response of macrophages to foreign pathogens. Tat does not act directly on the hMRC1 promoter but instead inhibits PU.1, a cellular transcription factor regulating hMRC1 gene expression. Here, we characterize the PU.1-dependent regulation of hMRC1 expression. We identified four potential PU.1 binding sites in the hMRC1 promoter region but found that only one, PU.1(b), functioned as a true binding site for PU.1. Transfer of the PU.1(b) box to a heterologous promoter did not activate this promoter per se but rendered it responsive to PU.1. Our results support the view that PU.1 acts as a transcriptional co-factor whose activity can be regulated by HIV-1 Tat.
Collapse
Affiliation(s)
- Rosa Mallorson
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eri Miyagi
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sandra Kao
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sayaka Sukegawa
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideki Saito
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Helena Fabryova
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Sonia Mediouni
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Nord JA, Wynia-Smith SL, Gehant AL, Jones Lipinski RA, Naatz A, Rioja I, Prinjha RK, Corbett JA, Smith BC. N-terminal BET bromodomain inhibitors disrupt a BRD4-p65 interaction and reduce inducible nitric oxide synthase transcription in pancreatic β-cells. Front Endocrinol (Lausanne) 2022; 13:923925. [PMID: 36176467 PMCID: PMC9513428 DOI: 10.3389/fendo.2022.923925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/19/2022] [Indexed: 02/02/2023] Open
Abstract
Chronic inflammation of pancreatic islets is a key driver of β-cell damage that can lead to autoreactivity and the eventual onset of autoimmune diabetes (T1D). In the islet, elevated levels of proinflammatory cytokines induce the transcription of the inducible nitric oxide synthase (iNOS) gene, NOS2, ultimately resulting in increased nitric oxide (NO). Excessive or prolonged exposure to NO causes β-cell dysfunction and failure associated with defects in mitochondrial respiration. Recent studies showed that inhibition of the bromodomain and extraterminal domain (BET) family of proteins, a druggable class of epigenetic reader proteins, prevents the onset and progression of T1D in the non-obese diabetic mouse model. We hypothesized that BET proteins co-activate transcription of cytokine-induced inflammatory gene targets in β-cells and that selective, chemotherapeutic inhibition of BET bromodomains could reduce such transcription. Here, we investigated the ability of BET bromodomain small molecule inhibitors to reduce the β-cell response to the proinflammatory cytokine interleukin 1 beta (IL-1β). BET bromodomain inhibition attenuated IL-1β-induced transcription of the inflammatory mediator NOS2 and consequent iNOS protein and NO production. Reduced NOS2 transcription is consistent with inhibition of NF-κB facilitated by disrupting the interaction of a single BET family member, BRD4, with the NF-κB subunit, p65. Using recently reported selective inhibitors of the first and second BET bromodomains, inhibition of only the first bromodomain was necessary to reduce the interaction of BRD4 with p65 in β-cells. Moreover, inhibition of the first bromodomain was sufficient to mitigate IL-1β-driven decreases in mitochondrial oxygen consumption rates and β-cell viability. By identifying a role for the interaction between BRD4 and p65 in controlling the response of β-cells to proinflammatory cytokines, we provide mechanistic information on how BET bromodomain inhibition can decrease inflammation. These studies also support the potential therapeutic application of more selective BET bromodomain inhibitors in attenuating β-cell inflammation.
Collapse
Affiliation(s)
- Joshua A. Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alyssa L. Gehant
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian C. Smith,
| |
Collapse
|
7
|
Epstein-Barr virus molecular epidemiology and variants identification in head and neck squamous cell carcinoma. Eur J Cancer Prev 2021; 29:523-530. [PMID: 31738221 DOI: 10.1097/cej.0000000000000554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) is known as one of the most widespread oncogenic viruses. Head and neck squamous cell carcinoma (HNSCC) is triggered by various risk factors. The aim of the present study was to determine the EBV infection rate, genotyping and variants frequency in HNSCC patients. In this cross-sectional study, 156 patients with HNSCC were enrolled. Formalin fixed paraffin embedded (FFPE) tissue samples were selected from hospitals affiliated to Iran University of Medical Sciences, Tehran, Iran. The EBV EBNA-3C, EBNA-1 and LMP-1 genes were amplified by PCR and then analyzed and confirmed by nucleotide sequencing. CLC work bench 5, MEGA6 and SPSS v.21 software were used for analysis the raw data. The mean age ± SD (years) of the all patients (n = 156) was 60.5 ± 12.6, in which of 121(77.6%) males it was 60.7 ± 11.9 and of 35 (22.4%) females it was 59.7 ± 14.9. Totally, 20 samples (12.8%) were found to be infected with EBV genome. The EBV genotypes 1 and 2 were calculated 90% (18/20) and 10% (2/20), respectively. vLMP-1 found in 40% (4/10) of all LMP-1 tested samples. Furthermore, the EBNA-1 predominant variants were P-ala followed by P-thr and also there were three P-ala-v2 sub variants. Statistics could not find any significant associations although there were some potentials. By our preliminary study in Iran, it revealed that EBV-1 is the predominant Epstein-Barr virus genotype in head and neck squamous cell carcinoma patients. vLMP-1 isolates showed lower survival rate than others. EBNA-1 variants had no significant association with any specific disease complication.
