1
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Hansen T, Baris J, Zhao M, Sutton RE. Cell-based and cell-free firefly luciferase complementation assay to quantify Human Immunodeficiency Virus type 1 Rev-Rev interaction. Virology 2022; 576:30-41. [DOI: 10.1016/j.virol.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
3
|
Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens 2022; 11:pathogens11050534. [PMID: 35631055 PMCID: PMC9145614 DOI: 10.3390/pathogens11050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
We describe drug-resistance mutation dynamics of the gag gene among individuals under antiretroviral virologic failure who underwent analytical treatment interruption (ATI). These mutations occur in and around the cleavage sites that form the particles that become the mature HIV-1 virus. The study involved a 12-week interruption in antiretroviral therapy (ART) and sequencing of the gag gene in 38 individuals experiencing virologic failure and harboring triple-class resistant HIV strains. Regions of the gag gene surrounding the NC-p2 and p1-p6 cleavage sites were sequenced at baseline before ATI and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Fourteen of the sixteen patients sequenced presented at least one mutation in the gag gene at baseline, with an average of 4.93 mutations per patient. All the mutations had reverted to the wild type by the end of the study. Mutations in the gag gene complement mutations in the pol gene to restore HIV fitness. Those mutations around cleavage sites and within substrates contribute to protease inhibitor resistance and difficulty in re-establishing effective virologic suppression. ART interruption in the presence of antiretroviral resistant HIV strains was used here as a practical measure for more adapted HIV profiles in the absence of ART selective pressure.
Collapse
|
4
|
Hunter JR, dos Santos DEM, Munerato P, Janini LM, Castelo A, Sucupira MC, Truong HHM, Diaz RS. Fitness Cost of Antiretroviral Drug Resistance Mutations on the pol Gene during Analytical Antiretroviral Treatment Interruption among Individuals Experiencing Virological Failure. Pathogens 2021; 10:pathogens10111425. [PMID: 34832581 PMCID: PMC8622617 DOI: 10.3390/pathogens10111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
HIV cure studies require patients to enter an analytical treatment interruption (ATI). Here, we describe previously unanalyzed data that sheds light on ATI dynamics in PLHIV (People Living with HIV). We present drug resistance mutation dynamics on the pol gene among individuals with antiretroviral virological failure who underwent ATI. The study involved a 12-week interruption in antiretroviral therapy (ART), monitoring of viral load, CD4+/CD8+ T cell counts, and sequencing of the pol gene from 38 individuals experiencing virological failure and harboring 3-class resistant HIV strains: nucleoside reverse transcriptase inhibitors (NRTI) non-nucleoside inhibitors (NNRTI), and protease inhibitors (PI). Protease and reverse transcriptase regions of the pol gene were sequenced at baseline before ATI and every four weeks thereafter from PBMCs and at baseline and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Average viral load increased 0.559 log10 copies per milliliter. CD4+ T cell count decreased as soon as ART was withdrawn, an average loss of 99.0 cells/mL. Forty-three percent of the mutations associated with antiretroviral resistance in PBMCs disappeared and fifty-seven percent of the mutations in plasma reverted to wild type, which was less than the 100% reversion expected. In PBMC, the PI mutations reverted more slowly than reverse transcriptase mutations. The patients were projected to need an average of 33.7 weeks for PI to revert compared with 20.9 weeks for NRTI and 19.8 weeks for NNRTI. Mutations in the pol gene can cause virological failure and difficulty in re-establishing effective virological suppression.
Collapse
Affiliation(s)
- James R. Hunter
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Domingos E. Matos dos Santos
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Patricia Munerato
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Luiz Mario Janini
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Adauto Castelo
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Maria Cecilia Sucupira
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
| | - Hong-Ha M. Truong
- Department of Medicine, University of California, San Francisco, CA 94158, USA;
| | - Ricardo Sobhie Diaz
- Department of Medicine, Federal University of São Paulo, São Paulo 04039-032, Brazil; (J.R.H.); (D.E.M.d.S.); (P.M.); (L.M.J.); (A.C.); (M.C.S.)
- Correspondence:
| |
Collapse
|
5
|
Behrens NE, Love M, Bandlamuri M, Bernhardt D, Wertheimer A, Klotz SA, Ahmad N. Characterization of HIV-1 Envelope V3 Region Sequences from Virologically Controlled HIV-Infected Older Patients on Long Term Antiretroviral Therapy. AIDS Res Hum Retroviruses 2021; 37:233-245. [PMID: 33287636 DOI: 10.1089/aid.2020.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many HIV-infected patients have attained older age owing to the success of antiretroviral therapy (ART) in controlling viremia and increasing CD4 T cell counts, HIV continues to persist in several target cells. We have characterized 514 HIV-1 envelope V3 region sequences (94-96 amino acids [aa]) from 25 HIV-infected older patients' peripheral blood mononuclear cell DNA on long-term ART with controlled viremia (undetectable viral load) and improved CD4 T cell counts. Phylogenetic analysis revealed that the V3 region sequences of each patient formed distinct clusters that were well separated and discriminated from other patients' sequences. The coding potential of the V3 region, including several patient-specific amino acid motifs and functional domains, including the two cysteines sandwiching the V3 loop, the central GPGR motif with variation at one position in some sequences, the base GDIR motif, and the N-glycosylation sites were generally conserved. The patients' V3 region sequences contained amino acid motifs conferring affinity mostly for CCR5 coreceptor, suggesting R5 phenotype. There was a low degree of heterogeneity and lower estimates of genetic diversity in all 25 patients' V3 region sequences. Twelve of 25 patients' V3 region sequences were found to be under positive selection pressure. Analysis of the several cytotoxic T lymphocytes (CTL) epitopes showed variation, whereas some of known neutralizing antibodies (nAbs) epitopes showed conservation in patients' V3 region sequences. In conclusion, a low degree of genetic variability and maintenance of functional domains with R5 phenotypes, and variation in CTL and conservation of nAb epitopes were the hallmarks of V3 region sequences from our 25 virologically controlled HIV-infected older patients on long-term ART.
