1
|
Huang Q, Hassan A, Long Q, Xie J, Huang Q. Screening and identification of viruses in termites: behavior-regulating roles of RcBsV and RcBV. PEST MANAGEMENT SCIENCE 2025; 81:1934-1943. [PMID: 39641222 DOI: 10.1002/ps.8590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Termites live underground in a social setting having continuous contact with microorganism. However, there is no comparative study on virus diversity and relative abundance between termites, castes and body parts in termites. To address this gap, pseudergates of Cryptotermes declivis, workers of the Odontotermes formosanus, and workers, soldiers and alates of the Reticulitermes chinensis were used as experimental materials to perform virome sequencing, virus annotations and their relative abundance analysis. RESULTS It was found that three termites showed different virome taxonomic compositions, abundances and distributions. Small number of viruses were detected in the head, which indicated that the diversity of the virus in the thorax-abdomen is greater than that in the head. Notable differences in viruses between castes in R. chinensis were observed. Eight candidate viruses from the virome of R. chinensis were cloned and identified. To check the influences of viruses on termite behaviors, RNA interference of R. chinensis betsystermes virus (RcBsV) and R. chinensis bracovirus (RcBV) was successfully performed. The relative abundance of the two targeted viruses were significantly decreased in workers of R. chinensis fed on dsRcBsV and dsRcBV. The duration of aggressive behaviors significantly increased, while altruistic behaviors significantly decreased, suggesting that the reduced relative abundance of RcBsV and RcBV resulted in the disruption of normal social behaviors in termites. CONCLUSION These findings enhance our understanding of viral diversity in different termites and castes and its behavioral impacts on termites, which can be used to control termites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qinge Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Long
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Coffman KA, Kauwe AN, Gillette NE, Burke GR, Geib SM. Host range of a parasitoid wasp is linked to host susceptibility to its mutualistic viral symbiont. Mol Ecol 2024; 33:e17485. [PMID: 39080979 DOI: 10.1111/mec.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.
Collapse
Affiliation(s)
- K A Coffman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - A N Kauwe
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| | - N E Gillette
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
- College of Agriculture, Forestry and Natural Resource Management, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - G R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - S M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| |
Collapse
|
3
|
Sugimoto TN, Jouraku A, Mitsuhashi W. Search for genes gained by horizontal gene transfer in an entomopoxvirus, with special reference to the analysis of the transfer of an ABC transporter gene. Virus Res 2024; 347:199418. [PMID: 38880337 PMCID: PMC11253681 DOI: 10.1016/j.virusres.2024.199418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Although it is generally believed that large DNA viruses capture genes by horizontal gene transfer (HGT), the detailed manner of such transfer has not been fully elucidated. Here, we searched for genes in the coleopteran entomopoxvirus (EV) Anomala cuprea entomopoxvirus (ACEV) that might have been gained by ACEV by HGT. We classified the potential source organisms for HGT into three categories: the host A. cuprea; other organisms, including viruses unrelated to EVs; and organisms with uncertain host attribution. Of the open reading frames (ORFs) of the ACEV genome, 2.1 % were suggested to have been gained from the host by ACEV or its recent ancestor via HGT; 8.7 % were possibly from organisms other than the host, and 3.7 % were possibly from the third category of organisms via HGT. The analysis showed that ACEV contains some interesting ORFs obtained by HGT, including a large ATP-binding cassette protein (ABC transporter) ORF and a tenascin ORF (IDs ACV025 and ACV123, respectively). We then performed a detailed analysis of the HGT of the ACEV large ABC transporter ORF-the largest of the ACEV ORFs. mRNA sequences obtained by RNA-seq from fat bodies-sites of ACEV replication-and midgut tissues-sites of initial infection-of the virus's host A. cuprea larvae were subjected to BLAST analysis. One type of ABC transporter ORF from the fat bodies and two types from the midgut tissues, one of which was identical to that in the fat bodies, had the greatest identity to the ABC transporter ORF of ACEV. The two types from the host had high levels of identity to each other (approximately 95 % nucleotide sequence identity), strongly suggesting that the host ABC transporter group consisting of the two types was the origin of ACV025. We then determined the sequence (12,381 bp) containing a full-length gene of the A. cuprea ABC transporter. It turned out to be a transcription template for the abovementioned mRNA found in both tissues. In addition, we determined a large part (ca. 6.9 kb) of the template sequence for the mRNA found only in the midgut tissues. The results showed that the ACEV ABC transporter ORF is missing parts corresponding to introns of the host ABC transporter genes, indicating that the ORF was likely acquired by HGT in the form of mRNA. The presence of definite duplicated sequences adjacent to the ACEV ABC transporter genes-a sign of LINE-1 retrotransposon-mediated HGT-was not observed. An approximately 2-month ACV025 transcription experiment suggested that the transporter sequence is presumed to be continuously functional. The amino acid sequence of ACV025 suggests that its product might function in the regulation of phosphatide in the host-cell membranes.
Collapse
Affiliation(s)
- Takafumi N Sugimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Wataru Mitsuhashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
4
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
5
|
Jensen LE. Pellino Proteins in Viral Immunity and Pathogenesis. Viruses 2023; 15:1422. [PMID: 37515108 PMCID: PMC10383966 DOI: 10.3390/v15071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in intracellular signaling in a wide range of cell types. They are essential for microbe detection and the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino proteins as part of their immune evasion strategies. Through studies of mouse models of viral infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked to both beneficial and detrimental immune responses. Only in recent years have some of the involved mechanisms been identified. The objective of this review is to highlight the many diverse aspects of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order to promote further research into their functions. After a brief introduction to the cellular signaling mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses, pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known viral immune evasion strategies are also described. Throughout, areas that require more in-depth investigation are identified. Future research into the functions of the Pellino protein family may reveal fundamental insights into how our immune system works. Such knowledge may be leveraged in the fight against viral infections and their sequala.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Characterization of a Novel Pathogenic Reovirus in Grasshoppers. Viruses 2022; 14:v14122810. [PMID: 36560814 PMCID: PMC9783633 DOI: 10.3390/v14122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Grasshoppers can swarm in the millions and destroy crops over wide areas, posing a major economic threat to agriculture. A wide range of insect-related viruses has recently been reported in the metagenomics of grasshoppers. Here, we identified and isolated a novel reovirus from grasshoppers, named Acrididae reovirus (ARV). The complete genome of ARV was composed of nine dsRNA segments. Phylogenetic analysis revealed that ARV formed a monophyletic lineage with unclassified insect-associated reoviruses and was sufficiently distinct from known genera of Reoviridae. ARV could replicate in its host Locusta migratoria and result in host death. Lower-dose ARV infection affected ovary development and resulted in a significant reduction in fecundity. The identification and characterization of a novel pathogenic reovirus could potentially promote the development of new biological control agents.