Collapse
|
8
|
Wang Y, Zhang B, Lin C, Liu Y, Yang M, Peng Y, Wang X. Dissecting Role of Charged Residue from Transmembrane Domain 5 of Latent Membrane Protein 1 via In Silico Simulations and Wet-Lab Experiments. J Phys Chem B 2021; 125:2124-2133. [PMID: 33595309 DOI: 10.1021/acs.jpcb.0c10708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charged residues are frequently found in the transmembrane segments of membrane proteins, which reside in the hydrophobic bilayer environment. Charged residues are critical for the function of membrane protein. However, studies of their role in protein oligomerization are limited. By taking the fifth transmembrane domain (TMD5) of latent membrane protein 1 from the Epstein-Barr virus as a prototype model, in silico simulations and wet-lab experiments were performed to investigate how the charged states affect transmembrane domain oligomerization. Molecular dynamics (MD) simulations showed that the D150-protonated TMD5 trimer was stable, whereas unprotonated D150 created bends in the helices which distort the trimeric structure. D150 was mutated to asparagine to mimic the protonated D150 in TMD5, and the MD simulations of different D150N TMD5 trimers supported that the protonation state of D150 was critical for the trimerization of TMD5. In silico mutations found that D150N TMD5 preferred to interact with TMD5 to form the heterotrimer (1 D150N TMD5:2 protonated TMD5s) rather than the heterotrimer (2 D150N TMD5s:1 protonated TMD5). D150R TMD5 interacted with TMD5 to form the heterotrimer (1 D150R TMD5:2 protonated TMD5). These in silico results imply that D150N TMD5 and D150R TMD5 peptides may be probes for disrupting TMD5 trimerization, which was supported by the dominant-negative ToxR assay in bacterial membranes. In all, this study elucidates the role of charged residues at the membrane milieu in membrane protein oligomerization and provides insight into the development of oligomerization-regulating peptides for modulating transmembrane domain lateral interactions.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Min Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| |
Collapse
|
9
|
Lin L, Chen S, Wang H, Gao B, Kallakury B, Bhuvaneshwar K, Cahn K, Gusev Y, Wang X, Wu Y, Marshall JL, Zhi X, He AR. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics 2021; 11:4232-4250. [PMID: 33754058 PMCID: PMC7977457 DOI: 10.7150/thno.49819] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Spectrin, beta, non-erythrocytic 1 (SPTBN1), an adapter protein for transforming growth factor beta (TGF-β) signaling, is recognized as a tumor suppressor in the development of hepatocellular carcinoma (HCC); however, the underlying molecular mechanisms of this tumor suppression remain obscure. Methods: The effects on expression of pro-inflammatory cytokines upon the inhibition or impairment of SPTBN1 in HCC cell lines and liver tissues of Sptbn1+/- and wild-type (WT) mice were assessed by analyses of quantitative real-time reverse-transcription polymerase chain reaction (QRT-PCR), enzyme linked immunosorbent assay (ELISA), Western blotting and gene array databases from HCC patients. We investigated the detailed molecular mechanisms underlying the inflammatory responses by immunoprecipitation-Western blotting, luciferase reporter assay, chromatin immunoprecipitation quantitative real time PCR (ChIP-qPCR), immunohistochemistry (IHC) and electrophoretic mobility shift assay (EMSA). The proportion of myeloid-derived suppressor cells in liver, spleen, bone marrow and peripheral blood samples from WT and Sptbn1+/- mice were measured by fluorescence-activated cell sorting (FACS) analysis. Further, the hepatocacinogenesis and its correlation with inflammatory microenvironment by loss of SPTBN1/SOCS1 and induction of p65 were analyzed by treating WT and Sptbn1+/- mice with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Results: Loss of SPTBN1 in HCC cells upregulated the expression of pro-inflammatory cytokines including interleukin-1α (IL-1α), IL-1β, and IL-6, and enhanced NF-κB transcriptional activation. Mechanistic analyses revealed that knockdown of SPTBN1 by siRNA downregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an E3 ligase of p65, and subsequently upregulated p65 accumulation in the nucleus of HCC cells. Restoration of SOCS1 abrogated this SPTBN1 loss-associated elevation of p65 in HCC cells. In human HCC tissues, SPTBN1 gene expression was inversely correlated with gene expression of IL-1α, IL-1β and IL-6. Furthermore, a decrease in the levels of SPTBN1 gene, as well as an increase in the gene expression of IL-1β or IL-6 predicted shorter relapse free survival in HCC patients, and that HCC patients with low expression of SPTBN1 or SOCS1 protein is associated with poor survival. Heterozygous loss of SPTBN1 (Sptbn1+/-) in mice markedly upregulated hepatic expression of IL-1α, IL-1β and IL-6, and elevated the proportion of myeloid-derived suppressor cells (MDSCs) and CD4+CD25+Foxp3+ regulatory T cells (Foxp3+Treg) cells in the liver, promoting hepatocarcinogenesis of mouse fed by DDC. Conclusions: Our findings provided evidence that loss of SPTBN1 in HCC cells increases p65 protein stability via the inhibition of SOCS1 and enhances NF-κB activation, stimulating the release of inflammatory cytokines, which are critical molecular mechanisms for the loss of SPTBN1-induced liver cancer formation. Reduced SPTBN1 and SOCS1 predict poor outcome in HCC patients.
Collapse
|
10
|
Sulaiman A, McGarry S, El‐Sahli S, Li L, Chambers J, Phan A, Al‐Kadi E, Kahiel Z, Farah E, Ji G, Lee S, Inampudi KK, Alain T, Li X, Liu S, Han X, Zheng P, Liu Z, Gadde S, Wang L. Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Paclitaxel Stop the Growth of TNBC Patient‐Derived Xenografts and Diminish Tumorigenesis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sarah McGarry
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sara El‐Sahli
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Li Li
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Jason Chambers
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Alexandra Phan
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Emil Al‐Kadi
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Zaina Kahiel
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Eliya Farah
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Guang Ji
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Seung‐Hwan Lee
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Krishna K. Inampudi
- Department of Biophysics All India Institute of Medical Sciences New Delhi 110029 India
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Children Hospital of Eastern Ontario Research Institute Ottawa Ontario K1H 8L1 Canada
| | - Xuguang Li
- Centre for Biologics Evaluation Biologics and Genetic Therapies Directorate Health Canada Sir Frederick G. Banting Research Centre Ottawa Ontario K1Y 0M1 Canada
| | - Sheng Liu
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Peiyong Zheng
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Suresh Gadde
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Lisheng Wang
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario K1H 8L6 Canada
| |
Collapse
|
11
|
Harrold AP, Cleary MM, Bharathy N, Lathara M, Berlow NE, Foreman NK, Donson AM, Amani V, Zuercher WJ, Keller C. In vitro benchmarking of NF-κB inhibitors. Eur J Pharmacol 2020; 873:172981. [PMID: 32014486 DOI: 10.1016/j.ejphar.2020.172981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
Abstract
Dysregulated activity of the transcription factors of the nuclear factor κb (NF-κB) family has been implicated in numerous cancer types, inflammatory diseases, autoimmune disease, and other disorders. As such, selective NF-κB pathway inhibition is an attractive target to researchers for preclinical and clinical drug development. A plethora of commercially and clinically available inhibitors claim to be NF-κB specific; however, such claims of specificity are rarely quantitative or benchmarked, making the biomedical literature difficult to contextualize. This imprecision is worsened because some NF-κB reporter systems have low signal-to-noise ratios. Herein, we use a robust, defined, commercially available reporter system to benchmark NF-κB agonists and antagonists for the field. We also functionally characterize a RELA fusion-positive ependymoma cell culture with validated NF-κB inhibitor compounds.
Collapse
Affiliation(s)
| | - Megan M Cleary
- Children's Cancer Therapy Development Institute, Beaverton, OR, 97005, USA
| | - Narendra Bharathy
- Children's Cancer Therapy Development Institute, Beaverton, OR, 97005, USA
| | | | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, 97005, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, 97005, USA.
| |
Collapse
|
12
|
Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms. Redox Biol 2019; 28:101388. [PMID: 31765890 PMCID: PMC6883322 DOI: 10.1016/j.redox.2019.101388] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Glutathione peroxidase 2 (GPx2) is one of the five selenoprotein GPxs having a selenocysteine in the active center. GPx2 is strongly expressed in the gastrointestinal epithelium, as is another isoform, GPx1, though with a different localization pattern. Both GPxs are redox-active enzymes that are important for the reduction of hydroperoxides. Studies on GPx2-deficient mice and human HT-29 cells with a stable knockdown (kd) of GPx2 revealed higher basal and IL-1β-induced expression of NF-κB target genes in vivo and in vitro. The activation of the IKK–IκBα–NF-κB pathway was increased in cultured GPx2 kd cells. Basal signaling was only restored by re-expressing active GPx2 in GPx2 kd cells but not by redox-inactive GPx2. As it is still not clear if the two isoforms GPx1 and GPx2 have different functions, kd cell lines for either GPx1 or GPx2 were studied in parallel. The inhibitory effect of GPx2 on NF-κB signaling and its target gene expression was stronger than that of GPx1, whereas cyclooxygenase (COX)- and lipoxygenase (LOX)-derived lipid mediator levels increased more strongly in GPx1 kd than in GPx2 kd cells. Under unstimulated conditions, the levels of the COX-derived prostaglandins PGE2 and PGD2 were enhanced in GPx2 as well as in GPx1 kd compared to control cells. Specifically, in GPx1 kd cells IL-1β stimulation led to a dramatic shift of the PGE2/PGD2 ratio towards pro-inflammatory PGE2. Taken together, GPx2 and GPx1 have overlapping functions in controlling inflammatory lipid mediator synthesis and, most probably, exert their anti-inflammatory effects by preventing excessive PGE2 production. In view of the high activity of COX and LOX pathways during inflammatory bowel disease our data therefore provide new insights into the mechanisms of the protective function of GPx1 and GPx2 during colitis as well as inflammation-driven carcinogenesis. Loss of GPx2 results in higher basal and IL-1β-induced NF-κB activation. Suppressive effects of GPx2 on NF-κB are mediated in a redox-dependent manner. Both GPx isoforms modulate the lipid mediator profile in response to IL-1β. COX-derived prostaglandins increase more strongly in GPx1 than in GPx2 kd cells.