Collapse
Affiliation(s)
- Nicole E. Behrens
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Maria Love
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Meghana Bandlamuri
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Dana Bernhardt
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Anne Wertheimer
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Stephen A. Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun 2018; 9:4811. [PMID: 30446650 PMCID: PMC6240116 DOI: 10.1038/s41467-018-06843-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses viral replication in people living with HIV. Yet, infected cells persist for decades on ART and viremia returns if ART is stopped. Persistence has been attributed to viral replication in an ART sanctuary and long-lived and/or proliferating latently infected cells. Using ecological methods and existing data, we infer that >99% of infected cells are members of clonal populations after one year of ART. We reconcile our results with observations from the first months of ART, demonstrating mathematically how a fossil record of historic HIV replication permits observed viral evolution even while most new infected cells arise from proliferation. Together, our results imply cellular proliferation generates a majority of infected cells during ART. Therefore, reducing proliferation could decrease the size of the HIV reservoir and help achieve a functional cure. HIV infected cells persist for decades in patients under ART, but the mechanisms responsible remain unclear. Here, Reeves et al. use modeling approaches adapted from ecology to show that cellular proliferation, rather than viral replication, generates a majority of infected cells during ART.
Collapse
|
7
|
Longitudinal sequencing of HIV-1 infected patients with low-level viremia for years while on ART shows no indications for genetic evolution of the virus. Virology 2017; 510:185-193. [PMID: 28750322 DOI: 10.1016/j.virol.2017.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
HIV-infected patients on antiretroviral therapy (ART) may present low-level viremia (LLV) above the detection level of current viral load assays. In many cases LLV is persistent but does not result in overt treatment failure or selection of drug resistant viral variants. To elucidate whether LLV reflects active virus replication, we extensively sequenced pol and env genes of the viral populations present before and during LLV in 18 patients and searched for indications of genetic evolution. Maximum likelihood phylogenetic trees were inspected for temporal structure both visually and by linear regression analysis of root-to-tip and pairwise distances. Viral coreceptor tropism was assessed at different time points before and during LLV. In none of the patients consistent indications for genetic evolution were found over a median period of 4.8 years of LLV. As such these findings could not provide evidence that active virus replication is the main driver of LLV.
Collapse
|
8
|
Boritz EA, Douek DC. Perspectives on Human Immunodeficiency Virus (HIV) Cure: HIV Persistence in Tissue. J Infect Dis 2017; 215:S128-S133. [PMID: 28520970 DOI: 10.1093/infdis/jix005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The uneven anatomic distribution of cell subsets that harbor human immunodeficiency virus (HIV) during antiretroviral therapy (ART) complicates investigation of the barriers to HIV cure. Here we propose that while previous studies done largely in blood cells have led to important investigations into HIV latency, other important mechanisms of HIV persistence during ART may not be readily apparent in the bloodstream. We specifically consider as an example the question of ongoing HIV replication during ART. We discuss how growing understanding of key anatomic sanctuaries for the virus can inform future experiments aimed at further clarifying this issue.
Collapse
Affiliation(s)
- Eli A Boritz
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Maintenance of the HIV Reservoir Is Antagonized by Selective BCL2 Inhibition. J Virol 2017; 91:JVI.00012-17. [PMID: 28331083 DOI: 10.1128/jvi.00012-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
Decay of the HIV reservoir is slowed over time in part by expansion of the pool of HIV-infected cells. This expansion reflects homeostatic proliferation of infected cells by interleukin-7 (IL-7) or antigenic stimulation, as well as new rounds of infection of susceptible target cells. As novel therapies are being developed to accelerate the decay of the latent HIV reservoir, it will be important to identify interventions that prevent expansion and/or repopulation of the latent HIV reservoir. Our previous studies showed that HIV protease cleaves the host protein procaspase 8 to generate Casp8p41, which can bind and activate Bak to induce apoptosis of infected cells. In circumstances where expression of the anti-apoptotic protein BCL2 is high, Casp8p41 instead binds BCL2, and cell death does not occur. This effect can be overcome by treating cells with the clinically approved BCL2 antagonist venetoclax, which prevents Casp8p41 from binding BCL2, thereby allowing Casp8p41 to bind Bak and kill the infected cell. Here we assess whether the events that maintain the HIV reservoir are also antagonized by venetoclax. Using the J-Lat 10.6 model of persistent infection, we demonstrate that proliferation and HIV expression are countered by the use of venetoclax, which causes preferential killing of the HIV-expressing cells. Similarly, during new rounds of infection of primary CD4 T cells, venetoclax causes selective killing of HIV-infected cells, resulting in decreased numbers of HIV DNA-containing cells.IMPORTANCE Cure of HIV infection requires an intervention that reduces the HIV reservoir size. A variety of approaches are being tested for their ability to impact HIV reservoir size. Even if successful, however, these approaches will need to be combined with additional complementary approaches that prevent replenishment or repopulation of the HIV reservoir. Our previous studies have shown that the FDA-approved BCL2 antagonist venetoclax has a beneficial effect on the HIV reservoir size following HIV reactivation. Here we demonstrate that venetoclax also has a beneficial effect on HIV reservoir size in a model of homeostatic proliferation of HIV as well as in acute spreading infection of HIV in primary CD4 T cells. These results suggest that venetoclax, either alone or in combination with other approaches to reducing HIV reservoir size, is a compound worthy of further study for its effects on HIV reservoir size.
