1
|
Hoffmann M, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier Adeno-Associated Virus. ACS NANO 2025; 19:12308-12322. [PMID: 40117458 PMCID: PMC11966780 DOI: 10.1021/acsnano.5c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy, enabling the delivery of therapeutic DNA to target cells. However, the potential of AAV to deliver protein payloads has been unexplored. In this study, we engineered a protein carrier AAV (pcAAV) to package and deliver proteins by inserting binding domains on the interior capsid surface. These binding domains mediate the packaging of specific target proteins through interaction with cognate peptides or protein tags during the capsid assembly process. We demonstrate the packaging of multiple proteins, including green fluorescent protein, Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. Packaging efficiency is modulated by the binding domain insertion site, the viral protein isoform containing the binding domain, and the subcellular localization of the target protein. We show that pcAAV can enter cells and deliver the protein payload and that enzymes retain their activity after packaging. Importantly, this protein packaging capability can be translated to multiple AAV serotypes. Our work establishes AAV as a protein delivery vehicle, significantly expanding the utility of this viral vector for biomedical applications.
Collapse
Affiliation(s)
- Mareike
Daniela Hoffmann
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan James Sorensen
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department
of Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yungui He
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Schmidt
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
3
|
Hoffmann MD, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier AAV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607995. [PMID: 39185209 PMCID: PMC11343202 DOI: 10.1101/2024.08.14.607995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
AAV is widely used for efficient delivery of DNA payloads. The extent to which the AAV capsid can be used to deliver a protein payload is unexplored. Here, we report engineered AAV capsids that directly package proteins - Protein Carrier AAV (pcAAV). Nanobodies inserted into the interior of the capsid mediate packaging of a cognate protein, including Green Fluorescent Protein (GFP), Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. We show that protein packaging efficiency is affected by the nanobody insertion position, the capsid protein isoform into which the nanobody is inserted, and the subcellular localization of the packaged protein during recombinant AAV capsid production; each of these factors can be rationally engineered to optimize protein packaging efficiency. We demonstrate that proteins packaged within pcAAV retain their enzymatic activity and that pcAAV can bind and enter the cell to deliver the protein payload. Establishing pcAAV as a protein delivery platform may expand the utility of AAV as a therapeutic and research tool.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan J. Sorensen
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department of Molecular, Cellular, Developmental Biology, and Genetics
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Kuz CA, McFarlin S, Qiu J. The Expression and Function of the Small Nonstructural Proteins of Adeno-Associated Viruses (AAVs). Viruses 2024; 16:1215. [PMID: 39205189 PMCID: PMC11359079 DOI: 10.3390/v16081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Adeno-associated viruses (AAVs) are small, non-enveloped viruses that package a single-stranded (ss)DNA genome of 4.7 kilobases (kb) within their T = 1 icosahedral capsid. AAVs are replication-deficient viruses that require a helper virus to complete their life cycle. Recombinant (r)AAVs have been utilized as gene delivery vectors for decades in gene therapy applications. So far, six rAAV-based gene medicines have been approved by the US FDA. The 4.7 kb ssDNA genome of AAV encodes nine proteins, including three viral structural/capsid proteins, VP1, VP2, and VP3; four large nonstructural proteins (replication-related proteins), Rep78/68 and Rep52/40; and two small nonstructural proteins. The two nonstructured proteins are viral accessory proteins, namely the assembly associated protein (AAP) and membrane-associated accessory protein (MAAP). Although the accessory proteins are conserved within AAV serotypes, their functions are largely obscure. In this review, we focus on the expression strategy and functional properties of the small nonstructural proteins of AAVs.
Collapse
Affiliation(s)
| | | | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.K.); (S.M.)
| |
Collapse
|
5
|
Tejero M, Duzenli OF, Caine C, Kuoch H, Aslanidi G. Bioengineered Hybrid Rep 2/6 Gene Improves Encapsulation of a Single-Stranded Expression Cassette into AAV6 Vectors. Genes (Basel) 2023; 14:1866. [PMID: 37895215 PMCID: PMC10606878 DOI: 10.3390/genes14101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene therapy trials remains a major hurdle in the further advancement of the gene therapy field. During the past decades, AAV research has been predominantly focused on the development of new capsid modifications, vector-associated immunogenicity, and the scale-up vector production. However, limited studies have examined the possibility to manipulate non-structural components of AAV such as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the current study, we mutated four variable amino acids in the conservative part of the binding domain in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.
Collapse
Affiliation(s)
- Marcos Tejero
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Ozgun F. Duzenli
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Colin Caine
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Hisae Kuoch
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - George Aslanidi
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Casy W, Garza IT, Chen X, Dong T, Hu Y, Kanchwala M, Trygg CB, Shyng C, Xing C, Bunnell BA, Braun SE, Gray SJ. SMRT Sequencing Enables High-Throughput Identification of Novel AAVs from Capsid Shuffling and Directed Evolution. Genes (Basel) 2023; 14:1660. [PMID: 37628711 PMCID: PMC10454592 DOI: 10.3390/genes14081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The use of AAV capsid libraries coupled with various selection strategies has proven to be a remarkable approach for generating novel AAVs with enhanced and desired features. The inability to reliably sequence the complete capsid gene in a high-throughput manner has been the bottleneck of capsid engineering. As a result, many library strategies are confined to localized and modest alterations in the capsid, such as peptide insertions or single variable region (VR) alterations. The caveat of short reads by means of next-generation sequencing (NGS) hinders the diversity of capsid library construction, shifting the field away from whole-capsid modifications. We generated AAV capsid shuffled libraries of naturally occurring AAVs and applied directed evolution in both mice and non-human primates (NHPs), with the goal of yielding AAVs that are compatible across both species for translational applications. We recovered DNA from the tissues of injected animal and used single molecule real-time (SMRT) sequencing to identify variants enriched in the central nervous system (CNS). We provide insights and considerations for variant identification by comparing bulk tissue sequencing to that of isolated nuclei. Our work highlights the potential advantages of whole-capsid engineering, as well as indispensable methodological improvements for the analysis of recovered capsids, including the nuclei-enrichment step and SMRT sequencing.