Collapse
|
7
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
8
|
Xu Y, Jiang J, Lin X, Shi W, Cao C. Identification of Diverse Viruses Associated with Grasshoppers Unveils Parallel Relationship Between Host Phylogeny and Virome Composition. Virus Evol 2022; 8:veac057. [PMID: 35821717 PMCID: PMC9271882 DOI: 10.1093/ve/veac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Grasshoppers (Orthoptera: Acridoidea) are one of the most dangerous agricultural pests. Environmentally benign microbial pesticides are increasingly desirable for controlling grasshopper outbreaks in fragile ecosystems. However, little is known about natural pathogens infecting this pest. Here we profile the rich viral communities in forty-five grasshopper species and report 302 viruses, including 231 novel species. Most of the identified viruses are related to other insect viruses, and small RNA sequencing indicates that some are targeted by host antiviral RNA interference (RNAi) pathway. Our analysis of relationships between host phylogeny and virus diversity suggests that the composition of viromes is closely allied with host evolution. Overall, this study is a first extensive exploration of viruses in grasshoppers and provides a valuable comparative dataset of both academic and applied interest.
Collapse
Affiliation(s)
- Yao Xu
- Department of Entomology, China Agricultural University , No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Jingyi Jiang
- Department of Entomology, China Agricultural University , No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Xiaoju Lin
- Department of Entomology, China Agricultural University , No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University , No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Chuan Cao
- Department of Entomology, China Agricultural University , No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| |
Collapse
|
9
|
Sun P, Zhao W, Wang Q, Chen L, Sun K, Zhan Z, Wang J. Chemical diversity, biological activities and Traditional uses of and important Chinese herb Sophora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154054. [PMID: 35358931 DOI: 10.1016/j.phymed.2022.154054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sophora flavescens Aiton (SF), also known as Kushen (Chinese:), has been an important species in Chinese medicine since the Qin and Han dynasties. It is also recognized as a plant resource suitable for the globalization of Chinese medicine. Traditionally, it has been used in various ethnic medical systems in East Asia, especially in China, to kill insects and dispel dampness. Sophora flavescens is commonly used for clearing heat-clearing, killing worms, and diuretic. Nowdays, accumulating studies demonstrated its anticancer and cardioprotection. OBJECTIVE OF THE REVIEW This paper aims to systematically review information on the genus, pharmacological and toxicological significance, chemical composition and biological activity of Sophora flavescens. To promoting its development and application. To summarize recent findings regarding to the metabolism, pharmacological/toxicological effects of Sophora flavescens. MATERIAL AND METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Sophora flavescens Aiton", "Ku shen", "Pharmacology", "Active ingredient", "Toxicology" and combinations to include published studies of Sophora flavescens Aiton primarily from 1970-2021. Several critical previous studies beyond this period were also included and other related terms. CONCLUSION Sophora flavescens has a broad spectrum of biological activities associated with Sophora flavescens has been considered a valuable resource in both traditional and modern medicine. However, there is a lack of in-depth studies on the medicinal uses of Sophora flavescens. Moreover, further studies on single chemical components should be conducted based on the diversity of chemical structures, significant biological activities and clinical applications. The discovery of its bioactive molecules and multi-component interactions would be of great importance for the clinical application of Sophora flavescens spp. Detailed pharmacological and toxicological studies on the classic prescriptions of Sophora flavescens are also needed. It is more beneficial to the wide application of SF plant and facilitates the worldwide promotion of modern Chinese medicine. However, an increasing number of reports indicate that the administration of Sophora flavescens has serious adverse effects. Its main toxic effects are neurotoxicity and acute toxicity, which have caused widespread concern worldwide. In addition, the alkaloids of Sophora flavescens are distributed in the heart, liver, stomach and large intestine. They are excreted from the body through gluconeogenesis, which is the mode of action of certain therapeutic mechanisms of action such as anticancer. The detailed metabolic study of alkaloids and other components of Sophora flavescens in vivo needs to be further investigated. It is important to improve the pharmacological effects and reduce the toxicity of Sophora flavescens. For this purpose, structural modification of active components of Sophora flavescens or combination with other drugs is very essential.
Collapse
Affiliation(s)
- Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Wenjie Zhao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lele Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Kunkun Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Zhaoshuang Zhan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China;.
| | - Jiafeng Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China;.
| |
Collapse
|
10
|
Butina TV, Petrushin IS, Khanaev IV, Bukin YS. Metagenomic Assessment of DNA Viral Diversity in Freshwater Sponges, Baikalospongia bacillifera. Microorganisms 2022; 10:microorganisms10020480. [PMID: 35208935 PMCID: PMC8876492 DOI: 10.3390/microorganisms10020480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Sponges (type Porifera) are multicellular organisms that give shelter to a variety of microorganisms: fungi, algae, archaea, bacteria, and viruses. The studies concerning the composition of viral communities in sponges have appeared rather recently, and the diversity and role of viruses in sponge holobionts remain largely undisclosed. In this study, we assessed the diversity of DNA viruses in the associated community of the Baikal endemic sponge, Baikalospongia bacillifera, using a metagenomic approach, and compared the virome data from samples of sponges and Baikal water (control sample). Significant differences in terms of taxonomy, putative host range of identified scaffolds, and functional annotation of predicted viral proteins were revealed in viromes of sponge B. bacillifera and the Baikal water. This is the evidence in favor of specificity of viral communities in sponges. The diversity shift of viral communities in a diseased specimen, in comparison with a visually healthy sponge, probably reflects the changes in the composition of microbial communities in affected sponges. We identified many viral genes encoding the proteins with metabolic functions; therefore, viruses in Baikal sponges regulate the number and diversity of their associated community, and also take a part in the vital activity of the holobiont, and this is especially significant in the case of damage (or disease) of these organisms in unfavorable conditions. When comparing the Baikal viromes with similar datasets of marine sponge (Ianthella basta), in addition to significant differences in the taxonomic and functional composition of viral communities, we revealed common scaffolds/virotypes in the cross-assembly of reads, which may indicate the presence of some closely related sponge-specific viruses in marine and freshwater sponges.