Collapse
|
10
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2017; 7:2165. [PMID: 28123383 PMCID: PMC5225119 DOI: 10.3389/fmicb.2016.02165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
11
|
Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proc Natl Acad Sci U S A 2016; 113:E7908-E7916. [PMID: 27872306 DOI: 10.1073/pnas.1617789113] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1-infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.
Collapse
|
12
|
Brodin J, Zanini F, Thebo L, Lanz C, Bratt G, Neher RA, Albert J. Establishment and stability of the latent HIV-1 DNA reservoir. eLife 2016; 5. [PMID: 27855060 PMCID: PMC5201419 DOI: 10.7554/elife.18889] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
HIV-1 infection cannot be cured because the virus persists as integrated proviral DNA in long-lived cells despite years of suppressive antiretroviral therapy (ART). In a previous paper (Zanini et al, 2015) we documented HIV-1 evolution in 10 untreated patients. Here we characterize establishment, turnover, and evolution of viral DNA reservoirs in the same patients after 3–18 years of suppressive ART. A median of 14% (range 0–42%) of the DNA sequences were defective due to G-to-A hypermutation. Remaining DNA sequences showed no evidence of evolution over years of suppressive ART. Most sequences from the DNA reservoirs were very similar to viruses actively replicating in plasma (RNA sequences) shortly before start of ART. The results do not support persistent HIV-1 replication as a mechanism to maintain the HIV-1 reservoir during suppressive therapy. Rather, the data indicate that DNA variants are turning over as long as patients are untreated and that suppressive ART halts this turnover. DOI:http://dx.doi.org/10.7554/eLife.18889.001
Collapse
Affiliation(s)
- Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lina Thebo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Christa Lanz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Göran Bratt
- Department of Clinical Science and Education, Stockholm South General Hospital, Stockholm, Sweden.,Venhälsan, Stockholm South General Hospital, Stockholm, Sweden
| | - Richard A Neher
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Lifson MA, Ozen MO, Inci F, Wang S, Inan H, Baday M, Henrich TJ, Demirci U. Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv Drug Deliv Rev 2016; 103:90-104. [PMID: 27262924 PMCID: PMC4943868 DOI: 10.1016/j.addr.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.
Collapse
Affiliation(s)
- Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mehmet Ozgun Ozen
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; Medicine Faculty, Zirve University, Gaziantep, Turkey
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
14
|
Michelini Z, Galluzzo CM, Pirillo MF, Francisci D, Degli Antoni A, Vivarelli A, Ladisa N, Cirioni O, Weimer LE, Fragola V, Cara A, Floridia M, Baroncelli S. HIV-1 DNA dynamics and variations in HIV-1 DNA protease and reverse transcriptase sequences in multidrug-resistant patients during successful raltegravir-based therapy. J Med Virol 2016; 88:2115-2124. [PMID: 27197719 DOI: 10.1002/jmv.24581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
There is limited information on the variations of HIV-1 DNA mutation profile in reverse transcriptase (RT) and protease (PR) genes during suppressive antiretroviral treatment (plasma HIV-1 RNA continuously <50 copies/ml) with raltegravir (RAL)-based regimens in patients with baseline RT/PR resistant HIV. Twelve multidrug resistant (RT: 12/12, PR: 8/12) HIV-infected patients were followed during effectively suppressive RAL-based therapy. Total and integrated HIV-1 DNA were assessed by real time PCR at baseline and every 6 months. Ultrasensitive (threshold: 2.5 copies/ml) plasma HIV-1 RNA and genotypic analysis of RT and PR in proviral DNA were performed at baseline and at 24 months. Half of the patients had full viral suppression (plasma HIV-RNA < 2.5 copies/ml) at month 12. Total HIV-1 DNA declined significantly after 12 months of therapy (from 249.2 to 145.7 copies/106 cells, P = 0.023), and remained stable until 24 months, when total HIV-1 DNA levels raised, concomitantly with a less stringent suppression of HIV-1 RNA (81.8% of patients with >2.5 copies/ml). Integrated HIV-1 DNA did not show fluctuations during the study period. Sequencing of the PR and RT regions from HIV-1 DNA revealed changes in the resistance mutation profile in five patients. Total HIV-1 DNA declined after the introduction of RAL-based therapy, with a rebound after 2 years. No changes were observed in levels of integrated DNA, suggesting limited effect on archived HIV. The RT and PR sequence changes in archived HIV-1 DNA suggest that variation of the mutation profile can occur even in the absence of detectable HIV-1 RNA. J. Med. Virol. 88:2115-2124, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zuleika Michelini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Clementina Maria Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Franca Pirillo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Francisci
- Division of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Degli Antoni
- Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | | | | | - Oscar Cirioni
- Clinic of Infectious Diseases, Ospedali Riuniti, Marche Polytechnic University, Ancona, Italy
| | - Liliana Elena Weimer
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Fragola
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Floridia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Baroncelli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 2016; 530:51-56. [PMID: 26814962 PMCID: PMC4865637 DOI: 10.1038/nature16933] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.