Collapse
|
13
|
Francisco J, Byun J, Zhang Y, Kalloo OB, Mizushima W, Oka S, Zhai P, Sadoshima J, Del Re DP. The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. J Biol Chem 2019; 294:13131-13144. [PMID: 31311858 DOI: 10.1074/jbc.ra119.008970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammation is a central feature of cardiovascular disease, including myocardial infarction and heart failure. Reperfusion of the ischemic myocardium triggers a complex inflammatory response that can exacerbate injury and worsen heart function, as well as prevent myocardial rupture and mediate wound healing. Therefore, a more complete understanding of this process could contribute to interventions that properly balance inflammatory responses for improved outcomes. In this study, we leveraged several approaches, including global and regional ischemia/reperfusion (I/R), genetically modified mice, and primary cell culture, to investigate the cell type-specific function of the tumor suppressor Ras association domain family member 1 isoform A (RASSF1A) in cardiac inflammation. Our results revealed that genetic inhibition of RASSF1A in cardiomyocytes affords cardioprotection, whereas myeloid-specific deletion of RASSF1A exacerbates inflammation and injury caused by I/R in mice. Cell-based studies revealed that RASSF1A negatively regulates NF-κB and thereby attenuates inflammatory cytokine expression. These findings indicate that myeloid RASSF1A antagonizes I/R-induced myocardial inflammation and suggest that RASSF1A may be a promising target in immunomodulatory therapy for the management of acute heart injury.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Olivia Berman Kalloo
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103.
| |
Collapse
|
14
|
Sulaiman A, McGarry S, El-Sahli S, Li L, Chambers J, Phan A, Côté M, Cron GO, Alain T, Le Y, Lee SH, Liu S, Figeys D, Gadde S, Wang L. Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy. Mol Cancer Ther 2019; 18:1755-1764. [DOI: 10.1158/1535-7163.mct-18-0873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
|
15
|
Esancy K, Condon L, Feng J, Kimball C, Curtright A, Dhaka A. A zebrafish and mouse model for selective pruritus via direct activation of TRPA1. eLife 2018; 7:32036. [PMID: 29561265 PMCID: PMC5912907 DOI: 10.7554/elife.32036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Little is known about the capacity of lower vertebrates to experience itch. A screen of itch-inducing compounds (pruritogens) in zebrafish larvae yielded a single pruritogen, the TLR7 agonist imiquimod, that elicited a somatosensory neuron response. Imiquimod induced itch-like behaviors in zebrafish distinct from those induced by the noxious TRPA1 agonist, allyl isothiocyanate. In the zebrafish, imiquimod-evoked somatosensory neuronal responses and behaviors were entirely dependent upon TRPA1, while in the mouse TRPA1 was required for the direct activation of somatosensory neurons and partially responsible for behaviors elicited by this pruritogen. Imiquimod was found to be a direct but weak TRPA1 agonist that activated a subset of TRPA1 expressing neurons. Imiquimod-responsive TRPA1 expressing neurons were significantly more sensitive to noxious stimuli than other TRPA1 expressing neurons. Together, these results suggest a model for selective itch via activation of a specialized subpopulation of somatosensory neurons with a heightened sensitivity to noxious stimuli. Itch is a common and uncomfortable sensation that creates a strong desire to scratch. This mechanism may have evolved so animals can remove harmful parasites or substances from themselves. Feelings like touch, pain, and itch arise when stimuli such as mechanical pressure, temperature, or chemicals activate groups of specialized neurons in the skin. This response takes place when certain proteins – or receptors – at the surface of the neurons are stimulated. For instance, TRP ion channels such as TRPA1 play an important role in both the itch and pain responses. In mammals, directly activating these channels elicits pain. Itch is felt when itch responsive receptors are activated on a distinct set of neurons, which in turn activate TRP receptors. Although these processes have been well-studied in mammals, little is known about the existence of itch sensation in other animals. To explore this, Esancy, Condon, Feng et al. exposed zebrafish to chemicals that induce itch in mammals, and found that imiquimod, a medicine used to treat certain skin conditions, can elicit itch in fish. When this chemical was injected into the lips of a fish, the animal rubbed them against the walls of its tank, akin to scratching an itch. Further experiments showed that imiquimod directly activated the pain-sensing ion channel TRPA1. In fact, this receptor was essential to the ‘scratching’ behavior: fish genetically engineered to lack TRPA1 did not react to the drug. Fluorescent proteins were then used to track when the neurons that carry TRPA1 were activated.This revealed that, in the skin of zebrafish, there are at least two functionally distinct populations neurons that express TRPA1. One population, whose activation is associated with the animal ‘scratching’, responds even when TRPA1 receives a low level of stimulation. The other population is less sensitive: it responds only to high-intensity stimuli and is associated with a pain response such as freezing and slower movements. Further experiments in the mouse suggest that this mechanism is present in mammals as well. This coding strategy explains how pain and itch can be experienced when the same receptors are being activated. Studying how animals like fish experience itch gives an insight into how detecting these sensations could have evolved. In turn, understanding this mechanism at the molecular and cellular levels may help find new ways to design better treatments for itch and pain disorders.
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Jing Feng
- Center for the Study of Itch, Washington University, St. Louis, United States
| | - Corinna Kimball
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| |
Collapse
|
16
|
Hadweh P, Chaitoglou I, Gravato-Nobre MJ, Ligoxygakis P, Mosialos G, Hatzivassiliou E. Functional analysis of the C. elegans cyld-1 gene reveals extensive similarity with its human homolog. PLoS One 2018; 13:e0191864. [PMID: 29394249 PMCID: PMC5796713 DOI: 10.1371/journal.pone.0191864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 12/16/2022] Open
Abstract
The human cylindromatosis tumor suppressor (HsCyld) has attracted extensive attention due to its association with the development of multiple types of cancer. HsCyld encodes a deubiquitinating enzyme (HsCYLD) with a broad range of functions that include the regulation of several cell growth, differentiation and death pathways. HsCyld is an evolutionarily conserved gene. Homologs of HsCyld have been identified in simple model organisms such as Drosophila melanogaster and Caenorhabditis elegans (C. elegans) which offer extensive possibilities for functional analyses. In the present report we have investigated and compared the functional properties of HsCYLD and its C. elegans homolog (CeCYLD). As expected from the mammalian CYLD expression pattern, the CeCyld promoter is active in multiple tissues with certain gastrointestinal epithelia and neuronal cells showing the most prominent activity. CeCYLD is a functional deubiquitinating enzyme with similar specificity to HsCYLD towards K63- and M1-linked polyubiquiting chains. CeCYLD was capable of suppressing the TRAF2-mediated activation of NF-kappaB and AP1 similarly to HsCYLD. Finally, CeCYLD could suppress the induction of TNF-dependent gene expression in mammalian cells similarly to HsCYLD. Our results demonstrate extensively overlapping functions between the HsCYLD and CeCYLD, which establish the C. elegans protein as a valuable model for the elucidation of the complex activity of the human tumor suppressor protein.