Collapse
|
11
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
12
|
Coffman KA, Burke GR. Genomic analysis reveals an exogenous viral symbiont with dual functionality in parasitoid wasps and their hosts. PLoS Pathog 2020; 16:e1009069. [PMID: 33253317 PMCID: PMC7728225 DOI: 10.1371/journal.ppat.1009069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/10/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Insects are known to host a wide variety of beneficial microbes that are fundamental to many aspects of their biology and have substantially shaped their evolution. Notably, parasitoid wasps have repeatedly evolved beneficial associations with viruses that enable developing wasps to survive as parasites that feed from other insects. Ongoing genomic sequencing efforts have revealed that most of these virus-derived entities are fully integrated into the genomes of parasitoid wasp lineages, representing endogenous viral elements (EVEs) that retain the ability to produce virus or virus-like particles within wasp reproductive tissues. All documented parasitoid EVEs have undergone similar genomic rearrangements compared to their viral ancestors characterized by viral genes scattered across wasp genomes and specific viral gene losses. The recurrent presence of viral endogenization and genomic reorganization in beneficial virus systems identified to date suggest that these features are crucial to forming heritable alliances between parasitoid wasps and viruses. Here, our genomic characterization of a mutualistic poxvirus associated with the wasp Diachasmimorpha longicaudata, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), has uncovered the first instance of beneficial virus evolution that does not conform to the genomic architecture shared by parasitoid EVEs with which it displays evolutionary convergence. Rather, DlEPV retains the exogenous viral genome of its poxvirus ancestor and the majority of conserved poxvirus core genes. Additional comparative analyses indicate that DlEPV is related to a fly pathogen and contains a novel gene expansion that may be adaptive to its symbiotic role. Finally, differential expression analysis during virus replication in wasps and fly hosts demonstrates a unique mechanism of functional partitioning that allows DlEPV to persist within and provide benefit to its parasitoid wasp host.
Collapse
Affiliation(s)
- Kelsey A. Coffman
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
13
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|
14
|
Rodrigues TCS, Subramaniam K, Varsani A, McFadden G, Schaefer AM, Bossart GD, Romero CH, Waltzek TB. Genome characterization of cetaceanpox virus from a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus). Virus Res 2020; 278:197861. [PMID: 31923559 DOI: 10.1016/j.virusres.2020.197861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
Cetaceanpox viruses (CePVs) are associated with a cutaneous disease in cetaceans often referred to as "tattoo" lesions. To date, only partial genomic data are available for CePVs, and thus, they remain unclassified members of the subfamily Chordopoxvirinae within the family Poxviridae. Herein, we describe the first complete CePV genome sequenced from the tattoo lesion of a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus), using next-generation sequencing. The T. aduncus CePV genome (CePV-TA) was determined to encode 120 proteins, including eight genes unique to the CePV-TA and five genes predicted to function as immune-evasion genes. The results of CePV-TA genetic analyses supported the creation of a new chordopoxvirus genus for CePVs. The complete sequencing of a CePV represents an important first step in unraveling the evolutionary relationship and taxonomy of CePVs, and significantly increases our understanding of the genomic characteristics of these chordopoxviruses.
Collapse
Affiliation(s)
- Thaís C S Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, 85287 Tempe, Arizona, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, Western Cape 7701, South Africa
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, 85287 Tempe, Arizona, USA
| | - Adam M Schaefer
- Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1, North, 34946 Fort Pierce, Florida, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, 30313 Atlanta, Georgia, USA; University of Miami, PO Box 016960 (R-46), 33101 Miami, Florida, USA
| | - Carlos H Romero
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA.
| |
Collapse
|
15
|
The N Terminus of Autographa californica Multiple Nucleopolyhedrovirus DNA Polymerase Is Required for Efficient Viral DNA Replication and Virus and Occlusion Body Production. J Virol 2018; 92:JVI.00398-18. [PMID: 29563284 DOI: 10.1128/jvi.00398-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) DNA polymerase (DNApol) plays a crucial role in viral DNA synthesis, and the N terminus (residues 1 to 186) is highly conserved in the baculovirus DNApol family. However, the functional role of the N terminus of DNApol has not yet been characterized. Here we report a functional analysis of the AcMNPV DNApol N terminus. We truncated the DNApol N terminus to construct truncation mutants Bac-GFP-PolΔ64, Bac-GFP-PolΔ110, and Bac-GFP-PolΔ186, which lack 64, 110, and 186 N-terminal residues, respectively. Although the truncation mutants rescued viral DNA synthesis and infectious virus production, the level of DNA replication decreased, and Bac-GFP-PolΔ64, Bac-GFP-PolΔ110, and Bac-GFP-PolΔ186 showed 10-fold, 89-fold, and 891-fold reductions in infectious viral yield compared to that of the wild-type repair virus, respectively. Production of occlusion bodies was compromised for all truncation mutants. Further bioinformatic analysis showed that the first 64 amino acids (aa) at the extreme N terminus contains a conserved α(-helix)-β(-sheet)-β-β secondary-structure region, and further downstream sequence from aa 67 to 186 is comprised of four conserved sequence motifs. Multiple alanine point substitutions in the α-β-β-β structure region or the four sequence motifs in the N terminus impaired viral DNA replication and resulted in reduction of virus yield and occlusion body production. Together, our results suggested that the secondary structure and four conserved motifs within the N terminus of AcMNPV DNApol are important for viral DNA synthesis, infectious virus yield, and production of occlusion bodies.IMPORTANCE DNA polymerase (DNApol) is highly conserved in all baculoviruses and is required for viral DNA replication. The N terminus is one of the highly conserved regions of baculovirus DNApols. Our results showed that the N terminus of baculovirus DNA polymerase plays an important role in efficient viral DNA synthesis and infectious virus yield and production of occlusion bodies. We identified five features, including a highly conserved secondary structure and four conserved amino acid motifs, in the AcMNPV DNApol N terminus, all of which are important for efficient viral DNA synthesis, infectious virus yield, and production of occlusion bodies.