Collapse
|
16
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2016. [PMID: 28123383 DOI: 10.3389/fmicb.2016.02165/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
17
|
Abstract
In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of viral evolution.
Collapse
Affiliation(s)
- Fabián J Vázquez-Santiago
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| | - Vanessa Rivera-Amill
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| |
Collapse
|
18
|
Jiao YM, Weng WJ, Gao QS, Zhu WJ, Cai WP, Li LH, Li HJ, Gao YQ, Wu H. Hepatitis C therapy with interferon-α and ribavirin reduces the CD4 cell count and the total, 2LTR circular and integrated HIV-1 DNA in HIV/HCV co-infected patients. Antiviral Res 2015; 118:118-22. [PMID: 25823618 DOI: 10.1016/j.antiviral.2015.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
This study investigated whether treatment with IFN-α and ribavirin (RBV) reduces 2LTR circular HIV DNA in addition to the total and integrated HIV DNA. Two groups of patients were enrolled. Group 1 comprised HIV/HCV co-infected patients who were treated with highly active antiretroviral therapy (HAART), IFN-α and RBV for 48 weeks. After the 48 weeks of treatment, IFN-α and RBV treatment was discontinued and HAART was continued. Group 2 comprised HIV-infected patients who were treated with HAART. Real-time polymerase chain reaction (RT-PCR) was used to quantify the levels of HIV-1 DNA. We found that compared with Group 2 patients, Group 1 patients exhibited an obvious decrease in the CD4 cell count and the total DNA, 2LTR circular DNA, and integrated HIV DNA after 48 weeks of treatment. After the discontinuation of IFN-α and RBV treatment in Group 1 patients, the levels of HIV DNA recovered. Therefore, we concluded that treatment with IFN-α and ribavirin (RBV) reduces 2LTR circular HIV DNA.
Collapse
Affiliation(s)
- Yan-mei Jiao
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China
| | - Wen-jia Weng
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China
| | - Quan-sheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Wei-jun Zhu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-ping Cai
- Guangzhou Eighth People's Hospital, No. 627 Dongfeng East Road, Guangzhou 510060, China
| | - Ling-hua Li
- Guangzhou Eighth People's Hospital, No. 627 Dongfeng East Road, Guangzhou 510060, China
| | - Hong-jun Li
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| | - Yan-qing Gao
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| |
Collapse
|
19
|
Hammer SM, Ribaudo H, Bassett R, Mellors JW, Demeter LM, Coombs RW, Currier J, Morse GD, Gerber JG, Martinez AI, Spreen W, Fischl MA, Squires KE. A Randomized, Placebo-Controlled Trial of Abacavir Intensification in HIV-1–Infected Adults With Virologic Suppression on a Protease Inhibitor–Containing Regimen. HIV CLINICAL TRIALS 2015. [DOI: 10.1310/hct1105-312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Baroncelli S, Pirillo MF, Galluzzo CM, Antoni AD, Ladisa N, Francisci D, d'Ettorre G, Segala D, Vivarelli A, Sozio F, Cirioni O, Weimer LE, Fragola V, Parruti G, Floridia M. Rate and determinants of residual viremia in multidrug-experienced patients successfully treated with raltegravir-based regimens. AIDS Res Hum Retroviruses 2015; 31:71-7. [PMID: 25092266 DOI: 10.1089/aid.2014.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Residual HIV viremia, defined by low levels of plasma HIV RNA with enhanced-sensitivity assays, may persist even in the presence of successful antiretroviral therapy, but little is known about its determinants. Our objective was to evaluate the rate and determinants of residual viremia in patients who show stable undetectable plasma HIV-1 RNA with conventional assays. Forty-four multidrug-experienced patients with undetectable levels of HIV RNA for at least 2 years under raltegravir-based regimens were evaluated. An ultrasensitive (2.5 copies/ml) real-time PCR method was used to quantify plasma HIV RNA. After 12 months of salvage treatment, 48.3% of the patients had residual viremia between 2.5 and 37 copies/ml. The proportion of patients with plasma HIV RNA below 2.5 copies/ml decreased from 51.7% at 12 months to 30.8% at 24 months. The presence of residual viremia was not associated with levels of viremia before starting raltegravir. Considering CD4 counts, hepatitis B or C virus (HBV or HCV) coinfection, or other demographic characteristics, for the time interval between HIV diagnosis and initiation of antiretroviral therapy, patients with a longer interval (>1 year) were significant less likely to have RNA levels below 2.5 copies/ml at 12 months compared to patients who started therapy within 1 year of HIV diagnosis (28.6% vs. 73.3%, p=0.027). Half of the patients showing undetectable HIV viremia with conventional assays had low-level viremia with ultrasensitive assays, with no predictive role of viroimmunological status at the start of the regimen. The potential influence of the interval between HIV diagnosis and initiation of treatment should be confirmed in subjects with a known date of seroconversion.