Collapse
Affiliation(s)
- Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Irvin T. Garza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Graduate School of Basic Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
| | - Cynthia B. Trygg
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Charles Shyng
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A. Bunnell
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Stephen E. Braun
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Scarrott JM, Johari YB, Pohle TH, Liu P, Mayer A, James DC. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J 2023; 18:e2200450. [PMID: 36495042 DOI: 10.1002/biot.202200450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has established itself as a highly efficacious gene delivery vector with a well characterised safety profile allowing broad clinical application. Recent successes in rAAV-mediated gene therapy clinical trials will continue to drive demand for improved rAAV production processes to reduce costs. Here, we demonstrate that small molecule bioactive chemical additives can significantly increase recombinant AAV vector production by human embryonic kidney (HEK) cells up to three-fold. Nocodazole (an anti-mitotic agent) and M344 (a selective histone deacetylase inhibitor) were identified as positive regulators of rAAV8 genome titre in a microplate screening assay. Addition of nocodazole to triple-transfected HEK293 suspension cells producing rAAV arrested cells in G2/M phase, increased average cell volume and reduced viable cell density relative to untreated rAAV producing cells at harvest. Final crude genome vector titre from nocodazole treated cultures was >2-fold higher compared to non-treated cultures. Further investigation showed nocodazole addition to cultures to be time critical. Genome titre improvement was found to be scalable and serotype independent across two distinct rAAV serotypes, rAAV8 and rAAV9. Furthermore, a combination of M344 and nocodazole produced a positive additive effect on rAAV8 genome titre, resulting in a three-fold increase in genome titre compared to untreated cells.
Collapse
Affiliation(s)
- Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Rode L, Bär C, Groß S, Rossi A, Meumann N, Viereck J, Abbas N, Xiao K, Riedel I, Gietz A, Zimmer K, Odenthal M, Büning H, Thum T. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol Ther 2022; 30:3601-3618. [PMID: 35810332 PMCID: PMC9734024 DOI: 10.1016/j.ymthe.2022.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.
Collapse
Affiliation(s)
- Laura Rode
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Naisam Abbas
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Anika Gietz
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Karina Zimmer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hildegard Büning
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Abstract
Adeno-associated virus (AAV) has a single-stranded DNA genome encapsidated in a small icosahedrally symmetric protein shell with 60 subunits. AAV is the leading delivery vector in emerging gene therapy treatments for inherited disorders, so its structure and molecular interactions with human hosts are of intense interest. A wide array of electron microscopic approaches have been used to visualize the virus and its complexes, depending on the scientific question, technology available, and amenability of the sample. Approaches range from subvolume tomographic analyses of complexes with large and flexible host proteins to detailed analysis of atomic interactions within the virus and with small ligands at resolutions as high as 1.6 Å. Analyses have led to the reclassification of glycan receptors as attachment factors, to structures with a new-found receptor protein, to identification of the epitopes of antibodies, and a new understanding of possible neutralization mechanisms. AAV is now well-enough characterized that it has also become a model system for EM methods development. Heralding a new era, cryo-EM is now also being deployed as an analytic tool in the process development and production quality control of high value pharmaceutical biologics, namely AAV vectors.
Collapse
Affiliation(s)
- Scott
M. Stagg
- Department
of Biological Sciences, Florida State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Craig Yoshioka
- Department
of Biomedical Engineering, Oregon Health
& Science University, Portland Oregon 97239, United States
| | - Omar Davulcu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Michael S. Chapman
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Sutter SO, Lkharrazi A, Schraner EM, Michaelsen K, Meier AF, Marx J, Vogt B, Büning H, Fraefel C. Adeno-associated virus type 2 (AAV2) uncoating is a stepwise process and is linked to structural reorganization of the nucleolus. PLoS Pathog 2022; 18:e1010187. [PMID: 35816507 PMCID: PMC9302821 DOI: 10.1371/journal.ppat.1010187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/21/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleoli are membrane-less structures located within the nucleus and are known to be involved in many cellular functions, including stress response and cell cycle regulation. Besides, many viruses can employ the nucleolus or nucleolar proteins to promote different steps of their life cycle such as replication, transcription and assembly. While adeno-associated virus type 2 (AAV2) capsids have previously been reported to enter the host cell nucleus and accumulate in the nucleolus, both the role of the nucleolus in AAV2 infection, and the viral uncoating mechanism remain elusive. In all prior studies on AAV uncoating, viral capsids and viral genomes were not directly correlated on the single cell level, at least not in absence of a helper virus. To elucidate the properties of the nucleolus during AAV2 infection and to assess viral uncoating on a single cell level, we combined immunofluorescence analysis for detection of intact AAV2 capsids and capsid proteins with fluorescence in situ hybridization for detection of AAV2 genomes. The results of our experiments provide evidence that uncoating of AAV2 particles occurs in a stepwise process that is completed in the nucleolus and supported by alteration of the nucleolar structure.