Collapse
Affiliation(s)
- Paul Hadweh
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Iro Chaitoglou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford,South Parks Road, Oxford, United Kingdom
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eudoxia Hatzivassiliou
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
17
|
Liliom H, Tárnok K, Ábrahám Z, Rácz B, Hausser A, Schlett K. Protein kinase D exerts neuroprotective functions during oxidative stress via nuclear factor kappa B-independent signaling pathways. J Neurochem 2017; 142:948-961. [DOI: 10.1111/jnc.14131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Hanna Liliom
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Zsófia Ábrahám
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Bence Rácz
- Department of Anatomy and Histology; University of Veterinary Medicine; Budapest Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology; University Stuttgart; Stuttgart Germany
- Stuttgart Research Center Systems Biology; University of Stuttgart; Stuttgart Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
- MTA-ELTE-NAP B - Neuronal Cell Biology Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
18
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
19
|
Improved formulation of cationic solid lipid nanoparticles displays cellular uptake and biological activity of nucleic acids. Int J Pharm 2017; 516:39-44. [DOI: 10.1016/j.ijpharm.2016.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022]
|
20
|
Lin B, Xu D, Leaman DW. X-linked inhibitor of apoptosis-associated factor 1 regulates TNF receptor 1 complex stability. FEBS Lett 2016; 590:4381-4392. [PMID: 27768232 DOI: 10.1002/1873-3468.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a cytokine-regulated, tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain-containing protein that has a poorly defined cellular function. Here, we show that ectopically expressed XAF1 inhibits TNF-ɑ-induced NF-κB activation, whereas shRNA silencing of endogenous XAF1 augments it. Our data suggest that XAF1 may inhibit TNF-ɑ-induced NF-κB activation by disrupting the assembly of the TRADD/TRAF2/RIP1 complex (complex I) downstream of TNF receptor activation. XAF1 interacts with TRAF2 and inhibits TRAF2-dependent NF-κB activation, in part, by blocking TRAF2 polyubiquitination. Our findings also indicate that although XAF1 does not directly inhibit RIP1-dependent NF-κB activation, it binds RIP1 and disrupts RIP1/TRADD association. Our data suggest that XAF1 acts as a feedback regulator of the TNF receptor signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Da Xu
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, OH, USA
| |
Collapse
|
21
|
Li L, Chen J, Xiong G, St Clair DK, Xu W, Xu R. Increased ROS production in non-polarized mammary epithelial cells induces monocyte infiltration in 3D culture. J Cell Sci 2016; 130:190-202. [PMID: 27656113 DOI: 10.1242/jcs.186031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/17/2016] [Indexed: 02/01/2023] Open
Abstract
Loss of epithelial cell polarity promotes cell invasion and cancer dissemination. Therefore, identification of factors that disrupt polarized acinar formation is crucial. Reactive oxygen species (ROS) drive cancer progression and promote inflammation. Here, we show that the non-polarized breast cancer cell line T4-2 generates significantly higher ROS levels than polarized S1 and T4R cells in three-dimensional (3D) culture, accompanied by induction of the nuclear factor κB (NF-κB) pathway and cytokine expression. Minimizing ROS in T4-2 cells with antioxidants reestablished basal polarity and inhibited cell proliferation. Introducing constitutively activated RAC1 disrupted cell polarity and increased ROS levels, indicating that RAC1 is a crucial regulator that links cell polarity and ROS generation. We also linked monocyte infiltration with disruption of polarized acinar structure using a 3D co-culture system. Gain- and loss-of-function experiments demonstrated that increased ROS in non-polarized cells is necessary and sufficient to enhance monocyte recruitment. ROS also induced cytokine expression and NF-κB activity. These results suggest that increased ROS production in mammary epithelial cell leads to disruption of cell polarity and promotes monocyte infiltration.
Collapse
Affiliation(s)
- Linzhang Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jie Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA .,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Yamaguchi K, Takanashi T, Nasu K, Tamai K, Mochizuki M, Satoh I, Ine S, Sasaki O, Satoh K, Tanaka N, Harigae H, Sugamura K. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation. Cancer Sci 2016; 107:638-43. [PMID: 26928911 PMCID: PMC4970830 DOI: 10.1111/cas.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The transplantation of human cancer cells into immunodeficient NOD/SCID/IL‐2Rγcnull (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T‐cell leukemia‐derived cell lines, ST1‐N6 and TL‐Om1‐N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL‐Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1‐N6 and TL‐Om1‐N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK‐2206 attenuated the progression of tumors induced by ST1‐N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T‐cell leukemia‐derived cells.
Collapse
Affiliation(s)
- Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kentaro Nasu
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuro Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Shoji Ine
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Kennichi Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuyuki Tanaka
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
23
|
Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, Madl J, Eierhoff T, Römer W. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1106-18. [PMID: 26862060 PMCID: PMC4859328 DOI: 10.1016/j.bbamcr.2016.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery.
Collapse
Affiliation(s)
- Catherine Cott
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Roland Thuenauer
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Alessia Landi
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Katja Kühn
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Samuel Juillot
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales, UPR5301 CNRS and University of Grenoble Alpes, BP53, 38041 Grenoble cédex 09, France
| | - Josef Madl
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Schänzlestraße 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraße 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
25
|
Abstract
An effective host defense mechanism involves inflammation to eliminate pathogens from the site of infection, followed by the resolution of inflammation and the restoration of tissue homeostasis. Lipoxins are endogenous anti-inflammatory, pro-resolving molecules that play a vital role in reducing excessive tissue injury and chronic inflammation. In this review, the mechanisms of action of lipoxins at the site of inflammation and their interaction with other cellular signaling molecules and transcription factors are discussed. Emphasis has also been placed on immune modulatory role(s) of lipoxins. Lipoxins regulate components of both the innate and adaptive immune systems including neutrophils, macrophages, T-, and B-cells. Lipoxins also modulate levels of various transcription factors such as nuclear factor κB, activator protein-1, nerve growth factor-regulated factor 1A binding protein 1, and peroxisome proliferator activated receptor γ and control the expression of many inflammatory genes. Since lipoxins and aspirin-triggered lipoxins have clinical relevance, we discuss their important role in clinical research to treat a wide range of diseases like inflammatory disorders, renal fibrosis, cerebral ischemia, and cancer. A brief overview of lipoxins in viral malignancies and viral pathogenesis especially the unexplored role of lipoxins in Kaposi’s sarcoma-associated herpes virus biology is also presented.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- HM Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Neelam Sharma-Walia
- HM Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
26
|
Hiller F, Besselt K, Deubel S, Brigelius-Flohé R, Kipp AP. GPx2 Induction Is Mediated Through STAT Transcription Factors During Acute Colitis. Inflamm Bowel Dis 2015; 21:2078-89. [PMID: 26115075 DOI: 10.1097/mib.0000000000000464] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The selenoprotein glutathione peroxidase 2 (GPx2) is highly expressed in the gastrointestinal epithelium. During inflammatory bowel disease and colorectal cancer, GPx2 expression is enhanced. METHODS We analyzed GPx2 expression and transcriptional regulation during the different phases of dextran sulfate sodium (DSS)-induced colitis in mice and in cytokine-treated colorectal cancer cells. RESULTS In the colon of DSS-treated mice, GPx2 was upregulated during the acute and recovery phase. In the latter, it was specifically localized in regenerating ki67-positive crypts next to ulcerations. In cultured cells, endogenous GPx2 expression and GPx2 promoter activity were enhanced by the anti-inflammatory mediators 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) and interleukin-22 (IL-22), while it was unaffected by classical proinflammatory cytokines like IL-1β. Induction of GPx2 expression by 15d-PGJ2 was mediated through Nrf2. In contrast, in DSS-treated Nrf2-KO mice GPx2 expression remained upregulated during recovery, which appeared to be independent of Nrf2. IL-22 activates transcription factors of the signal transducers and activators of transcription (STAT) family. Therefore, we analyzed the GPx2 promoter for putative STAT-responsive elements and identified 4 of them. Point mutation of the binding element next to the transcription start completely abolished promoter activation after IL-22 treatment and after cotransfection of STAT expression plasmids. To show in vivo relevance of the obtained results, we performed immunohistochemistry for phospho-STAT3 and GPx2. Especially during acute colitis, GPx2 and nuclear STAT3 colocalized in inflamed areas. CONCLUSIONS GPx2 is a novel target of STAT transcription factors. The upregulation of GPx2 by IL-22 indicates that GPx2 might be important for the resolution of inflammation.