Collapse
Affiliation(s)
- Silvia Baroncelli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Franca Pirillo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Clementina Maria Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Degli Antoni
- Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | | | - Daniela Francisci
- Division of Infectious Diseases, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Daniela Segala
- Infectious Diseases Unit, Arcispedale S. Anna, Ferrara, Italy
| | | | - Federica Sozio
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Ospedali Riuniti, Marche Polytechnic University, Ancona, Italy
| | - Liliana Elena Weimer
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Fragola
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Marco Floridia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
Boillat-Blanco N, Darling KEA, Schoni-Affolter F, Vuichard D, Rougemont M, Fulchini R, Bernasconi E, Aouri M, Clerc O, Furrer H, Günthard HF, Cavassini M. Virological outcome and management of persistent low-level viraemia in HIV-1-infected patients: 11 years of the Swiss HIV Cohort Study. Antivir Ther 2014; 20:165-75. [PMID: 24964403 DOI: 10.3851/imp2815] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Management of persistent low-level viraemia (pLLV) in patients on combined antiretroviral therapy (cART) with previously undetectable HIV viral loads (VLs) is challenging. We examined virological outcome and management among patients enrolled in the Swiss HIV Cohort Study (SHCS). METHODS In this retrospective study (2000-2011), pLLV was defined as a VL of 21-400 copies/ml on ≥ three consecutive plasma samples with ≥8 weeks between first and last analyses, in patients undetectable for ≥24 weeks on cART. Control patients had ≥ three consecutive undetectable VLs over ≥32 weeks. Virological failure (VF), analysed in the pLLV patient group, was defined as a VL>400 copies/ml. RESULTS Among 9,972 patients, 179 had pLLV and 5,389 were controls. Compared to controls, pLLV patients were more often on unboosted protease inhibitor (PI)-based (adjusted odds ratio [aOR; 95% CI] 3.2 [1.8, 5.9]) and nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-only combinations (aOR 2.1 [1.1, 4.2]) than on non-nucleoside reverse transcriptase inhibitor and boosted PI-based regimens. At 48 weeks, 102/155 pLLV patients (66%) still had pLLV, 19/155 (12%) developed VF and 34/155 (22%) had undetectable VLs. Predictors of VF were previous VF (aOR 35 [3.8, 315]), unboosted PI-based (aOR 12.8 [1.7, 96]) or NRTI-only combinations (aOR 115 [6.8, 1,952]), and VLs>200 during pLLV (aOR 3.7 [1.1, 12]). No VF occurred in patients with persistent very LLV (21-49 copies/ml; n=26). At 48 weeks, 29/39 patients (74%) who changed cART had undetectable VLs, compared with 19/74 (26%) without change (P<0.001). CONCLUSIONS Among patients with pLLV, VF was predicted by previous VF, cART regimen and VL≥200. Most patients who changed cART had undetectable VLs 48 weeks later. These findings support cART modification for pLLV>200 copies/ml.
Collapse
Affiliation(s)
- Noémie Boillat-Blanco
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Association between latent proviral characteristics and immune activation in antiretrovirus-treated human immunodeficiency virus type 1-infected adults. J Virol 2014; 88:8629-39. [PMID: 24850730 DOI: 10.1128/jvi.01257-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Generalized immune activation during HIV infection is associated with an increased risk of cardiovascular disease, neurocognitive disease, osteoporosis, metabolic disorders, and physical frailty. The mechanisms driving this immune activation are poorly understood, particularly for individuals effectively treated with antiretroviral medications. We hypothesized that viral characteristics such as sequence diversity may play a role in driving HIV-associated immune activation. We therefore sequenced proviral DNA isolated from peripheral blood mononuclear cells from HIV-infected individuals on fully suppressive antiretroviral therapy. We performed phylogenetic analyses, calculated viral diversity and divergence in the env and pol genes, and determined coreceptor tropism and the frequency of drug resistance mutations. Comprehensive immune profiling included quantification of immune cell subsets, plasma cytokine levels, and intracellular signaling responses in T cells, B cells, and monocytes. These antiretroviral therapy-treated HIV-infected individuals exhibited a wide range of diversity and divergence in both env and pol genes. However, proviral diversity and divergence in env and pol, coreceptor tropism, and the level of drug resistance did not significantly correlate with markers of immune activation. A clinical history of virologic failure was also not significantly associated with levels of immune activation, indicating that a history of virologic failure does not inexorably lead to increased immune activation as long as suppressive antiretroviral medications are provided. Overall, this study demonstrates that latent viral diversity is unlikely to be a major driver of persistent HIV-associated immune activation. IMPORTANCE Chronic immune activation, which is associated with cardiovascular disease, neurologic disease, and early aging, is likely to be a major driver of morbidity and mortality in HIV-infected individuals. Although treatment of HIV with antiretroviral medications decreases the level of immune activation, levels do not return to normal. The factors driving this persistent immune activation, particularly during effective treatment, are poorly understood. In this study, we investigated whether characteristics of the latent, integrated HIV provirus that persists during treatment are associated with immune activation. We found no relationship between latent viral characteristics and immune activation in treated individuals, indicating that qualities of the provirus are unlikely to be a major driver of persistent inflammation. We also found that individuals who had previously failed treatment but were currently effectively treated did not have significantly increased levels of immune activation, providing hope that past treatment failures do not have a lifelong "legacy" impact.