Collapse
Affiliation(s)
| | - Anouk Lkharrazi
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Kevin Michaelsen
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Bernd Vogt
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Daniel HDJ, Kumar S, Kannangai R, Farzana J, Joel JN, Abraham A, Lakshmi KM, Agbandje-Mckenna M, Coleman KE, Srivastava A, Srivastava A, Abraham AM. Age-stratified adeno-associated virus serotype 3 neutralizing and total antibody prevalence in hemophilia A patients from India. J Med Virol 2022; 94:4542-4547. [PMID: 35577570 DOI: 10.1002/jmv.27859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Gene therapy using adeno-associated virus (AAV) vector offers a new treatment option for individuals with monogenetic disorders. The major bottleneck is the presence of pre-existing anti-AAV antibodies, which impacts its use. Even very low titers of neutralizing antibodies (NAb) to capsids from natural AAV infections have been reported to inhibit the transduction of intravenously administered AAV in animal models and are associated with limited efficacy in human trials. Assessing the level of pre-existing NAb is important for determining the primary eligibility of patients for AAV vector-based gene therapy clinical trials. Techniques used to screen AAV-antibodies include AAV capsid ELISA and transduction inhibition assay (TIA) for detecting total capsid-binding (TAb) and Nab, respectively. In this study, we screened 521 individuals with hemophilia A from India for TAb and NAb using ELISA and TIA, respectively. The prevalence of TAb and NAb in hemophilia A patients from India were 96 % and 77.5%, respectively. There was a significant increase in anti-AAV3 NAb prevalence with age in the hemophilia A patient group from India. There was a trend in anti-AAV3 TAb positivity between the pediatric age group (94.4%) and the adult age group (97.4%). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hubert D-J Daniel
- Center for Stem Cell Research, Christian Medical College, Vellore, India.,Department of Clinical Virology
| | - Sanjay Kumar
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | | | - J Farzana
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Joseph N Joel
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Hematology, Christian Medical College, Vellore, India
| | | | | | | | | | - Alok Srivastava
- Center for Stem Cell Research, Christian Medical College, Vellore, India.,Department of Hematology, Christian Medical College, Vellore, India
| | - Asha Mary Abraham
- Center for Stem Cell Research, Christian Medical College, Vellore, India.,Department of Clinical Virology
| |
Collapse
|
13
|
Belova L, Kochergin‐Nikitsky K, Erofeeva A, Lavrov A, Smirnikhina S. Approaches to purification and concentration of rAAV vectors for gene therapy. Bioessays 2022; 44:e2200019. [DOI: 10.1002/bies.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
|
14
|
Hamann MV, Beschorner N, Vu XK, Hauber I, Lange UC, Traenkle B, Kaiser PD, Foth D, Schneider C, Büning H, Rothbauer U, Hauber J. Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS One 2021; 16:e0261269. [PMID: 34928979 PMCID: PMC8687595 DOI: 10.1371/journal.pone.0261269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) are considered non-pathogenic in humans, and thus have been developed into powerful vector platforms for in vivo gene therapy. Although the various AAV serotypes display broad tropism, frequently infecting multiple tissues and cell types, vectors for specific and efficient targeting of human CD4+ T lymphocytes are largely missing. In fact, a substantial translational bottleneck exists in the field of therapeutic gene transfer that would require in vivo delivery into peripheral disease-related lymphocytes for subsequent genome editing. To solve this issue, capsid modification for retargeting AAV tropism, and in turn improving vector potency, is considered a promising strategy. Here, we genetically modified the minor AAV2 capsid proteins, VP1 and VP2, with a set of novel nanobodies with high-affinity for the human CD4 receptor. These novel vector variants demonstrated improved targeting of human CD4+ cells, including primary human peripheral blood mononuclear cells (PBMC) and purified human CD4+ T lymphocytes. Thus, the technical approach presented here provides a promising strategy for developing specific gene therapy vectors, particularly targeting disease-related peripheral blood CD4+ leukocytes.
Collapse
Affiliation(s)
- Martin V. Hamann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Xuan-Khang Vu
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bjoern Traenkle
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Philipp D. Kaiser
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Daniel Foth
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ulrich Rothbauer
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Reutlingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| |
Collapse
|
15
|
Galibert L, Hyvönen A, Eriksson RAE, Mattola S, Aho V, Salminen S, Albers JD, Peltola SK, Weman S, Nieminen T, Ylä-Herttuala S, Lesch HP, Vihinen-Ranta M, Airenne KJ. Functional roles of the membrane-associated AAV protein MAAP. Sci Rep 2021; 11:21698. [PMID: 34737404 PMCID: PMC8568889 DOI: 10.1038/s41598-021-01220-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.
Collapse
Affiliation(s)
| | - Amira Hyvönen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.511728.8FinVector, Kuopio, Finland
| | - Reetta A. E. Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Salla Mattola
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Vesa Aho
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sami Salminen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | | | | - Saija Weman
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XGene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna P. Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Maija Vihinen-Ranta
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | |
Collapse
|
16
|
Mattola S, Hakanen S, Salminen S, Aho V, Mäntylä E, Ihalainen TO, Kann M, Vihinen-Ranta M. Concepts to Reveal Parvovirus-Nucleus Interactions. Viruses 2021; 13:1306. [PMID: 34372512 PMCID: PMC8310053 DOI: 10.3390/v13071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/23/2023] Open
Abstract
Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Satu Hakanen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Sami Salminen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Vesa Aho
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| |
Collapse
|
17
|
Shao L, Shen W, Wang S, Qiu J. Recent Advances in Molecular Biology of Human Bocavirus 1 and Its Applications. Front Microbiol 2021; 12:696604. [PMID: 34220786 PMCID: PMC8242256 DOI: 10.3389/fmicb.2021.696604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Human bocavirus 1 (HBoV1) was discovered in human nasopharyngeal specimens in 2005. It is an autonomous human parvovirus and causes acute respiratory tract infections in young children. HBoV1 infects well differentiated or polarized human airway epithelial cells in vitro. Unique among all parvoviruses, HBoV1 expresses 6 non-structural proteins, NS1, NS1-70, NS2, NS3, NS4, and NP1, and a viral non-coding RNA (BocaSR), and three structural proteins VP1, VP2, and VP3. The BocaSR is the first identified RNA polymerase III (Pol III) transcribed viral non-coding RNA in small DNA viruses. It plays an important role in regulation of viral gene expression and a direct role in viral DNA replication in the nucleus. HBoV1 genome replication in the polarized/non-dividing airway epithelial cells depends on the DNA damage and DNA repair pathways and involves error-free Y-family DNA repair DNA polymerase (Pol) η and Pol κ. Importantly, HBoV1 is a helper virus for the replication of dependoparvovirus, adeno-associated virus (AAV), in polarized human airway epithelial cells, and HBoV1 gene products support wild-type AAV replication and recombinant AAV (rAAV) production in human embryonic kidney (HEK) 293 cells. More importantly, the HBoV1 capsid is able to pseudopackage an rAAV2 or rHBoV1 genome, producing the rAAV2/HBoV1 or rHBoV1 vector. The HBoV1 capsid based rAAV vector has a high tropism for human airway epithelia. A deeper understanding in HBoV1 replication and gene expression will help find a better way to produce the rAAV vector and to increase the efficacy of gene delivery using the rAAV2/HBoV1 or rHBoV1 vector, in particular, to human airways. This review summarizes the recent advances in gene expression and replication of HBoV1, as well as the use of HBoV1 as a parvoviral vector for gene delivery.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
18
|
Hörner M, Jerez-Longres C, Hudek A, Hook S, Yousefi OS, Schamel WWA, Hörner C, Zurbriggen MD, Ye H, Wagner HJ, Weber W. Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. SCIENCE ADVANCES 2021; 7:7/25/eabf0797. [PMID: 34134986 PMCID: PMC8208708 DOI: 10.1126/sciadv.abf0797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carolina Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Anna Hudek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Cindy Hörner
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanna J Wagner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
20
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
21
|
Korte J, Mienert J, Hennigs JK, Körbelin J. Inactivation of Adeno-Associated Viral Vectors by Oxidant-Based Disinfectants. Hum Gene Ther 2020; 32:771-781. [PMID: 33023320 DOI: 10.1089/hum.2020.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are becoming increasingly popular in basic research as well as in clinical gene therapy. Due to its exceptional resistance against physical and chemical stress, however, the increasing use of AAV in laboratories and clinics around the globe raises safety concerns. Proper decontamination of tools and surfaces based on reliable AAV inactivation is crucial to prevent uncontrolled vector dissemination. Although recommended for AAV decontamination, sodium hypochlorite is not compatible with all surfaces found in the laboratory or clinical environment due to its corrosive nature. We, therefore, compared 0.5% sodium hypochlorite to 0.25% peracetic acid (PAA), a second substance declared effective, and to three less aggressive, commonly available alternative disinfectants 70% ethanol, 1.5% hydrogen peroxide, and 0.45% potassium peroxymonosulfate. The impact of all five disinfectants on virus capsid integrity, viral genome integrity, and infectivity upon different exposure times was tested on AAV2 and AAV5, two serotypes with highly different thermostability. While sodium hypochlorite, potassium peroxymonosulfate, and PAA successfully inactivated AAV2 after 1, 5, and 30 min, respectively, ethanol and hydrogen peroxide did not show significant effects on AAV2 even after exposure for 30 min. For AAV5, only sodium hypochlorite and potassium peroxymonosulfate proved efficient capsid and genome denaturation after incubation for 1 and 30 min, respectively. Consequently, ethanol or hydrogen peroxide should not be considered for routine laboratory or clinical use, while 0.45% potassium peroxymonosulfate and 0.5% sodium hypochlorite represent suitable and broadly effective disinfectants for AAV inactivation.