Collapse
|
16
|
Amsacta moorei entomopoxvirus encodes a functional heparin-binding glycosyltransferase (AMV248). Virus Genes 2018; 54:438-445. [DOI: 10.1007/s11262-018-1561-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
|
17
|
Oliveira GP, Rodrigues RAL, Lima MT, Drumond BP, Abrahão JS. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review. Viruses 2017; 9:E331. [PMID: 29112165 PMCID: PMC5707538 DOI: 10.3390/v9110331] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maurício Teixeira Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
18
|
Inan C, Muratoglu H, Arif BM, Demirbag Z. Transcriptional analysis of the putative glycosyltransferase gene (amv248) of the Amsacta moorei entomopoxvirus. Virus Res 2017; 243:25-30. [PMID: 29020603 DOI: 10.1016/j.virusres.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 11/17/2022]
Abstract
Amsacta moorei entomopoxvirus (AMEV), the most studied member of the genus Betaentomopoxvirus, was initially isolated from Red Hairy caterpillar larvae, Amsacta moorei. According to genome sequence and previous studies it was shown that amv248 encodes a putative glycosyltransferase that is the only conserved attachment protein in betaentomopoxviruses. Transcriptional analysis of the amv248 gene by RT-PCR and qPCR showed that transcription starts at 6h post infection (hpi). Also, transcription was not affected by a DNA replication inhibitor but was severely curtailed by a protein synthesis inhibitor. These results indicate that amv248 belongs to the intermediate class of gene expression. 5' and 3' untranslated regions analysis revealed that transcription initiates at position -126 relative to the translational start site, and ends between 50 and 83 bases after the stop codon. To narrow down the size and location of the gene's promoter, the upstream region as well as several different sized deletions thereof were generated and cloned upstream of a luciferase reporter gene. The constructs were used to measure the Firefly and Renilla luciferase activities in dual assays. The results showed that luciferase activity decreased when bases -198 to -235 of amv248 upstream region were missing. Sequence analysis among the intermediate gene promoters of AMEV showed that TTTAT(T/A)TT(T/A)2TTA is possibly a common motif, however, further investigations are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Cihan Inan
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey; Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Hacer Muratoglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
19
|
Kariithi HM, Meki IK, Boucias DG, Abd-Alla AM. Hytrosaviruses: current status and perspective. CURRENT OPINION IN INSECT SCIENCE 2017; 22:71-78. [PMID: 28805642 DOI: 10.1016/j.cois.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Salivary gland hytrosaviruses (SGHVs) are entomopathogenic dsDNA, enveloped viruses that replicate in the salivary glands (SGs) of the adult dipterans, Glossina spp (GpSGHV) and Musca domestica (MdSGHV). Although belonging to the same virus family (Hytrosaviridae), SGHVs have distinct morphologies and pathobiologies. Two GpSGHV strains potentially account for the differential pathologies in lab-bred tsetse. New data suggest incorporation of host-derived cellular proteins and lipids into mature SGHVs. In addition to within the SGs, MdSGHV undergoes limited replication in the corpora allata, potentially disrupting hormone biosynthesis, and GpSGHV replicates in the milk glands providing a transmission conduit to progeny tsetse. Whereas MdSGHV is a potential biocontrol agent, the vertically transmitted GpSGHV is unsuitable for tsetse vector control but does jeopardize tsetse mass rearing.
Collapse
Affiliation(s)
- Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Steinmetz Hall, Gainesville, FL 32611, USA
| | - Adly Mm Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria.
| |
Collapse
|
20
|
Phaeocystis globosa Virus DNA Polymerase X: a "Swiss Army knife", Multifunctional DNA polymerase-lyase-ligase for Base Excision Repair. Sci Rep 2017; 7:6907. [PMID: 28761124 PMCID: PMC5537341 DOI: 10.1038/s41598-017-07378-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
Phaeocystis globosa virus 16T is a giant virus that belongs to the so-called nucleo-cytoplasmic large DNA virus (NCLDV) group. Its linear dsDNA genome contains an almost full complement of genes required to participate in viral base excision repair (BER). Among them is a gene coding for a bimodular protein consisting of an N-terminal Polβ-like core fused to a C-terminal domain (PgVPolX), which shows homology with NAD+-dependent DNA ligases. Analysis of the biochemical features of the purified enzyme revealed that PgVPolX is a multifunctional protein that could act as a “Swiss army knife” enzyme during BER since it is endowed with: 1) a template-directed DNA polymerization activity, preferentially acting on DNA structures containing gaps; 2) 5′-deoxyribose-5-phosphate (dRP) and abasic (AP) site lyase activities; and 3) an NAD+-dependent DNA ligase activity. We show how the three activities act in concert to efficiently repair BER intermediates, leading us to suggest that PgVPolX may constitute, together with the viral AP-endonuclease, a BER pathway. This is the first time that this type of protein fusion has been demonstrated to be functional.
Collapse
|
21
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
22
|
Complete genome sequence of Ostreid herpesvirus type 1 µVar isolated during mortality events in the Pacific oyster Crassostrea gigas in France and Ireland. Virology 2017; 509:239-251. [PMID: 28672223 DOI: 10.1016/j.virol.2017.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
Abstract
Infections with Ostreid herpesvirus 1 (OsHV-1) microvariants in young Pacific oysters are associated with massive mortality events and significant economic losses. Previous studies, focusing on few regions of the genome, have revealed the genomic diversity of these genotypes with respect to the reference type. We used a NGS process to sequence the whole genome of the OsHV-1 µVar in infected individuals, collected during mortality events in France and Ireland. The final genome length of OsHV-1 µVar was approximately 205kbp, shorter than the reference genotype and the overall genome organisation resembled herpes simplex viruses. 94.4% similarity was observed with the OsHV-1 reference genotype. Large indels, including five deletions and three insertions were found to induce the loss and the addition of several ORFs, summed with codon substitutions in 64% of genes shared with the reference type. This diversity raises the question of the exact origin and evolution of OsHV-1 µVar.
Collapse
|
23
|
Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol 2017; 91:JVI.00230-17. [PMID: 28446675 DOI: 10.1128/jvi.00230-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.