Collapse
Affiliation(s)
- Franziska Hiller
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam, Germany
| | | | | | | | | |
Collapse
|
27
|
Choi JE, Woo SM, Min KJ, Kang SH, Lee SJ, Kwon TK. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells. Oncol Rep 2015; 33:1395-401. [PMID: 25592064 DOI: 10.3892/or.2015.3728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022] Open
Abstract
ABT-737, a BH3-mimetic small-molecule inhibitor, binds with very high affinity to Bcl-2, Bcl-xL and Bcl-w, and inhibits their activity. Aurora kinase is one of the serine/threonine kinase family members and is a vital and critical regulator of mitosis and meiosis. In the present study, we investigated the effects and mechanisms of a combined treatment of ABT-737 and VX-680 (Aurora kinase inhibitor) in human breast cancer MDA-MB‑435S cells. ABT-737 plus VX-680 induced caspase-dependent apoptosis in the human breast cancer cells. Combined treatment with ABT-737 and VX-680 led to the downregulation of Bcl-2 expression at the transcriptional level and the downregulation of c-FLIP and Mcl-1 expression at the post-transcriptional level. Overexpression of Bcl-2 or c-FLIP could not block the induction of apoptosis caused by the combined treatment with ABT-737 and VX-680. However, overexpression of Mcl-1 partially inhibited the induction of apoptosis. In contrast, the combined treatment with ABT-737 and VX680 had no effect on the apoptosis in normal cells. Taken together, our study demonstrated that combined treatment with ABT-737 and VX-680 induced apoptosis in anti‑apoptotic protein (Bcl-2 or c-FLIP)-overexpressing cells.
Collapse
Affiliation(s)
- Jung Eun Choi
- Department of Immunology, Keimyung University, School of Medicine, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, Keimyung University, School of Medicine, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Kyoung-Jin Min
- Department of Immunology, Keimyung University, School of Medicine, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Su Hwan Kang
- Department of Surgery, Yeungnam University, College of Medicine, Nam‑gu, Daegu 705-703, Republic of Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University, College of Medicine, Nam‑gu, Daegu 705-703, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, Keimyung University, School of Medicine, Dalseo-Gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
28
|
Bassères DS, Baldwin AS. Using RNA interference in lung cancer cells to target the IKK-NF-κB pathway. Methods Mol Biol 2015; 1280:447-58. [PMID: 25736766 DOI: 10.1007/978-1-4939-2422-6_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA interference-based gene silencing has become a widely used technology to evaluate how inhibition of expression of individual proteins affects biological readout. Through the use of this technology, a lot has been learned about how different proteins function in a wide variety of biological contexts, including cancer. In this context, RNA interference-mediated gene silencing has contributed to further our understanding of how different proteins in the NF-κB signaling pathway (including the NF-κB members themselves) contribute to cancer. Here, we describe two RNA interference-based protocols in lung cancer cells targeting upstream activators of NF-κB transcription factor: the catalytic subunits of the IKK complex. The first protocol is designed to evaluate the impact of IKKα or IKKβ inhibition on NF-κB transcriptional activity, whereas the second protocol is designed to evaluate how siRNA-mediated IKK inhibition affects lung cancer cell proliferation.
Collapse
Affiliation(s)
- Daniela S Bassères
- Department of Biochemistry, Chemistry Institute, University of São Paulo, nº1280 - Butantã, São Paulo, SP, 05508-070, Brazil,
| | | |
Collapse
|
29
|
Deng Z, Uehara T, Maeda H, Hasegawa M, Matayoshi S, Kiyuna A, Agena S, Pan X, Zhang C, Yamashita Y, Xie M, Suzuki M. Epstein-Barr virus and human papillomavirus infections and genotype distribution in head and neck cancers. PLoS One 2014; 9:e113702. [PMID: 25405488 PMCID: PMC4236156 DOI: 10.1371/journal.pone.0113702] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/28/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the prevalence, genotypes, and prognostic values of Epstein-Barr virus (EBV) and human papillomavirus (HPV) infections in Japanese patients with different types of head and neck cancer (HNC). METHODS AND MATERIALS HPV and EBV DNA, EBV genotypes and LMP-1 variants, and HPV mRNA expression were detected by PCR from fresh-frozen HNC samples. HPV genotypes were determined by direct sequencing, and EBV encoded RNA (EBER) was examined by in situ hybridization. RESULTS Of the 209 HNC patients, 63 (30.1%) had HPV infection, and HPV-16 was the most common subtype (86.9%). HPV E6/E7 mRNA expression was found in 23 of 60 (38.3%) HPV DNA-positive cases detected. The site of highest prevalence of HPV was the oropharynx (45.9%). Among 146 (69.9%) HNCs in which EBV DNA was identified, 107 (73.3%) and 27 (18.5%) contained types A and B, respectively, and 124 (84.9%) showed the existence of del-LMP-1. However, only 13 (6.2%) HNCs were positive for EBER, 12 (92.3%) of which derived from the nasopharynx. Co-infection of HPV and EBER was found in only 1.0% of HNCs and 10.0% of NPCs. Kaplan-Meier survival analysis showed significantly better disease-specific and overall survival in the HPV DNA+/mRNA+ oropharyngeal squamous cell carcinoma (OPC) patients than in the other OPC patients (P = 0.027 and 0.017, respectively). Multivariate analysis showed that stage T1-3 (P = 0.002) and HPV mRNA-positive status (P = 0.061) independently predicted better disease-specific survival. No significant difference in disease-specific survival was found between the EBER-positive and -negative NPC patients (P = 0.155). CONCLUSIONS Our findings indicate that co-infection with HPV and EBV is rare in HNC. Oropharyngeal SCC with active HPV infection was related to a highly favorable outcome, while EBV status was not prognostic in the NPC cohort.