Collapse
Affiliation(s)
- Joelle Korte
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Mienert
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K Hennigs
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Körbelin
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction. J Virol 2020; 94:JVI.01604-20. [PMID: 32817219 PMCID: PMC7565633 DOI: 10.1128/jvi.01604-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency. Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro. Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo. Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription. IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency.
Collapse
|
23
|
Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM, Leib RD, Cirolia G, Thomas D, Stamnes S, Holt K, Sinn P, May AP, Paulk NK. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol Ther Methods Clin Dev 2020; 18:98-118. [PMID: 32995354 PMCID: PMC7488757 DOI: 10.1016/j.omtm.2020.05.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.
Collapse
Affiliation(s)
- Neil G. Rumachik
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Stacy A. Malaker
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole Poweleit
- Department of Medicine, University of California San Francisco, San Francisco, CA 94305, USA
| | - Lucy H. Maynard
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Christopher M. Adams
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Ryan D. Leib
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Giana Cirolia
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Dennis Thomas
- Cryo-EM Core Facility, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Susan Stamnes
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kathleen Holt
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Patrick Sinn
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew P. May
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole K. Paulk
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Wang D, Sun S, Ren Y, Li S, Yang X, Zhou X. RepA Promotes the Nucleolar Exclusion of the V2 Protein of Mulberry Mosaic Dwarf-Associated Virus. Front Microbiol 2020; 11:1828. [PMID: 32903838 PMCID: PMC7438950 DOI: 10.3389/fmicb.2020.01828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/13/2020] [Indexed: 01/23/2023] Open
Abstract
Plant viruses have limited coding capacities so that they rely heavily on the expression of multifunctional viral proteins to achieve a successful infection. The functional specification of viral proteins is often related to their differential interaction with plant and viral components and somewhat depends on their localization to various subcellular compartments. In this study, we analyzed the intracellular localization of the V2 protein of Mulberry mosaic dwarf-associated virus (MMDaV), an unsigned species of the family Geminiviridae. We show that the V2 protein colocalizes with the nucleolar protein fibrillarin (NbFib2) in the nucleolus upon transient expression in the epidermal cells of Nicotiana benthamiana. A yeast-two hybrid assay, followed by bimolecular fluorescence complementation assays, demonstrated the specific interaction between V2 and NbFib2. Intriguingly, we find that the presence of MMDaV excludes the V2 protein from the nucleolus to nucleoplasm. We present evidence that the replication-associated protein A (RepA) protein of MMDaV interacts with V2 and enables the nucleolar exclusion of V2. We also show that, while V2 interacts with itself primarily in the nucleolus, the presence of RepA redirects the site of V2-V2 interaction from the nucleolus to the nucleoplasm. We further reveal that RepA promotes V2 out of the nucleolus presumably by directing the NbFib2-V2 complex from the nucleolus to the nucleoplasm. Considering the critical role of the nucleolus in plant virus infection, this RepA-dependent modulation of V2 nucleolar localization would be crucial for understanding the involvement of this subcellular compartment in plant-virus interactions.
Collapse
Affiliation(s)
- Dongxue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoshuang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxiang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Li H, Li F, Zhang M, Gong P, Zhou X. Dynamic Subcellular Localization, Accumulation, and Interactions of Proteins From Tomato Yellow Leaf Curl China Virus and Its Associated Betasatellite. FRONTIERS IN PLANT SCIENCE 2020; 11:840. [PMID: 32612626 PMCID: PMC7308551 DOI: 10.3389/fpls.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses contain the largest number of species of plant viruses, and cause devastating crop diseases worldwide. The development of resistance to these viruses will require a clear understanding of viral protein function and interactions. Tomato yellow leaf curl China virus (TYLCCNV) is a typical monopartite geminivirus, which is associated with a tomato yellow leaf curl China betasatellite (TYLCCNB) in the field; the complex infection of TYLCCNV/TYLCCNB leads to serious economic losses in solanaceous plants. The functions of each protein encoded by the TYLCCNV/TYLCCNB complex have not yet been examined in a targeted manner. Here, we show the dynamic subcellular localization and accumulation of six viral proteins encoded by TYLCCNV and the βC1 protein encoded by TYLCCNB in plants over time, and analyzed the effect of TYLCCNV or TYLCCNV/TYLCCNB infection on these parameters. The interaction among the seven viral proteins was also tested in this study: C2 acts as a central player in the viral protein interaction network, since it interacts with C3, C4, V2, and βC1. Self-interactions were also found for C1, C2, and V2. Together, the data presented here provide a template for investigating the function of viral proteins with or without viral infection over time, and points at C2 as a pivotal protein potentially playing a central role in the coordination of the viral life cycle.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Maurer AC, Weitzman MD. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum Gene Ther 2020; 31:499-511. [PMID: 32303138 PMCID: PMC7232694 DOI: 10.1089/hum.2020.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus has emerged as one of the most promising gene therapy delivery vectors. Development of these vectors took advantage of key features of the wild-type adeno-associated virus (AAV), enabled by basic studies of the underlying biology and requirements for transcription, replication, and packaging of the viral genome. Each step in generating and utilizing viral vectors involves numerous molecular interactions that together determine the efficiency of vector production and gene delivery. Once delivered into the cell, interactions with host proteins will determine the fate of the viral genome, and these will impact the intended goal of gene delivery. Here, we provide an overview of known interactions of the AAV genome with viral and cellular proteins involved in its amplification, packaging, and expression. Further appreciation of how the AAV genome interacts with host factors will enhance how this simple virus can be harnessed for an array of vector purposes that benefit human health.