Collapse
|
23
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
24
|
Vardhanabhuti S, Taiwo B, Kuritzkes DR, Eron JJ, Bosch RJ. Phylogenetic evidence of HIV-1 sequence evolution in subjects with persistent low-level viraemia. Antivir Ther 2014; 20:73-6. [PMID: 24699164 DOI: 10.3851/imp2772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Persistent low-level viraemia (LLV) during the treatment of antiretroviral therapy (ART) is associated with emergent drug resistance mutation (DRM); however, insight into its driver is limited. The objectives were to study HIV-1 pol sequence evolution in subjects with persistent LLV and evaluate factors associated with sequence changes. METHODS HIV-1 pol sequences from 54 treatment-naive subjects undergoing first-line lopinavir/ritonavir- or efavirenz-containing ART were obtained at pre-ART and end of LLV. HIV-1 sequence evolution was evaluated using phylogenetic analysis and Hamming distance calculation. DRMs were interpreted based on the International AIDS Society-USA 2011 update. RESULTS Subjects with new DRM during LLV had greater HIV-1 evolution across pol from the pre-ART to end of LLV compared with subjects without DRM. Evolution over non-DRM sites was similar between groups. Higher degree of genetic evolution was positively associated with higher HIV-1 RNA levels during LLV, both at DRM and non-DRM sites. CONCLUSIONS The magnitude of LLV was the primary driver of evolution rate at DRM as well as non-DRM sites. Higher viral load was associated with DRM emergence in these subjects. These findings provide insights that may be applicable to the management of patients with persistent LLV during ART.
Collapse
|
25
|
Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:11. [PMID: 26015947 PMCID: PMC4365823 DOI: 10.1038/mtm.2013.11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4(+) T lymphocytes, and CD34(+) hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.
Collapse
|
26
|
Deere JD, Kauffman RC, Cannavo E, Higgins J, Villalobos A, Adamson L, Schinazi RF, Luciw PA, North TW. Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART. PLoS One 2014; 9:e87914. [PMID: 24505331 PMCID: PMC3914874 DOI: 10.1371/journal.pone.0087914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/01/2014] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Kauffman RC, Villalobos A, Bowen JH, Adamson L, Schinazi RF. Residual viremia in an RT-SHIV rhesus macaque HAART model marked by the presence of a predominant plasma clone and a lack of viral evolution. PLoS One 2014; 9:e88258. [PMID: 24505452 PMCID: PMC3914964 DOI: 10.1371/journal.pone.0088258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) significantly reduces HIV-1 replication and prevents progression to AIDS. However, residual low-level viremia (LLV) persists and long-lived viral reservoirs are maintained in anatomical sites. These reservoirs permit a recrudescence of viremia upon cessation of therapy and thus HAART must be maintained indefinitely. HIV-1 reservoirs include latently infected resting memory CD4+ T-cells and macrophages which may contribute to residual viremia. It has not been conclusively determined if a component of LLV may also be due to residual replication in cells with sub-therapeutic drug levels and/or long-lived chronically infected cells. In this study, RT-SHIVmac239 diversity was characterized in five rhesus macaques that received a five-drug HAART regimen [tenofovir, emtricitabine, zidovudine, amdoxovir, (A, C, T, G nucleoside analogs) and the non-nucleoside reverse transcriptase (RT) inhibitor efavirenz]. Before maximal viral load suppression, longitudinal plasma viral RNA RT diversity was analyzed using a 454 sequencer. After suppression, LLV RT diversity (amino acids 65-210) was also assessed. LLV samples had viral levels less than our standard detection limit (50 viral RNA copies/mL) and few transient blips <200 RNA copies/mL. HAART was discontinued in three macaques after 42 weeks of therapy resulting in viral rebound. The level of viral divergence and the prevalence of specific alleles in LLV was similar to pre-suppression viremia. While some LLV sequences contained mutations not observed in the pre-suppression profile, LLV was not characterized by temporal viral evolution or apparent selection of drug resistance mutations. Similarly, resistance mutations were not detected in the viral rebound population. Interestingly, one macaque maintained a putative LLV predominant plasma clone sequence. Together, these results suggest that residual replication did not markedly contribute to LLV and that this model mimics the prevalence and phylogenetic characteristics of LLV during human HAART. Therefore, this model may be ideal for testing HIV-1 eradication strategies.
Collapse
Affiliation(s)
- Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joanne H. Bowen
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Veterans Affairs Medical Center, Decatur, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, Gallien S, Lin NH, Giguel FF, Lavoie L, Ho VT, Armand P, Soiffer RJ, Sagar M, LaCasce AS, Kuritzkes DR. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis 2013; 207:1694-702. [PMID: 23460751 PMCID: PMC3636784 DOI: 10.1093/infdis/jit086] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The long-term impact of allogeneic hematopoietic stem cell transplantation (HSCT) on human immunodeficiency virus type 1 (HIV-1) reservoirs in patients receiving combination antiretroviral therapy (cART) is largely unknown. METHODS We studied the effects of a reduced-intensity conditioning allogeneic HSCT from donors with wild-type-CCR5(+) cells on HIV-1 peripheral blood reservoirs in 2 patients heterozygous for the ccr5Δ32 mutation. In-depth analyses of the HIV-1 reservoir size in peripheral blood, coreceptor use, and specific antibody responses were performed on samples obtained before and up to 3.5 years after HSCT receipt. RESULTS Although HIV-1 DNA was readily detected in peripheral blood mononuclear cells (PBMCs) before and 2-3 months after HSCT receipt, HIV-1 DNA and RNA were undetectable in PBMCs, CD4(+) T cells, or plasma up to 21 and 42 months after HSCT. The loss of detectable HIV-1 correlated temporally with full donor chimerism, development of graft-versus-host disease, and decreases in HIV-specific antibody levels. CONCLUSIONS The ability of donor cells to engraft without evidence of ongoing HIV-1 infection suggests that HIV-1 replication may be fully suppressed during cART and does not contribute to maintenance of viral reservoirs in peripheral blood in our patients. HSCTs with wild-type-CCR5(+) donor cells can lead to a sustained reduction in the size of the peripheral reservoir of HIV-1.