Collapse
Affiliation(s)
- Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * E-mail: (ZD); (MX)
| | - Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Maeda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Hasegawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sen Matayoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Asanori Kiyuna
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shinya Agena
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Xiaoli Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yukashi Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minqiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (ZD); (MX)
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
30
|
Choi YS, Park JK, Kang EH, Lee YK, Kim TK, Chung JH, Zimmerer JM, Carson WE, Song YW, Lee YJ. Cytokine signaling-1 suppressor is inducible by IL-1beta and inhibits the catabolic effects of IL-1beta in chondrocytes: its implication in the paradoxical joint-protective role of IL-1beta. Arthritis Res Ther 2014; 15:R191. [PMID: 24238405 PMCID: PMC3979110 DOI: 10.1186/ar4381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes. METHODS Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes. RESULTS SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression. CONCLUSIONS Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.
Collapse
|
31
|
Abstract
Development and maintenance of leukemia can be partially attributed to alterations in (anti)-apoptotic gene expression. Genome-wide transcriptome analyses revealed that 89 apoptosis-associated genes were differentially expressed between patient acute myeloid leukemia (AML) CD34(+) cells and normal bone marrow (NBM) CD34(+) cells. Among these, transforming growth factor-β activated kinase 1 (TAK1) was strongly upregulated in AML CD34(+) cells. Genetic downmodulation or pharmacologic inhibition of TAK1 activity strongly impaired primary AML cell survival and cobblestone formation in stromal cocultures. TAK1 inhibition was mainly due to blockade of the nuclear factor κB (NF-κB) pathway, as TAK1 inhibition resulted in reduced levels of P-IκBα and p65 activity. Overexpression of a constitutive active variant of NF-κB partially rescued TAK1-depleted cells from apoptosis. Importantly, NBM CD34(+) cells were less sensitive to TAK1 inhibition compared with AML CD34(+) cells. Knockdown of TAK1 also severely impaired leukemia development in vivo and prolonged overall survival in a humanized xenograft mouse model. In conclusion, our results indicate that TAK1 is frequently overexpressed in AML CD34(+) cells, and that TAK1 inhibition efficiently targets leukemic stem/progenitor cells in an NF-κB-dependent manner.
Collapse
|
32
|
Hadweh P, Habelhah H, Kieff E, Mosialos G, Hatzivassiliou E. The PP4R1 subunit of protein phosphatase PP4 targets TRAF2 and TRAF6 to mediate inhibition of NF-κB activation. Cell Signal 2014; 26:2730-7. [PMID: 25134449 DOI: 10.1016/j.cellsig.2014.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 12/01/2022]
Abstract
TRAFs constitute a family of proteins that have been implicated in signal transduction by immunomodulatory cellular receptors and viral proteins. TRAF2 and TRAF6 have an E3-ubiquitin ligase activity, which is dependent on the integrity of their RING finger domain and it has been associated with their ability to activate the NF-κB and AP1 signaling pathways. A yeast two-hybrid screen with TRAF2 as bait, identified the regulatory subunit PP4R1 of protein phosphatase PP4 as a TRAF2-interacting protein. The interaction of TRAF2 with PP4R1 depended on the integrity of the RING finger domain of TRAF2. PP4R1 could interact also with the TRAF2-related factor TRAF6 in a RING domain-dependent manner. Exogenous expression of PP4R1 inhibited NF-κB activation by TRAF2, TRAF6, TNF and the Epstein-Barr virus oncoprotein LMP1. In addition, expression of PP4R1 downregulated IL8 induction by LMP1, whereas downregulation of PP4R1 by RNA interference enhanced the induction of IL8 by LMP1 and TNF. PP4R1 could mediate the dephosphorylation of TRAF2 Ser11, which has been previously implicated in TRAF2-mediated activation of NF-κB. Finally, PP4R1 could inhibit TRAF6 polyubiquitination, suggesting an interference with the E3 ubiquitin ligase activity of TRAF6. Taken together, our data identify a novel mechanism of NF-κB pathway inhibition which is mediated by PP4R1-dependent targeting of specific TRAF molecules.
Collapse
Affiliation(s)
- Paul Hadweh
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Hasem Habelhah
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Elliott Kieff
- Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece.
| | - Eudoxia Hatzivassiliou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece.
| |
Collapse
|
33
|
Zheng PC, Chen X, Zhu HW, Zheng W, Mao LH, Lin C, Liu JN, Zheng M. Capn4 is a marker of poor clinical outcomes and promotes nasopharyngeal carcinoma metastasis via nuclear factor-κB-induced matrix metalloproteinase 2 expression. Cancer Sci 2014; 105:630-8. [PMID: 24703594 PMCID: PMC4317905 DOI: 10.1111/cas.12416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 12/15/2022] Open
Abstract
Calpain small subunit 1 (Capn4) plays a key role in tumor migration or invasion. In this study, expression and function of Capn4 was investigated in human nasopharyngeal carcinoma (NPC). Here we report that both mRNA and protein levels of Capn4 were elevated in NPC tissues when compared to normal NP tissues. Similarly, Capn4 was also highly expressed in multiple NPC cell lines, compared to immortalized human nasopharyngeal epithelial cell line NP69. Moreover, expression of Capn4 was significantly correlated with Epstein-Barr virus infection, advanced stages, and lymph node or distant metastasis (P < 0.001). The patients with NPC displaying higher Capn4 had a significantly shorter overall survival (P = 0.002) and progression-free survival (P = 0.003). Furthermore, siRNA knockdown of Capn4 suppressed cell migration and invasion in vitro and in vivo. These events resulted from Capn4 downregulation were associated with reduced expression of matrix metalloproteinase 2 (MMP2), Snail, and Vimentin. Finally, we demonstrated that Capn4 upregulated MMP2 via nuclear factor-κB (NF-κB) activation, manifested by increased phosphorylation of p65, a subunit of NF-κB. Together, these findings argue a novel function of Capn4 in invasion and metastasis of NPC, and thereby suggest that Capn4 may represent an independent prognostic factor and a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Pei-Chan Zheng
- Department of Anatomy, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou, China
| | - Xiong Chen
- Department of Oncology, Fuzhou General Hospital of Nanjing Military CommandFuzhou, China
| | - Hong-Wu Zhu
- Department of Gastroenterology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Wei Zheng
- Department of Pharmacy, Fujian Provincial Cancer HospitalFuzhou, China
| | - Li-Hua Mao
- Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military CommandFuzhou, China
| | - Cheng Lin
- Department of Oncology, Fuzong Clinical College, Fujian Medical UniversityFuzhou, China
| | - Jing-Nan Liu
- Department of Oncology, Fuzong Clinical College, Fujian Medical UniversityFuzhou, China
| | - Ming Zheng
- Department of Anatomy, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou, China
| |
Collapse
|
34
|
Park EJ, Min KJ, Choi KS, Kwon TK. Dicoumarol sensitizes renal cell carcinoma Caki cells to TRAIL-induced apoptosis through down-regulation of Bcl-2, Mcl-1 and c-FLIP in a NQO1-independent manner. Exp Cell Res 2014; 323:144-154. [DOI: 10.1016/j.yexcr.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 02/06/2023]
|
35
|
Wrobel CM, Geiger TR, Nix RN, Robitaille AM, Weigand S, Cervantes A, Gonzalez M, Martin JM. High molecular weight complex analysis of Epstein-Barr virus Latent Membrane Protein 1 (LMP-1): structural insights into LMP-1's homo-oligomerization and lipid raft association. Virus Res 2013; 178:314-27. [PMID: 24075898 DOI: 10.1016/j.virusres.2013.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
LMP-1 is a constitutively active Tumor Necrosis Factor Receptor analog encoded by Epstein-Barr virus. LMP-1 activation correlates with oligomerization and raft localization, but direct evidence of LMP-1 oligomers is limited. We report that LMP-1 forms multiple high molecular weight native LMP-1 complexes when analyzed by BN-PAGE, the largest of which are enriched in detergent resistant membranes. The largest of these high molecular weight complexes are not formed by purified LMP-1 or by loss of function LMP-1 mutants. Consistent with these results we find a dimeric form of LMP-1 that can be stabilized by disulfide crosslinking. We identify cysteine 238 in the C-terminus of LMP-1 as the crosslinked cysteine. Disulfide crosslinking occurs post-lysis but the dimer can be crosslinked in intact cells with membrane permeable crosslinkers. LMP-1/C238A retains wild type LMP-1 NF-κB activity. LMP-1's TRAF binding, raft association and oligomerization are associated with the dimeric form of LMP-1. Our results suggest the possibility that the observed dimeric species results from inter-oligomeric crosslinking of LMP-1 molecules in adjacent core LMP-1 oligomers.