Collapse
Affiliation(s)
- Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Ogden PJ, Kelsic ED, Sinai S, Church GM. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 2020; 366:1139-1143. [PMID: 31780559 DOI: 10.1126/science.aaw2900] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Adeno-associated virus (AAV) capsids can deliver transformative gene therapies, but our understanding of AAV biology remains incomplete. We generated the complete first-order AAV2 capsid fitness landscape, characterizing all single-codon substitutions, insertions, and deletions across multiple functions relevant for in vivo delivery. We discovered a frameshifted gene in the VP1 region that expresses a membrane-associated accessory protein that limits AAV production through competitive exclusion. Mutant biodistribution revealed the importance of both surface-exposed and buried residues, with a few phenotypic profiles characterizing most variants. Finally, we algorithmically designed and experimentally verified a diverse in vivo targeted capsid library with viability far exceeding random mutagenesis approaches. These results demonstrate the power of systematic mutagenesis for deciphering complex genomes and the potential of empirical machine-guided protein engineering.
Collapse
Affiliation(s)
- Pierce J Ogden
- Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biomedically Inspired Engineering, Boston, MA 02115, USA.,Harvard Graduate Program in Biological and Biomedical Sciences, Boston, MA 02115, USA
| | - Eric D Kelsic
- Harvard Medical School, Boston, MA 02115, USA. .,Wyss Institute for Biomedically Inspired Engineering, Boston, MA 02115, USA.,Dyno Therapeutics, Inc., Cambridge, MA 02139, USA
| | - Sam Sinai
- Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biomedically Inspired Engineering, Boston, MA 02115, USA.,Dyno Therapeutics, Inc., Cambridge, MA 02139, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - George M Church
- Harvard Medical School, Boston, MA 02115, USA. .,Wyss Institute for Biomedically Inspired Engineering, Boston, MA 02115, USA.,Harvard Graduate Program in Biological and Biomedical Sciences, Boston, MA 02115, USA.,Dyno Therapeutics, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Maurer AC, Pacouret S, Cepeda Diaz AK, Blake J, Andres-Mateos E, Vandenberghe LH. The Assembly-Activating Protein Promotes Stability and Interactions between AAV's Viral Proteins to Nucleate Capsid Assembly. Cell Rep 2019; 23:1817-1830. [PMID: 29742436 DOI: 10.1016/j.celrep.2018.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/31/2017] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
Collapse
Affiliation(s)
- Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Simon Pacouret
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Ana Karla Cepeda Diaz
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica Blake
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Mietzsch M, Pénzes JJ, Agbandje-McKenna M. Twenty-Five Years of Structural Parvovirology. Viruses 2019; 11:E362. [PMID: 31010002 PMCID: PMC6521121 DOI: 10.3390/v11040362] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Parvoviruses, infecting vertebrates and invertebrates, are a family of single-stranded DNA viruses with small, non-enveloped capsids with T = 1 icosahedral symmetry. A quarter of a century after the first parvovirus capsid structure was published, approximately 100 additional structures have been analyzed. This first structure was that of Canine Parvovirus, and it initiated the practice of structure-to-function correlation for the family. Despite high diversity in the capsid viral protein (VP) sequence, the structural topologies of all parvoviral capsids are conserved. However, surface loops inserted between the core secondary structure elements vary in conformation that enables the assembly of unique capsid surface morphologies within individual genera. These variations enable each virus to establish host niches by allowing host receptor attachment, specific tissue tropism, and antigenic diversity. This review focuses on the diversity among the parvoviruses with respect to the transcriptional strategy of the encoded VPs, the advances in capsid structure-function annotation, and therapeutic developments facilitated by the available structures.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Judit J Pénzes
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
30
|
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on Adeno-associated Virus Capsid Lumen Dictate Interactions and Compatibility with the Assembly-Activating Protein. J Virol 2019; 93:e02013-18. [PMID: 30651367 PMCID: PMC6430561 DOI: 10.1128/jvi.02013-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023] Open
Abstract
The adeno-associated virus (AAV) serves as a broadly used vector system for in vivo gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly.IMPORTANCE Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.
Collapse
Affiliation(s)
- Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Karla Cepeda Diaz
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, Odenthal M, Adriouch S, Salvetti A, Büning H. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep 2019; 9:3631. [PMID: 30842485 PMCID: PMC6403382 DOI: 10.1038/s41598-019-40071-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
AAV vectors poorly transduce Dendritic cells (DC), a feature invoked to explain AAV's low immunogenicity. However, the reason for this non-permissiveness remained elusive. Here, we performed an in-depth analysis using human monocyte-derived immature DC (iDC) as model. iDC internalized AAV vectors of various serotypes, but even the most efficient serotype failed to transduce iDC above background. Since AAV vectors reached the cell nucleus, we hypothesized that AAV's intracellular processing occurs suboptimal. On this basis, we screened an AAV peptide display library for capsid variants more suitable for DC transduction and identified the I/VSS family which transduced DC with efficiencies of up to 38%. This property correlated with an improved vector uncoating. To determine the consequence of this novel feature for AAV's in vivo performance, we engineered one of the lead candidates to express a cytoplasmic form of ovalbumin, a highly immunogenic model antigen, and assayed transduction efficiency as well as immunogenicity. The capsid variant clearly outperformed the parental serotype in muscle transduction and in inducing antigen-specific humoral and T cell responses as well as anti-capsid CD8+ T cells. Hence, vector uncoating represents a major barrier hampering AAV vector-mediated transduction of DC and impacts on its use as vaccine platform.
Collapse
Affiliation(s)
- Axel Rossi
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Léa Dupaty
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France
| | - Ludovic Aillot
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France
| | - Liang Zhang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Célia Gallien
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
| | - Michael Hallek
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Sahil Adriouch
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France.
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France.
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France.