Collapse
Affiliation(s)
- Timothy J. Henrich
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Zixin Hu
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Jonathan Z. Li
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | | | - Michael P. Busch
- Blood Systems Research Institute
- University of California–San Francisco, San Francisco
| | - Sheila M. Keating
- Blood Systems Research Institute
- University of California–San Francisco, San Francisco
| | - Sebastien Gallien
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Hopital Saint-Louis, Paris, France
| | - Nina H. Lin
- Harvard Medical School
- Divsision of Infectious Diseases, Massachusetts General Hospital
| | | | - Laura Lavoie
- Divsision of Infectious Diseases, Massachusetts General Hospital
| | - Vincent T. Ho
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Philippe Armand
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert J. Soiffer
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manish Sagar
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Ann S. LaCasce
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel R. Kuritzkes
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| |
Collapse
|
29
|
Gianella S, Mehta SR, Strain MC, Young JA, Vargas MV, Little SJ, Richman DD, Kosakovsky Pond SL, Smith DM. Impact of seminal cytomegalovirus replication on HIV-1 dynamics between blood and semen. J Med Virol 2013; 84:1703-9. [PMID: 22997072 DOI: 10.1002/jmv.23398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genital tract of individuals infected with human immunodeficiency virus type 1 (HIV-1) is an anatomic compartment that supports local HIV-1 and cytomegalovirus (CMV) replication. This study investigated the association of seminal CMV replication with changes in HIV-1 clonal expansion, evolution and phylogenetic compartmentalization between blood and semen. Fourteen paired blood and semen samples were analyzed from four untreated subjects. Clonal sequences (n = 607) were generated from extracted HIV-1 RNA (env C2-V3 region), and HIV-1 and CMV levels were measured in the seminal plasma by real-time PCR. Sequence alignments were evaluated for: (i) viral compartmentalization between semen and blood samples using Slatkin-Maddison and F(ST) methods, (ii) different nucleotide substitution rates in semen and blood, and (iii) association between proportions of clonal HIV-1 sequences in each compartment and seminal CMV levels. Half of the semen samples had detectable CMV DNA, with at least one CMV positive sample for each patient. Seminal CMV DNA levels correlated positively with seminal HIV-1 RNA levels (Spearman P = 0.05). A trend towards an association between compartmentalization of HIV-1 sequences sampled from blood and semen and presence of seminal CMV was observed (Cochran Q test P = 0.12). Evolutionary rates between semen and blood HIV-1 populations did not differ significantly, and there was no significant association between seminal CMV DNA levels and the frequency of non-unique clonal HIV-1 sequences in the semen. In conclusion, the effects of CMV replication on HIV-1 viral and immunologic dynamics within the male genital tract are not significant enough to perturb evolution or disrupt compartmentalization in the genital tract.
Collapse
Affiliation(s)
- Sara Gianella
- University of California San Diego, La Jolla, California 92093-0679, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Olivares I, Sánchez-Jiménez C, Vieira CR, Toledano V, Gutiérrez-Rivas M, López-Galíndez C. Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell line. J Gen Virol 2013; 94:944-954. [PMID: 23288426 DOI: 10.1099/vir.0.046573-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) persistently infected cell lines are characterized by the continuous viral production without cytopathic effect. However, it is not completely clear if this production is contributed only by viral transcription or also by new cycles of viral replication. We studied an HIV-1 persistently infected cell line, designated H61-D, providing evidence of new replication cycles as sustained by: (i) a decrease in viral production, measured by p24 protein, after treatment of the culture with 3'-azydo-3'-deoxythymydine; (ii) detection of new integration events in the course of cell culture, and (iii) finding of two-long-terminal repeat circles in the cells. H61-D cells were not infected by cell-free virus, but infection was possible by co-culture with another productive-infected cell line. In conclusion, ongoing viral replication is taking place in H61-D persistent cells and new infections are mediated by a cell-to-cell spread mechanism.
Collapse
Affiliation(s)
- Isabel Olivares
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Carmen Sánchez-Jiménez
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Catarina Reis Vieira
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Víctor Toledano
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Gutiérrez-Rivas
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cecilio López-Galíndez
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Parczewski M. Genomics and transcriptomics in HIV and HIV/HCV coinfection—Review of basic concepts and genome-wide association studies. HIV & AIDS REVIEW 2013. [DOI: 10.1016/j.hivar.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J Virol 2012; 87:1770-8. [PMID: 23175380 DOI: 10.1128/jvi.01985-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how HIV-1 persists during effective antiretroviral therapy (ART) should inform strategies to cure HIV-1 infection. We hypothesize that proliferation of HIV-1-infected cells contributes to persistence of HIV-1 infection during suppressive ART. This predicts that identical or monotypic HIV-1 DNA sequences will increase over time during ART. We analyzed 1,656 env and pol sequences generated following single-genome amplification from the blood and sputum of six individuals during long-term suppressive ART. The median proportion of monotypic sequences increased from 25.0% prior to ART to 43.2% after a median of 9.8 years of suppressive ART. The proportion of monotypic sequences was estimated to increase 3.3% per year (95% confidence interval, 2.3 to 4.4%; P < 0.001). Drug resistance mutations were not more common in the monotypic sequences, arguing against viral replication during times with lower antiretroviral concentrations. Bioinformatic analysis found equivalent genetic distances of monotypic and nonmonotypic sequences from the predicted founder virus sequence, suggesting that the relative increase in monotypic variants over time is not due to selective survival of cells with viruses from the time of acute infection or from just prior to ART initiation. Furthermore, while the total HIV-1 DNA load decreased during ART, the calculated concentration of monotypic sequences was stable in children, despite growth over nearly a decade of observation, consistent with proliferation of infected CD4(+) T cells and slower decay of monotypic sequences. Our findings suggest that proliferation of cells with proviruses is a likely mechanism of HIV-1 DNA persistence, which should be considered when designing strategies to eradicate HIV-1 infection.