Collapse
Affiliation(s)
- Christopher M Wrobel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kang SC, Lim SY, Song YJ. Lupeol is one of active components in the extract of Chrysanthemum indicum Linne that inhibits LMP1-induced NF-κB activation. PLoS One 2013; 8:e82688. [PMID: 24303085 PMCID: PMC3841202 DOI: 10.1371/journal.pone.0082688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022] Open
Abstract
We have previously reported that seventy percent ethanol extract of Chrysanthemum indicum Linne (CIE) strongly reduces Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) survival by inhibiting virus-encoded latent infection membrane protein 1 (LMP1)-induced NF-κB activation. To identify an active compound(s) in CIE that inhibits LMP1-induced NF-κB activation, activity-guided fractionation was employed. The CH2Cl2 fraction of CIE strongly reduced LMP1-induced NF-κB activation and LCL viability with relatively low cytotoxic effects on primary human foreskin fibroblast (HFF), HeLa or Burkitt’s lymphoma (BL41) cells. Furthermore, lupeol, a pentacyclic triterpene, was identified in the CH2Cl2 fraction of CIE to attenuate LMP1-induced NF-κB activation and LCL viability. This study demonstrates that lupeol is one of active compounds in the CH2Cl2 fraction of CIE that inhibits LMP1-induced NF-κB activation and reduces NF-κB-dependent LCL viability.
Collapse
Affiliation(s)
- Se Chan Kang
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Sue Yeon Lim
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Role of Ca2+/calmodulin-dependent kinase II-IRAK1 interaction in LMP1-induced NF-κB activation. Mol Cell Biol 2013; 34:325-34. [PMID: 24248603 DOI: 10.1128/mcb.00912-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously reported that interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is essential for Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced p65/RelA serine 536 phosphorylation and NF-κB activation but not for IκB kinase α (IKKα) or IKKβ activation (Y. J. Song, K. Y. Jen, V. Soni, E. Kieff, and E. Cahir-McFarland, Proc. Natl. Acad. Sci. U. S. A. 103:2689-2694, 2006, doi:10.1073/pnas.0511096103). Since the kinase activity of IRAK1 is not required for LMP1-induced NF-κB activation, IRAK1 is proposed to function as a scaffold protein to recruit a p65/RelA serine 536 kinase(s) to enhance NF-κB-dependent transcriptional activity. We now report that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with IRAK1 and is critical for LMP1-induced p65/RelA serine 536 phosphorylation and NF-κB activation. CaMKII bound the death domain of IRAK1 and directly phosphorylated p65/RelA at serine 536 in vitro. Downregulation of CaMKII activity or expression significantly reduced LMP1-induced p65/RelA serine 536 phosphorylation and NF-κB activation. Furthermore, LMP1-induced CaMKII activation and p65/RelA serine 536 phosphorylation were significantly reduced in IRAK1 knockout (KO) mouse embryonic fibroblasts (MEFs). Thus, IRAK1 may recruit and activate CaMKII, which phosphorylates p65/RelA serine 536 to enhance the transactivation potential of NF-κB in LMP1-induced NF-κB activation pathway.
Collapse
|
38
|
Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett 2013; 337:90-5. [DOI: 10.1016/j.canlet.2013.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
|
39
|
Adamik J, Wang KZQ, Unlu S, Su AJA, Tannahill GM, Galson DL, O’Neill LA, Auron PE. Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One 2013; 8:e70622. [PMID: 23936458 PMCID: PMC3731334 DOI: 10.1371/journal.pone.0070622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Kent Z. Q. Wang
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Sebnem Unlu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - An-Jey A. Su
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | | | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Luke A. O’Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
41
|
Shkoda A, Town JA, Griese J, Romio M, Sarioglu H, Knöfel T, Giehler F, Kieser A. The germinal center kinase TNIK is required for canonical NF-κB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol 2012; 10:e1001376. [PMID: 22904686 PMCID: PMC3419181 DOI: 10.1371/journal.pbio.1001376] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023] Open
Abstract
TNIK has an important function in physiological activation and viral transformation of human B-cells by interacting with the TRAF6 adapter complex and mediating NF-κB and JNK signal transduction. The tumor necrosis factor-receptor-associated factor 2 (TRAF2)- and Nck-interacting kinase (TNIK) is a ubiquitously expressed member of the germinal center kinase family. The TNIK functions in hematopoietic cells and the role of TNIK-TRAF interaction remain largely unknown. By functional proteomics we identified TNIK as interaction partner of the latent membrane protein 1 (LMP1) signalosome in primary human B-cells infected with the Epstein-Barr tumor virus (EBV). RNAi-mediated knockdown proved a critical role for TNIK in canonical NF-κB and c-Jun N-terminal kinase (JNK) activation by the major EBV oncoprotein LMP1 and its cellular counterpart, the B-cell co-stimulatory receptor CD40. Accordingly, TNIK is mandatory for proliferation and survival of EBV-transformed B-cells. TNIK forms an activation-induced complex with the critical signaling mediators TRAF6, TAK1/TAB2, and IKKβ, and mediates signalosome formation at LMP1. TNIK directly binds TRAF6, which bridges TNIK's interaction with the C-terminus of LMP1. Separate TNIK domains are involved in NF-κB and JNK signaling, the N-terminal TNIK kinase domain being essential for IKKβ/NF-κB and the C-terminus for JNK activation. We therefore suggest that TNIK orchestrates the bifurcation of both pathways at the level of the TRAF6-TAK1/TAB2-IKK complex. Our data establish TNIK as a novel key player in TRAF6-dependent JNK and NF-κB signaling and a transducer of activating and transforming signals in human B-cells. The germinal center kinase family member TNIK was discovered in a yeast-two-hybrid screen for interaction partners of the adapter proteins TRAF2 and Nck, and here we show it is one of the missing molecular players in two key signaling pathways in B-lymphocytes. We found that TNIK is crucial for the activities of the CD40 receptor on Bcells and its viral mimic, the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). EBV is a human DNA tumor virus that is associated with various malignancies. It targets and transforms B-cells by hijacking the cellular signaling machinery via its oncogene LMP1. In normal Bcell physiology, the CD40 receptor is central to the immune response by mediating B-cell activation and proliferation. TNIK turns out to be an organizer of the LMP1- and CD40-induced signaling complexes by interacting with the TRAF6 adapter protein, well known for its role in linking distinct signaling pathways. Through this mechanism the two receptors depend on TNIK to activate the canonical NF-κB and JNK signal transduction pathways, which are important for the physiological activation of B-cells (a process that enables antibody production), as well as for their transformation into tumor cells. TNIK thus constitutes a key player in the transmission of physiological and pathological signals in human B-cells that might serve as a future therapeutic target against B-cell malignancies.