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
32
|
Herrmann AK, Große S, Börner K, Krämer C, Wiedtke E, Gunkel M, Grimm D. Impact of the Assembly-Activating Protein on Molecular Evolution of Synthetic Adeno-Associated Virus Capsids. Hum Gene Ther 2018; 30:21-35. [PMID: 29978729 DOI: 10.1089/hum.2018.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, the role of the assembly-activating protein (AAP) has begun to be dissected for the formation of adeno-associated virus (AAV) capsids based on different viral serotypes. Recently, the authors' group has specifically studied AAP's relevance during production of AAV gene therapy vectors in mammalian or insect cells, and AAP was found to be essential for capsid protein stabilization and generation of functional vector particles. Here, the lingering question is additionally addressed of whether molecular AAV evolution via DNA family shuffling of viral capsid genes would perturb AAP functionality due to concurrent and inadvertent recombination of the AAP open reading frame. To this end, a battery of complementary experiments was conducted in which: (1) the ability of chimeric AAP from AAVDJ, a hybrid of serotypes 2, 8, and 9, was tested to rescue AAP knockouts in the three parental serotypes; (2) the functionality of 60 chimeric AAPs extracted from five shuffled, unselected capsid libraries was measured; (3) whether production of different shuffled libraries, 10 wild-type serotypes or 25 individual chimeric capsids, can be enhanced by overexpression of AAP cocktails was assessed; and (4) the activity of 12 chimeric AAPs isolated from a shuffled library that was iteratively selected in vivo in mouse livers was studied. Collectively, the data demonstrate a remarkable tolerance of AAP for recombination via DNA family shuffling, evidenced by the findings that (1) all chimeric AAPs studied here retained at least partial activity, even in cases where the cognate hybrid capsid may be non-functional, and that (2) ectopic AAP overexpression did not enhance production of shuffled AAV chimeras or libraries, implying that the inherently encoded hybrid AAP variants are sufficiently active. Together, this work provides compelling evidence that AAP is not rate limiting during AAV capsid shuffling and thereby relieves a major concern in the field of AAV vector evolution.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Große
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Kathleen Börner
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany.,3 German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Chiara Krämer
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Manuel Gunkel
- 2 BioQuant Center, University of Heidelberg, Heidelberg, Germany.,4 CellNetworks Advanced Biological Screening Facility, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- 1 Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.,2 BioQuant Center, University of Heidelberg, Heidelberg, Germany.,3 German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| |
Collapse
|
33
|
Bennett A, Rodriguez D, Lister S, Boulton M, McKenna R, Agbandje-McKenna M. Assembly and disassembly intermediates of maize streak geminivirus. Virology 2018; 525:224-236. [PMID: 30300759 DOI: 10.1016/j.virol.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 11/17/2022]
Abstract
Maize streak virus (MSV) belongs to the Geminiviridae. Four forms of MSV coat protein (CP) assemblages were isolated from infected plants: geminate capsids, T = 1 icosahedral capsids, pentamers and decamers of CPs. Sequential exposure of geminate capsids to increasing pH, from 4.8 to 7.2 was used to monitor capsid disassembly. The capsids remain intact at pH4.8, disassemble to decamers and pentamers by pH6.4 and aggregate by pH7.2. Similarly, high salt and divalent cations cause disassembly. The disassembly process was reversed in low pH and low salt, but resulted in empty (no DNA) single and geminate capsid assemblies. This is likely due to disruption of CP-DNA interactions under acidic conditions and suggests a mechanism of capsid assembly in which the genome is packaged into preformed empty capsids. The pH assay developed in this study provides a method for characterizing the conditions that are the determinants of geminivirus assembly and disassembly.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - David Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - Samantha Lister
- John Innes Center, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Margaret Boulton
- John Innes Center, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
34
|
Mapping and Engineering Functional Domains of the Assembly-Activating Protein of Adeno-associated Viruses. J Virol 2018; 92:JVI.00393-18. [PMID: 29695425 DOI: 10.1128/jvi.00393-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/19/2018] [Indexed: 12/28/2022] Open
Abstract
Adeno-associated viruses (AAVs) encode a unique assembly-activating protein (AAP) within their genomes that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates the stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis, followed by deletion and substitutional mutagenesis of specific domains, namely, the N-terminal hydrophobic region (HR), conserved core (CC), proline-rich region (PRR), threonine/serine-rich region (T/S), and basic region (BR). First, we establish that the centrally located PRR and T/S are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display various abilities to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful toward understanding and controlling AAV capsid assembly.IMPORTANCE Adeno-associated viruses (AAVs) encode a unique assembly-activating protein (AAP) within their genomes that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions.
Collapse
|
35
|
Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of Recombinant Adeno-associated Virus Production. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:166-180. [PMID: 29687035 PMCID: PMC5908265 DOI: 10.1016/j.omtm.2018.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP) is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input) used in each platform and which related impurities can be expected in final products (output). The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious), residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses), and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.
Collapse
Affiliation(s)
- Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Achille François
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Nathalie Clément
- Powell Gene Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| |
Collapse
|
36
|
Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome. Sci Rep 2017; 7:14766. [PMID: 29116194 PMCID: PMC5676692 DOI: 10.1038/s41598-017-15255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity.
Collapse
|
37
|
Grosse S, Penaud-Budloo M, Herrmann AK, Börner K, Fakhiri J, Laketa V, Krämer C, Wiedtke E, Gunkel M, Ménard L, Ayuso E, Grimm D. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells. J Virol 2017; 91:e01198-17. [PMID: 28768875 PMCID: PMC5625497 DOI: 10.1128/jvi.01198-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids.IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production.
Collapse
Affiliation(s)
- Stefanie Grosse
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Anne-Kathrin Herrmann
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Julia Fakhiri
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Chiara Krämer
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- CellNetworks Advanced Biological Screening Facility, University of Heidelberg, Heidelberg, Germany
| | - Lucie Ménard
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Galli A, Della Latta V, Bologna C, Pucciarelli D, Cipriani F, Backovic A, Cervelli T. Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae. J Appl Microbiol 2017; 123:414-428. [PMID: 28609559 DOI: 10.1111/jam.13511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
AIMS Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. METHODS AND RESULTS Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. CONCLUSIONS This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. SIGNIFICANCE AND IMPACT OF THE STUDY New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.