Collapse
|
24
|
O'Dea MA, Tu SL, Pang S, De Ridder T, Jackson B, Upton C. Genomic characterization of a novel poxvirus from a flying fox: evidence for a new genus? J Gen Virol 2016; 97:2363-2375. [PMID: 27389615 DOI: 10.1099/jgv.0.000538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carcass of an Australian little red flying fox (Pteropus scapulatus) which died following entrapment on a fence was submitted to the laboratory for Australian bat lyssavirus exclusion testing, which was negative. During post-mortem, multiple nodules were noted on the wing membranes, and therefore degenerate PCR primers targeting the poxvirus DNA polymerase gene were used to screen for poxviruses. The poxvirus PCR screen was positive and sequencing of the PCR product demonstrated very low, but significant, similarity with the DNA polymerase gene from members of the Poxviridae family. Next-generation sequencing of DNA extracted from the lesions returned a contig of 132 353 nucleotides (nt), which was further extended to produce a near full-length viral genome of 133 492 nt. Analysis of the genome revealed it to be AT-rich with inverted terminal repeats of at least 1314 nt and to contain 143 predicted genes. The genome contains a surprisingly large number (29) of genes not found in other poxviruses, one of which appears to be a homologue of the mammalian TNF-related apoptosis-inducing ligand (TRAIL) gene. Phylogenetic analysis indicates that the poxvirus described here is not closely related to any other poxvirus isolated from bats or other species, and that it likely should be placed in a new genus.
Collapse
Affiliation(s)
- Mark A O'Dea
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Shin-Lin Tu
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Stanley Pang
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Thomas De Ridder
- Department of Agriculture and Water Resources, Cairns, Queensland, Australia
| | - Bethany Jackson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
25
|
Photoreceptors mapping from past history till date. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:223-231. [PMID: 27387671 DOI: 10.1016/j.jphotobiol.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies.
Collapse
|
26
|
Carrasco B, Escobedo S, Alonso JC, Suárez JE. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA. Mol Microbiol 2015; 99:328-37. [PMID: 26417647 DOI: 10.1111/mmi.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 11/27/2022]
Abstract
The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses P(R), predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L. casei lysogens that become lysed (∼ 1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny.
Collapse
Affiliation(s)
- Begoña Carrasco
- Area de Microbiología/Instituto Universitario de Biotecnología, Universidad de Oviedo, Oviedo, Spain.,Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Susana Escobedo
- Area de Microbiología/Instituto Universitario de Biotecnología, Universidad de Oviedo, Oviedo, Spain.,Instituto de Productos Lacteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan E Suárez
- Area de Microbiología/Instituto Universitario de Biotecnología, Universidad de Oviedo, Oviedo, Spain.,Instituto de Productos Lacteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
27
|
Nakai M, Kinjo H, Takatsuka J, Shiotsuki T, Kamita SG, Kunimi Y. Entomopoxvirus infection induces changes in both juvenile hormone and ecdysteroid levels in larval Mythimna separata. J Gen Virol 2015; 97:225-232. [PMID: 26499185 DOI: 10.1099/jgv.0.000325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect viruses are among the most important pathogens of lepidopteran insects. Virus-infected larvae often show developmental defects including a prolonged larval period and a failure to pupate, but the mechanisms by which insect viruses regulate host development need further investigation. In this study, the regulation of host endocrinology by a lepidopteran entomopoxvirus (EPV), Mythimna separata EPV (MySEV), was examined. When fourth instar M. separata were inoculated with MySEV occlusion bodies, pupation was prevented and the insects died during the final (sixth) larval instar. Liquid chromatography-MS analysis revealed that juvenile hormone (JH) titres in the haemolymph of MySEV-infected sixth instars were higher than those in mock-infected larvae. JH esterase (JHE) activity was also examined by kinetic assay using a colorimetric substrate. The level of JHE activity in the haemolymph of MySEV-infected larvae was generally lower than that found in mock-infected larvae. In contrast, ecdysteroid titre in the haemolymph of final-instar MySEV-infected larvae was lower than that found in mock-infected larvae when measured by radioimmunoassay. A statistically significant difference in the release of ecdysteroids from prothoracic glands (PGs) that were dissected from MySEV- or mock-infected sixth instar Day 3 larvae was not found following prothoracicotropic hormone (PTTH) exposure. Our results indicate that the release of ecdysteroids was reduced not by infection of the PGs by MySEV, but by reduced PTTH production from the brain. Taken together our study suggests that EPVs retard host development by both reducing ecdysone titre and maintaining status quo levels of JH by preventing its metabolism.
Collapse
Affiliation(s)
- Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| | - Hirotoshi Kinjo
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| | - Jun Takatsuka
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Takahiro Shiotsuki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305, Japan
| | - Shizuo G Kamita
- Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yasuhisa Kunimi
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
28
|
Chi X, Zeng X, Li W, Hao W, Li M, Huang X, Huang Y, Rock DL, Luo S, Wang S. Genome analysis of orf virus isolates from goats in the Fujian Province of southern China. Front Microbiol 2015; 6:1135. [PMID: 26557108 PMCID: PMC4616995 DOI: 10.3389/fmicb.2015.01135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/02/2015] [Indexed: 01/26/2023] Open
Abstract
Orf virus (ORFV), a species of the genus Parapoxvirus of the family Poxviridae, causes non-systemic, highly contagious, and eruptive disease in sheep, goat, and other wild and domestic ruminants. Our previous work shows orf to be ubiquitous in the Fujian Province of China, a region where there is considerable heterogeneity among ORFVs. In this study, we sequenced full genomes of four Fujian goat ORFV strains (OV-GO, OV-YX, OV-NP, and OV-SJ1). The four strains were 132–139 kb in length, with each containing 124–132 genes and about 64% G+C content. The most notable differences between the four strains were found near the genome termini. OV-NP lacked seven and OV-SJ1 lacked three genes near the right terminus when compared against other ORFVs. We also investigated the skin-virulence of the four Fujian ORFVs in goats. The ORFVs with gene deletions showed low virulence while the ORFVs without gene deletions showed high virulence in goats suggesting gene deletion possibly leads to attenuation of ORFVs. Gene 134 was disrupted in OV-NP genome due to the lack of initial code. The phylogenetic tree based on complete Parapoxviruse genomes showed that sheep originated and goat originated ORFVs formed distinctly separate branches with 100% bootstrap. Based on the single gene phylogenetic tree of 132 genes of ORFVs, 47 genes can be easily distinguished as having originated from sheep or goats. In order to further reveal genetic variation presented in goat ORFVs and sheep ORFVs, we analyzed the deduced amino acid sequences of gene 008, multiple alignment of amino acid sequences of gene 008 from the genome of five goat ORFVs and four sheep ORFVs revealed 33 unique amino acids differentiating it as having sheep or goats as host. The availability of genomic sequences of four Fujian goat ORFVs aids in our understanding of the diversity of orf virus isolates in this region and can assist in distinguishing between orf strains that originate in sheep and goats.