Collapse
Affiliation(s)
- Anna Shkoda
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Jennifer A. Town
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Janine Griese
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Michael Romio
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Thomas Knöfel
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Fabian Giehler
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
- * E-mail:
| |
Collapse
|
42
|
Hatton O, Martinez OM, Esquivel CO. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder. Pediatr Transplant 2012; 16:220-9. [PMID: 22353174 PMCID: PMC4052840 DOI: 10.1111/j.1399-3046.2012.01656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De novo malignancies represent an increasing concern in the transplant population, particularly as long-term graft and patient survival improves. EBV-associated B-cell lymphoma in the setting of PTLD is the leading malignancy in children following solid organ transplantation. Therapeutic strategies can be categorized as pharmacologic, biologic, and cell-based but the variable efficacy of these approaches and the complexity of PTLD suggest that new treatment options are warranted. Here, we review current therapeutic strategies for treatment of PTLD. We also describe the life cycle of EBV, addressing the viral mechanisms that contribute to the genesis and persistence of EBV+ B-cell lymphomas. Specifically, we focus on the oncogenic signaling pathways activated by the EBV LMP1 and LMP2a to understand the underlying mechanisms and mediators of lymphomagenesis with the goal of identifying novel, rational therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
43
|
The extract of Chrysanthemum indicum Linne inhibits EBV LMP1-induced NF-κB activation and the viability of EBV-transformed lymphoblastoid cell lines. Food Chem Toxicol 2012; 50:1524-8. [DOI: 10.1016/j.fct.2012.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 11/21/2022]
|
44
|
Zuercher E, Butticaz C, Wyniger J, Martinez R, Battegay M, Boffi El Amari E, Dang T, Egger JF, Fehr J, Mueller-Garamvögyi E, Parini A, Schaefer SC, Schoeni-Affolter F, Thurnheer C, Tinguely M, Telenti A, Rothenberger S. Genetic diversity of EBV-encoded LMP1 in the Swiss HIV Cohort Study and implication for NF-Κb activation. PLoS One 2012; 7:e32168. [PMID: 22384168 PMCID: PMC3285206 DOI: 10.1371/journal.pone.0032168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/21/2012] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Collapse
Affiliation(s)
- Emilie Zuercher
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christophe Butticaz
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Josiane Wyniger
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | | | - Thanh Dang
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Andrea Parini
- Medical Service, Ospedale Regionale, Lugano, Switzerland
| | - Stephan C. Schaefer
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Franziska Schoeni-Affolter
- Swiss HIV Cohort Study Data Center, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Thurnheer
- Division of Infectious Diseases, University Hospital and University of Bern, Bern, Switzerland
| | - Marianne Tinguely
- Institute of Surgical Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Amalio Telenti
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- Yoon-Jae Song
- Department of Life Science, Kyungwon University, Seongnam-Si, Kyeonggi-Do, Korea
| |
Collapse
|
47
|
Wolenski FS, Chandani S, Stefanik DJ, Jiang N, Chu E, Finnerty JR, Gilmore TD. Two polymorphic residues account for the differences in DNA binding and transcriptional activation by NF-κB proteins encoded by naturally occurring alleles in Nematostella vectensis. J Mol Evol 2011; 73:325-36. [PMID: 22198650 DOI: 10.1007/s00239-011-9479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
The NF-κB family of transcription factors is activated in response to many environmental and biological stresses, and plays a key role in innate immunity across a broad evolutionary expanse of animals. A simple NF-κB pathway is present in the sea anemone Nematostella vectensis, an important model organism in the phylum Cnidaria. Nematostella has previously been shown to have two naturally occurring NF-κB alleles (Nv-NF-κB-C and Nv-NF-κB-S) that encode proteins with different DNA-binding and transactivation abilities. We show here that polymorphic residues 67 (Cys vs. Ser) and 269 (Ala vs. Glu) play complementary roles in determining the DNA-binding activity of the NF-κB proteins encoded by these two alleles and that residue 67 is primarily responsible for the difference in their transactivation ability. Phylogenetic analysis indicates that Nv-NF-κB-S is the derived allele, consistent with its restricted geographic distribution. These results define polymorphic residues that are important for the DNA-binding and transactivating activities of two naturally occurring variants of Nv-NF-κB. The implications for the appearance of the two Nv-NF-κB alleles in natural populations of sea anemones are discussed.
Collapse
|
48
|
Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells. BMC Immunol 2011; 12:54. [PMID: 21955384 PMCID: PMC3208582 DOI: 10.1186/1471-2172-12-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe autoinflammatory diseases are associated with mutations in the Foxp3 locus in both mice and humans. Foxp3 is required for the development, function, and maintenance of regulatory T cells (Tregs), a subset of CD4 cells that suppress T cell activation and inflammatory processes. Siva is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on Treg cells: CD27, GITR, and OX40. RESULTS Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that Siva repressed IL-2 induction by suppressing IL-2 promoter activity during T cell activation. Siva-1's repressive effect on IL-2 gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity. CONCLUSIONS In summary, our data suggest that both FOXP3 and Siva function as negative regulators of IL-2 gene expression in Treg cells, via suppression of NFAT by FOXP3 and of NFkappaB by both FOXP3 and Siva. Our work contributes evidence for Siva's role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper Treg cell function.
Collapse
|
49
|
Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M. Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 2011; 82:610-9. [PMID: 21684267 PMCID: PMC3156895 DOI: 10.1016/j.bcp.2011.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that infects up to 80% of the human population and causes severe complications in immunocompromised patients. HCMV expresses four seven transmembrane (7TM) spanning/G protein-coupled receptors (GPCRs) – US28, US27, UL33 and UL78 – that show close homology to human chemokine receptors. While US28 was shown to bind several chemokines and to constitutively activate multiple signaling cascades, the function(s) of US27, UL33 and UL78 in the viral life cycle have not yet been identified. Here we investigated the possible interaction/heteromerization of US27, UL33 and UL78 with US28 and the functional consequences thereof. We provide evidence that these receptors not only co-localize, but also heteromerize with US28 in vitro. While the constitutive activation of the US28-mediated Gαq/phospholipase C pathway was not affected by receptor heteromerization, UL33 and UL78 were able to silence US28-mediated activation of the transcription factor NF-κB. Summarized, we provide evidence that these orphan viral receptors have an important regulatory capacity on the function of US28 and as a consequence, may ultimately impact on the viral life cycle of HCMV.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
50
|
Sammond DW, Joce C, Takeshita R, McQuate SE, Ghosh N, Martin JM, Yin H. Transmembrane peptides used to investigate the homo-oligomeric interface and binding hotspot of latent membrane protein 1. Biopolymers 2011; 95:772-84. [PMID: 21560118 DOI: 10.1002/bip.21672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 12/30/2022]
Abstract
Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.
Collapse
Affiliation(s)
- Deanne W Sammond
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|