Collapse
Affiliation(s)
- A Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - V Della Latta
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - C Bologna
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - D Pucciarelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - F Cipriani
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - A Backovic
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - T Cervelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
39
|
Satkunanathan S, Thorpe R, Zhao Y. The function of DNA binding protein nucleophosmin in AAV replication. Virology 2017; 510:46-54. [PMID: 28704696 PMCID: PMC5572047 DOI: 10.1016/j.virol.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023]
Abstract
Adeno-associated viruses (AAV) contain minimal viral proteins necessary for their replication. During virus assembly, AAV acquire, inherently and submissively, various cellular proteins. Our previous studies identified the association of AAV vectors with the DNA binding protein nucleophosmin (NPM1). Nucleophosmin has been reported to enhance AAV infection by mobilizing AAV capsids into and out of the nucleolus, indicating the importance of NPM1 in the AAV life cycle; however the role of NPM1 in AAV production remains unknown. In this study, we systematically investigated NPM1 function on AAV production using NPM1 knockdown cells and revealing for the first time the presence of G-quadruplex DNA sequences (GQRS) in the AAV genome, the synergistic NPM1-GQRS function in AAV production and the significant enhancement of NPM1 gene knockdown on AAV vector production. Understanding the role of cellular proteins in the AAV life cycle will greatly facilitate high titre production of AAV vectors for clinical use.
Collapse
Affiliation(s)
- Stifani Satkunanathan
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Robin Thorpe
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Yuan Zhao
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
40
|
Xie Q, Spear JM, Noble AJ, Sousa DR, Meyer NL, Davulcu O, Zhang F, Linhardt RJ, Stagg SM, Chapman MS. The 2.8 Å Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide. Mol Ther Methods Clin Dev 2017; 5:1-12. [PMID: 28480299 PMCID: PMC5415311 DOI: 10.1016/j.omtm.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Abstract
Atomic structures of adeno-associated virus (AAV)-DJ, alone and in complex with fondaparinux, have been determined by cryoelectron microscopy at 3 Å resolution. The gene therapy vector, AAV-DJ, is a hybrid of natural serotypes that was previously derived by directed evolution, selecting for hepatocyte entry and resistance to neutralization by human serum. The structure of AAV-DJ differs from that of parental serotypes in two regions where neutralizing antibodies bind, so immune escape appears to have been the primary driver of AAV-DJ's directed evolution. Fondaparinux is an analog of cell surface heparan sulfate to which several AAVs bind during entry. Fondaparinux interacts with viral arginines at a known heparin binding site, without the large conformational changes whose presence was controversial in low-resolution imaging of AAV2-heparin complexes. The glycan density suggests multi-modal binding that could accommodate sequence variation and multivalent binding along a glycan polymer, consistent with a role in attachment, prior to more specific interactions with a receptor protein mediating entry.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - John M. Spear
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Alex J. Noble
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Duncan R. Sousa
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Nancy L. Meyer
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Omar Davulcu
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Chemistry, and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Chemistry, and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306-4380, USA
| | - Michael S. Chapman
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
41
|
Bennett A, Mietzsch M, Agbandje-McKenna M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol 2017; 12:283-297. [PMID: 36776482 PMCID: PMC9910337 DOI: 10.2217/fvl-2017-0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 01/18/2023]
Abstract
Adeno-associated viruses (AAVs) are promising therapeutic viral vectors. Their capsid is assembled from viral proteins VP1, VP2 and VP3, aided by an assembly-activating protein, followed by replication protein mediated packaging of their 4.7-kb genome with inverted terminal repeats as packaging signals. To aid improvement of AAV vectors, knowledge of viral determinants of successful capsid assembly and genome packaging is important. We review the current knowledge of these two processes and efforts to overcome limited DNA packaging capacity and limit the packaging of unwanted foreign DNA in vector development. Residues involved in essential capsid assembly and genome packaging interactions cannot be manipulated in vector engineering. This information thus aids strategies to improve vector production and to increase AAV packaging capacity toward improved efficacy of this vector system.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| |
Collapse
|
42
|
Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 2017; 91:JVI.01980-16. [PMID: 27852862 PMCID: PMC5244341 DOI: 10.1128/jvi.01980-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. IMPORTANCE Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities for research in assembly. Previous studies on AAV serotype 2 (AAV2) showed that assembly takes place in the nucleolus and is dependent on AAP and that capsids colocalize with AAP in the nucleolus during the assembly process. However, through the investigation of 12 different AAV serotypes (AAV1 to -12), we find that AAP is not an essential requirement for capsid assembly of AAV4, -5, and -11, and AAP, assembled capsids, and the nucleolus do not colocalize for all the serotypes. In addition, we find that there are both serotype-restricted and serotype-promiscuous AAPs in their assembly roles. These findings challenge widely held beliefs about the importance of the nucleolus and AAP in AAV assembly and show the heterogeneous nature of the assembly process within the AAV family.
Collapse
|
43
|
Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R. Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus. FRONTIERS IN PLANT SCIENCE 2017; 8:2165. [PMID: 29312406 PMCID: PMC5744400 DOI: 10.3389/fpls.2017.02165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Rosa Lozano-Duran,
| |
Collapse
|
44
|
A Regulatory Element Near the 3' End of the Adeno-Associated Virus rep Gene Inhibits Adenovirus Replication in cis by Means of p40 Promoter-Associated Short Transcripts. J Virol 2016; 90:3981-93. [PMID: 26842470 DOI: 10.1128/jvi.03120-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) has long been known to inhibit helper adenovirus (Ad) replication independently of AAV Rep protein expression. More recently, replication of Ad serotype 5 (Ad5)/AAV serotype 2 (AAV-2) hybrid vectors was shown to be inhibited incisby a sequence near the 3' end of AAVrep, termed the Rep inhibition sequence for adenoviral replication (RIS-Ad). RIS-Ad functions independently of Rep protein expression. Here we demonstrate that inhibition of adenoviral replication by RIS-Ad requires an active AAV p40 promoter and the 5' half of the intron. In addition, Ad inhibition is critically dependent on the integrity of the p40 transcription start site (TSS) leading to short p40-associated transcripts. These do not give rise to effector molecules capable of inhibiting adenoviral replication intrans, like small polypeptides or microRNAs. Our data point to an inhibitory mechanism in which RNA polymerase II (Pol II) pauses directly downstream of the p40 promoter, leading to interference of the stalled Pol II transcription complex with the adenoviral replication machinery. Whereas inhibition by RIS-Ad is mediated exclusively incis, it can be overcome by providing a replication-competent adenoviral genome intrans Moreover, the inhibitory effect of RIS-Ad is not limited to AAV-2 but could also be shown for the corresponding regions of other AAV serotypes, including AAV-5. These findings have important implications for the future generation of Ad5/AAV hybrid vectors. IMPORTANCE Insertion of sequences from the 3' part of therepgene of adeno-associated virus (AAV) into the genome of its helper adenovirus strongly reduces adenoviral genome replication. We could show that this inhibition is mediated exclusively inciswithout the involvement oftrans-acting regulatory RNAs or polypeptides but nevertheless requires an active AAV-2 p40 promoter and p40-associated short transcripts. Our results suggest a novel inhibitory mechanism that has so far not been described for AAV and that involves stalled RNA polymerase II complexes and their interference with adenoviral DNA replication. Such a mechanism would have important implications both for the generation of adenoviral vectors expressing the AAVrepandcapgenes and for the regulation of AAV gene expression in the absence and presence of helper virus.