Collapse
Affiliation(s)
- Xuelin Chi
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China ; University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiancheng Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China ; University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Wei Li
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Wenbo Hao
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Ming Li
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yifan Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Champaign-Urbana Urbana, IL, USA
| | - Shuhong Luo
- Department of Immunology, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Shihua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
29
|
Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, de Miranda JR, Neumann P. The Apis mellifera Filamentous Virus Genome. Viruses 2015; 7:3798-815. [PMID: 26184284 PMCID: PMC4517127 DOI: 10.3390/v7072798] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.
Collapse
Affiliation(s)
- Laurent Gauthier
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | | | - Ulrike Hartmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - François Cousserans
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - Jay D Evans
- Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
30
|
Ribeiro JMC, Schwarz A, Francischetti IMB. A Deep Insight Into the Sialotranscriptome of the Chagas Disease Vector, Panstrongylus megistus (Hemiptera: Heteroptera). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:351-358. [PMID: 26334808 PMCID: PMC4581482 DOI: 10.1093/jme/tjv023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/05/2015] [Indexed: 05/28/2023]
Abstract
Saliva of blood-sucking arthropods contains a complex cocktail of pharmacologically active compounds that assists feeding by counteracting their hosts' hemostatic and inflammatory reactions. Panstrongylus megistus (Burmeister) is an important vector of Chagas disease in South America, but despite its importance there is only one salivary protein sequence publicly deposited in GenBank. In the present work, we used Illumina technology to disclose and publicly deposit 3,703 coding sequences obtained from the assembly of >70 million reads. These sequences should assist proteomic experiments aimed at identifying pharmacologically active proteins and immunological markers of vector exposure. A supplemental file of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/P_megistus/Pmeg-web.xlsx.
Collapse
Affiliation(s)
- José M C Ribeiro
- National Institute of Allergy and Infectious Diseases, Laboratory of Malaria and Vector Research, 12735 Twinbrook Parkway, MD 20852.
| | - Alexandra Schwarz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, CZ-370 05 Ceske Budejovice, Czech Republic
| | - Ivo M B Francischetti
- National Institute of Allergy and Infectious Diseases, Laboratory of Malaria and Vector Research, 12735 Twinbrook Parkway, MD 20852
| |
Collapse
|
31
|
Ishimwe E, Hodgson JJ, Clem RJ, Passarelli AL. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology 2015; 479-480:637-49. [PMID: 25724418 DOI: 10.1016/j.virol.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.
Collapse
Affiliation(s)
- Egide Ishimwe
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Jeffrey J Hodgson
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Rollie J Clem
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| | - A Lorena Passarelli
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| |
Collapse
|
32
|
Craveiro SR, Inglis PW, Togawa RC, Grynberg P, Melo FL, Ribeiro ZMA, Ribeiro BM, Báo SN, Castro MEB. The genome sequence of Pseudoplusia includens single nucleopolyhedrovirus and an analysis of p26 gene evolution in the baculoviruses. BMC Genomics 2015; 16:127. [PMID: 25765042 PMCID: PMC4346127 DOI: 10.1186/s12864-015-1323-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated. RESULTS The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX - Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins. CONCLUSIONS PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.
Collapse
Affiliation(s)
- Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Roberto C Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Zilda Maria A Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Sônia N Báo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
33
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
34
|
Mozar M, Claverie JM. Expanding the Mimiviridae family using asparagine synthase as a sequence bait. Virology 2014; 466-467:112-22. [DOI: 10.1016/j.virol.2014.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/05/2014] [Accepted: 05/10/2014] [Indexed: 12/23/2022]
|
35
|
Mottet K, Bareiss B, Milne CD, Barry M. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination. Virology 2014; 468-470:363-378. [PMID: 25240226 DOI: 10.1016/j.virol.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/19/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Abstract
Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Kelly Mottet
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Bettina Bareiss
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Craig D Milne
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Michele Barry
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
36
|
Jachiet PA, Colson P, Lopez P, Bapteste E. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol Evol 2014; 6:2195-205. [PMID: 25104113 PMCID: PMC4202312 DOI: 10.1093/gbe/evu168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Complex nongradual evolutionary processes such as gene remodeling are difficult to model, to visualize, and to investigate systematically. Despite these challenges, the creation of composite (or mosaic) genes by combination of genetic segments from unrelated gene families was established as an important adaptive phenomena in eukaryotic genomes. In contrast, almost no general studies have been conducted to quantify composite genes in viruses. Although viral genome mosaicism has been well-described, the extent of gene mosaicism and its rules of emergence remain largely unexplored. Applying methods from graph theory to inclusive similarity networks, and using data from more than 3,000 complete viral genomes, we provide the first demonstration that composite genes in viruses are 1) functionally biased, 2) involved in key aspects of the arm race between cells and viruses, and 3) can be classified into two distinct types of composite genes in all viral classes. Beyond the quantification of the widespread recombination of genes among different viruses of the same class, we also report a striking sharing of genetic information between viruses of different classes and with different nucleic acid types. This latter discovery provides novel evidence for the existence of a large and complex mobilome network, which appears partly bound by the sharing of genetic information and by the formation of composite genes between mobile entities with different genetic material. Considering that there are around 10E31 viruses on the planet, gene remodeling appears as a hugely significant way of generating and moving novel sequences between different kinds of organisms on Earth.