Collapse
|
45
|
Salganik M, Hirsch ML, Samulski RJ. Adeno-associated Virus as a Mammalian DNA Vector. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0052-2014. [PMID: 26350320 PMCID: PMC4677393 DOI: 10.1128/microbiolspec.mdna3-0052-2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells.
Collapse
Affiliation(s)
- Max Salganik
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Matthew L Hirsch
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Richard Jude Samulski
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
46
|
Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein. J Virol 2014; 89:3038-48. [PMID: 25552709 DOI: 10.1128/jvi.03125-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Assembly-activating protein (AAP) of adeno-associated virus serotype 2 (AAV2) is a nucleolar-localizing protein that plays a critical role in transporting the viral capsid VP3 protein to the nucleolus for assembly. Here, we identify and characterize AAV2 AAP (AAP2) nuclear (NLS) and nucleolar (NoLS) localization signals near the carboxy-terminal region of AAP2 (amino acid positions 144 to 184) (AAP2(144-184)). This region contains five basic-amino-acid-rich (BR) clusters, KSKRSRR (AAP2BR1), RRR (AAP2BR2), RFR (AAP2BR3), RSTSSR (AAP2BR4), and RRIK (AAP2BR5), from the amino terminus to the carboxy terminus. We created 30 AAP2BR mutants by arginine/lysine-to-alanine mutagenesis or deletion of AAP2BRs and 8 and 1 green fluorescent protein (GFP)-AAP2BR and β-galactosidase-AAP2BR fusion proteins, respectively, and analyzed their intracellular localization in HeLa cells by immunofluorescence microscopy. The results showed that AAP2(144-184) has redundant multipartite NLSs and that any combinations of 4 AAP2BRs, but not 3 or less, can constitute a functional NLS-NoLS; AAP2BR1 and AAP2BR2 play the most influential role for nuclear localization, but either one of the two AAP2BRs is dispensable if all 4 of the other AAP2BRs are present, resulting in 3 different, overlapping NLS motifs; and the NoLS is shared redundantly among the five AAP2BRs and functions in a context-dependent manner. AAP2BR mutations not only resulted in aberrant intracellular localization, but also attenuated AAP2 protein expression to various degrees, and both of these abnormalities have a significant negative impact on capsid production. Thus, this study reveals the organization of the intermingling NLSs and NoLSs in AAP2 and provides insights into their functional roles in capsid assembly. IMPORTANCE Adeno-associated virus (AAV) has become a popular and successful vector for in vivo gene therapy; however, its biology has yet to be fully understood. In this regard, the recent discovery of the assembly-activating protein (AAP), a nonstructural, nucleolar-localizing AAV protein essential for viral capsid assembly, has provided us a new opportunity to better understand the fundamental processes required for virion formation. Here, we identify clusters of basic amino acids in the carboxy terminus of AAP from AAV serotype 2 (AAV2) that act as nuclear and nucleolar localization signals. We also demonstrate their importance in maintaining AAP expression levels and efficient production of viral capsids. Insights into the functions of AAP can elucidate the requirements and process for AAV capsid assembly, which may lead to improved vector production for use in gene therapy. This study also contributes to the growing body of work on nuclear and nucleolar localization signals.
Collapse
|
47
|
Abstract
Parvoviruses are small, rugged, nonenveloped protein particles containing a linear, nonpermuted, single-stranded DNA genome of ∼5 kb. Their limited coding potential requires optimal adaptation to the environment of particular host cells, where entry is mediated by a variable program of capsid dynamics, ultimately leading to genome ejection from intact particles within the host nucleus. Genomes are amplified by a continuous unidirectional strand-displacement mechanism, a linear adaptation of rolling circle replication that relies on the repeated folding and unfolding of small hairpin telomeres to reorient the advancing fork. Progeny genomes are propelled by the viral helicase into the preformed capsid via a pore at one of its icosahedral fivefold axes. Here we explore how the fine-tuning of this unique replication system and the mechanics that regulate opening and closing of the capsid fivefold portals have evolved in different viral lineages to create a remarkably complex spectrum of phenotypes.
Collapse
Affiliation(s)
| | - Peter Tattersall
- Departments of 1Laboratory Medicine and.,Genetics, Yale University Medical School, New Haven, Connecticut 06510;
| |
Collapse
|
48
|
Manufacturing of viral vectors: part II. Downstream processing and safety aspects. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Xu Z, Shi C, Qian Q. Scalable manufacturing methodologies for improving adeno-associated virus-based pharmaprojects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Wright JF. Product-Related Impurities in Clinical-Grade Recombinant AAV Vectors: Characterization and Risk Assessment. Biomedicines 2014; 2:80-97. [PMID: 28548061 PMCID: PMC5423478 DOI: 10.3390/biomedicines2010080] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/13/2023] Open
Abstract
Adeno-associated virus (AAV)-based vectors expressing therapeutic genes continue to demonstrate great promise for the treatment of a wide variety of diseases and together with other gene transfer vectors represent an emerging new therapeutic paradigm comparable in potential impact on human health to that achieved by recombinant proteins and vaccines. A challenge for the current pipeline of AAV-based investigational products as they advance through clinical development is the identification, characterization and lot-to-lot control of the process- and product-related impurities present in even highly purified preparations. Especially challenging are AAV vector product-related impurities that closely resemble the vector itself and are, in some cases, without clear precedent in established biotherapeutic products. The determination of acceptable levels of these impurities in vectors prepared for human clinical product development, with the goal of new product licensure, requires careful risk and feasibility assessment. This review focuses primarily on the AAV product-related impurities that have been described in vectors prepared for clinical development.
Collapse
Affiliation(s)
- J Fraser Wright
- Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, ARC1216C, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, ARC1216C, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA .
| |
Collapse
|