Collapse
Affiliation(s)
- Pierre-Alain Jachiet
- UMR CNRS 7138 Evolution Paris Seine, IBPS, Université Pierre et Marie Curie, Paris, France
| | - Philippe Colson
- URMITE UMR CNRS 6236 IRD 198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Marseille, France
| | - Philippe Lopez
- UMR CNRS 7138 Evolution Paris Seine, IBPS, Université Pierre et Marie Curie, Paris, France
| | - Eric Bapteste
- UMR CNRS 7138 Evolution Paris Seine, IBPS, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
37
|
Offerman K, Carulei O, van der Walt AP, Douglass N, Williamson AL. The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses. BMC Genomics 2014; 15:463. [PMID: 24919868 PMCID: PMC4229897 DOI: 10.1186/1471-2164-15-463] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Background Two novel avipoxviruses from South Africa have been sequenced, one from a Feral Pigeon (Columba livia) (FeP2) and the other from an African penguin (Spheniscus demersus) (PEPV). We present a purpose-designed bioinformatics pipeline for analysis of next generation sequence data of avian poxviruses and compare the different avipoxviruses sequenced to date with specific emphasis on their evolution and gene content. Results The FeP2 (282 kbp) and PEPV (306 kbp) genomes encode 271 and 284 open reading frames respectively and are more closely related to one another (94.4%) than to either fowlpox virus (FWPV) (85.3% and 84.0% respectively) or Canarypox virus (CNPV) (62.0% and 63.4% respectively). Overall, FeP2, PEPV and FWPV have syntenic gene arrangements; however, major differences exist throughout their genomes. The most striking difference between FeP2 and the FWPV-like avipoxviruses is a large deletion of ~16 kbp from the central region of the genome of FeP2 deleting a cc-chemokine-like gene, two Variola virus B22R orthologues, an N1R/p28-like gene and a V-type Ig domain family gene. FeP2 and PEPV both encode orthologues of vaccinia virus C7L and Interleukin 10. PEPV contains a 77 amino acid long orthologue of Ubiquitin sharing 97% amino acid identity to human ubiquitin. Conclusions The genome sequences of FeP2 and PEPV have greatly added to the limited repository of genomic information available for the Avipoxvirus genus. In the comparison of FeP2 and PEPV to existing sequences, FWPV and CNPV, we have established insights into African avipoxvirus evolution. Our data supports the independent evolution of these South African avipoxviruses from a common ancestral virus to FWPV and CNPV.
Collapse
Affiliation(s)
| | | | | | | | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
38
|
Khan M, Danielsen S, Johansen K, Lorenz L, Nelson S, Camper A. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor. BIOFOULING 2014; 30:153-167. [PMID: 24329165 DOI: 10.1080/08927014.2013.852540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.
Collapse
Affiliation(s)
- Mohiuddin Khan
- a Department of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA , USA
| | | | | | | | | | | |
Collapse
|
39
|
Mitsuhashi W, Miyamoto K, Wada S. The complete genome sequence of the Alphaentomopoxvirus Anomala cuprea entomopoxvirus, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication. Virology 2014; 452-453:95-116. [PMID: 24606687 DOI: 10.1016/j.virol.2013.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/28/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023]
Abstract
Complete genome sequence of Anomala cuprea entomopoxvirus, which belongs to the genus Alphaentomopoxvirus, including its terminal hairpin loop sequences, is reported. This is the first genome sequence of Alphaentomopoxvirus reported, and hairpin loops in entomopoxviruses have not previously been sequenced. The genome is 245,717 bp, which is smaller than had previously been estimated for Alphaentomopoxvirus. The inverted terminal repeats are quite long, and experimental results suggest that one genome molecule has one type of hairpin at one end and another type at the other end. The genome contains unexpected ORFs, e.g., that for the ubiquitin-conjugating enzyme E2 of eukaryotes. The BIR and RING domains found in a single ORF for an inhibitor of apoptosis in baculoviruses and entomopoxviruses occurred in two different, widely separated ORFs. Furthermore, an ORF in the genome contains a serpin domain that was previously found in vertebrate poxviruses for apoptosis inhibition but not in insect viruses.
Collapse
Affiliation(s)
- Wataru Mitsuhashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | - Kazuhisa Miyamoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Sanae Wada
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
40
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
41
|
Redrejo-Rodríguez M, Salas ML. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res 2013; 179:12-25. [PMID: 24184318 DOI: 10.1016/j.virusres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
Among the DNA viruses, the so-called nucleo-cytoplasmic large DNA viruses (NCLDV) constitute a monophyletic group that currently consists of seven families of viruses infecting a very broad variety of eukaryotes, from unicellular marine protists to humans. Many recent papers have analyzed the sequence and structure of NCLDV genomes and their phylogeny, providing detailed analysis about their genomic structure and evolutionary history and proposing their inclusion in a new viral order named Megavirales that, according to some authors, should be considered as a fourth domain of life, aside from Bacteria, Archaea and Eukarya. The maintenance of genetic information protected from environmental attacks and mutations is essential not only for the survival of cellular organisms but also viruses. In cellular organisms, damaged DNA bases are removed in two major repair pathways: base excision repair (BER) and nucleotide incision repair (NIR) that constitute the major pathways responsible for repairing most endogenous base lesions and abnormal bases in the genome by precise repair procedures. Like cells, many NCLDV encode proteins that might constitute viral DNA repair pathways that would remove damages through BER/NIR pathways. However, the molecular mechanisms and, specially, the biological roles of those viral repair pathways have not been deeply addressed in the literature so far. In this paper, we review viral-encoded BER proteins and the genetic and biochemical data available about them. We propose and discuss probable viral-encoded DNA repair mechanisms and pathways, as compared with the functional and molecular features of known homologs proteins.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María L Salas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
42
|
New insights into the evolution of Entomopoxvirinae from the complete genome sequences of four entomopoxviruses infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana, and Mythimna separata. J Virol 2013; 87:7992-8003. [PMID: 23678178 DOI: 10.1128/jvi.00453-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are nucleocytoplasmic large DNA viruses encompassing two subfamilies, the Chordopoxvirinae and the Entomopoxvirinae, infecting vertebrates and insects, respectively. While chordopoxvirus genomics have been widely studied, only two entomopoxvirus (EPV) genomes have been entirely sequenced. We report the genome sequences of four EPVs of the Betaentomopoxvirus genus infecting the Lepidoptera: Adoxophyes honmai EPV (AHEV), Choristoneura biennis EPV (CBEV), Choristoneura rosaceana EPV (CREV), and Mythimna separata EPV (MySEV). The genomes are 80% AT rich, are 228 to 307 kbp long, and contain 247 to 334 open reading frames (ORFs). Most genes are homologous to those of Amsacta moorei entomopoxvirus and encode several protein families repeated in tandem in terminal regions. Some genomes also encode proteins of unknown functions with similarity to those of other insect viruses. Comparative genomic analyses highlight a high colinearity among the lepidopteran EPV genomes and little gene order conservation with other poxvirus genomes. As with previously sequenced EPVs, the genomes include a relatively conserved central region flanked by inverted terminal repeats. Protein clustering identified 104 core EPV genes. Among betaentomopoxviruses, 148 core genes were found in relatively high synteny, pointing to low genomic diversity. Whole-genome and spheroidin gene phylogenetic analyses showed that the lepidopteran EPVs group closely in a monophyletic lineage, corroborating their affiliation with the Betaentomopoxvirus genus as well as a clear division of the EPVs according to the orders of insect hosts (Lepidoptera, Coleoptera, and Orthoptera). This suggests an ancient coevolution of EPVs with their insect hosts and the need to revise the current EPV taxonomy to separate orthopteran EPVs from the lepidopteran-specific betaentomopoxviruses so as to form a new genus.
Collapse
|
43
|
Correa RL, Bruckner FP, de Souza Cascardo R, Alfenas-Zerbini P. The Role of F-Box Proteins during Viral Infection. Int J Mol Sci 2013; 14:4030-49. [PMID: 23429191 PMCID: PMC3588083 DOI: 10.3390/ijms14024030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
Collapse
Affiliation(s)
- Régis Lopes Correa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
| | - Fernanda Prieto Bruckner
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Renan de Souza Cascardo
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Poliane Alfenas-Zerbini
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864
| |
Collapse
|
44
|
Zhou JB, Li XQ, De-Eknamkul W, Suraporn S, Xu JP. Identification of a new Bombyx mori nucleopolyhedrovirus and analysis of its bro gene family. Virus Genes 2012; 44:539-47. [PMID: 22311430 DOI: 10.1007/s11262-012-0721-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The highly pathogenic Bombyx mori nucleopolyhedrovirus (BmNPV) has caused severe damages to sericulture in many countries, and the relationship between the pathogenicity of various BmNPV strains and their geographical evolution has been the topic of our interest. In this study, we isolated a new BmNPV strain from Thailand (BmNPV-Thai), based on the sequences of its conservative genes p10, p35, polh, egt and vp39. The BmNPV-Thai appears to have baculovirus repeated ORF (bro) genes different from four other well-known BmNPV strains of China (GD, CQ1), Japan (T3), and France (SC7); It only has bro-a, bro-c, and bro-d, but not bro-b and bro-e genes. These bro genes are localized only in the two subgroups highly homologous to their counterparts and their encoded BRO proteins differ mainly at their N-terminal amino acid residues. Phylogenetic analysis indicates that the evolution of the bro genes of the five BmNPV strains is not obviously associated with their geographic locations.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- Department of Life Sciences, Anhui Agricultural University, 130 Changjiang Western Road, Hefei, 230036, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Griffin BD, Mellett M, Campos-Torres A, Kinsella GK, Wang B, Moynagh PN. A poxviral homolog of the Pellino protein inhibits Toll and Toll-like receptor signalling. Eur J Immunol 2011; 41:798-812. [PMID: 21287549 DOI: 10.1002/eji.201040774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/19/2010] [Accepted: 12/21/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Bryan D Griffin
- Institute of Immunology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
46
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 666] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
47
|
Yu JF, Sun X. Reannotation of protein-coding genes based on an improved graphical representation of DNA sequence. J Comput Chem 2010; 31:2126-35. [PMID: 20175214 DOI: 10.1002/jcc.21500] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over annotation of protein coding genes is common phenomenon in microbial genomes, the genome of Amsacta moorei entomopoxvirus (AmEPV) is a typical case, because more than 63% of its annotated ORFs are hypothetical. In this article, we propose an improved graphical representation titled I-TN (improved curve based on trinucleotides) curve, which allows direct inspection of composition and distribution of codons and asymmetric gene structure. This improved graphical representation can also provide convenient tools for genome analysis. From this presentation, 18 variables are exploited as numerical descriptors to represent the specific features of protein coding genes quantitatively, with which we reannotate the protein coding genes in several viral genomes. Using the parameters trained on the experimentally validated genes, all of the 30 experimentally validated genes and 63 putative genes in AmEPV genome are recognized correctly as protein coding, the accuracies of the present method for self-test and cross-validation are 100%, respectively. Twenty-eight annotated hypothetical genes are predicted as noncoding, and then the number of reannotated protein coding genes in AmEPV should be 266 instead of 294 reported in the original annotations. Extending the present method trained in AmEPV to other entomopoxvirus genomes directly, such as Melanoplus sanguinipes entomopoxvirus (MsEPV), all of the 123 annotated function-known and putative genes are recognized correctly as protein coding, and 17 hypothetical genes are recognized as noncoding. The present method could also be extended to other genomes with or without adaptation of training sets with high accuracy.
Collapse
Affiliation(s)
- Jia-Feng Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | |
Collapse
|
48
|
Nalcacioglu R, Dizman YA, Vlak JM, Demirbag Z, van Oers MM. Amsacta moorei entomopoxvirus encodes a functional DNA photolyase (AMV025). J Invertebr Pathol 2010; 105:363-5. [DOI: 10.1016/j.jip.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
49
|
Barry M, van Buuren N, Burles K, Mottet K, Wang Q, Teale A. Poxvirus exploitation of the ubiquitin-proteasome system. Viruses 2010; 2:2356-2380. [PMID: 21994622 PMCID: PMC3185573 DOI: 10.3390/v2102356] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Michele Barry
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1 780 492-0702; Fax: +1 780 492-7521
| | | | | | | | | | | |
Collapse
|
50
|
Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2010; 2:1933-1967. [PMID: 21994715 PMCID: PMC3185746 DOI: 10.3390/v2091933] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022] Open
Abstract
Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche.
Collapse
Affiliation(s)
- Robert Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA; E-Mail:
| | - Eneida L. Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| |
Collapse
|