Collapse
|
33
|
Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog 2012; 8:e1002506. [PMID: 22319447 PMCID: PMC3271083 DOI: 10.1371/journal.ppat.1002506] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Mucosal mononuclear (MMC) CCR5+CD4+ T cells of the gastrointestinal (GI) tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART), gut-associated lymphoid tissue (GALT) CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15–24 months post initiation of cART. At the 2nd biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2nd GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS) were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment during suppressive cART. This study was undertaken to determine if the gastrointestinal tract is a site of ongoing viral replication during suppressive combination antiretroviral therapy (cART) (defined by plasma HIV-1 RNA levels below 50 copies/ml). We found no evidence of substantial viral evolution in HIV-1 envelope sequences derived from peripheral blood mononuclear cells or cells of the gastrointestinal tract lymphoid tissue in participants initiating cART during early HIV-1 infection. To our knowledge, this is the first application of the single genome amplification technique to the comparative analysis of HIV-1 quasi-species derived from the gastrointestinal tract, demonstrating that in these individuals, cART has the ability to halt measurable evolution of HIV-1 envelope in this compartment. These findings suggest the absence of de-novo rounds of HIV-1 replication during suppressive cART and by extension, that experimentally observed, persistently elevated levels of immune activation in the gastrointestinal lymphoid tissue seen after the early initiation and uninterrupted use of cART (despite relative immune reconstitution in the blood) is likely due to factors other than ongoing viral replication. This implies that in this virally suppressed population, cART intensification is unlikely to significantly impact persistent CD4+ T cell depletion or increased levels of immune activation in the gastrointestinal tract.
Collapse
|
34
|
Buzón MJ, Codoñer FM, Frost SDW, Pou C, Puertas MC, Massanella M, Dalmau J, Llibre JM, Stevenson M, Blanco J, Clotet B, Paredes R, Martinez-Picado J. Deep molecular characterization of HIV-1 dynamics under suppressive HAART. PLoS Pathog 2011; 7:e1002314. [PMID: 22046128 PMCID: PMC3203183 DOI: 10.1371/journal.ppat.1002314] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/29/2011] [Indexed: 12/31/2022] Open
Abstract
In order to design strategies for eradication of HIV-1 from infected individuals, detailed insight into the HIV-1 reservoirs that persist in patients on suppressive antiretroviral therapy (ART) is required. In this regard, most studies have focused on integrated (proviral) HIV-1 DNA forms in cells circulating in blood. However, the majority of proviral DNA is replication-defective and archival, and as such, has limited ability to reveal the dynamics of the viral population that persists in patients on suppressive ART. In contrast, extrachromosomal (episomal) viral DNA is labile and as a consequence is a better surrogate for recent infection events and is able to inform on the extent to which residual replication contributes to viral reservoir maintenance. To gain insight into the diversity and compartmentalization of HIV-1 under suppressive ART, we extensively analyzed longitudinal peripheral blood mononuclear cells (PBMC) samples by deep sequencing of episomal and integrated HIV-1 DNA from patients undergoing raltegravir intensification. Reverse-transcriptase genes selectively amplified from episomal and proviral HIV-1 DNA were analyzed by deep sequencing 0, 2, 4, 12, 24 and 48 weeks after raltegravir intensification. We used maximum likelihood phylogenies and statistical tests (AMOVA and Slatkin-Maddison (SM)) in order to determine molecular compartmentalization. We observed low molecular variance (mean variability ≤0.042). Although phylogenies showed that both DNA forms were intermingled within the phylogenetic tree, we found a statistically significant compartmentalization between episomal and proviral DNA samples (P<10−6 AMOVA test; P = 0.001 SM test), suggesting that they belong to different viral populations. In addition, longitudinal analysis of episomal and proviral DNA by phylogeny and AMOVA showed signs of non-chronological temporal compartmentalization (all comparisons P<10−6) suggesting that episomal and proviral DNA forms originated from different anatomical compartments. Collectively, this suggests the presence of a chronic viral reservoir in which there is stochastic release of infectious virus and in which there are limited rounds of de novo infection. This could be explained by the existence of different reservoirs with unique pharmacological accessibility properties, which will require strategies that improve drug penetration/retention within these reservoirs in order to minimise maintenance of the viral reservoir by de novo infection. In the majority of HIV-1 positive patients, antiretroviral therapy (ART) effects a sustained reduction in plasma viremia to below detectable levels. Despite this, replication competent viruses persist and fuel viremia if antiretroviral treatment is interrupted. This viral persistence stands in the way of viral eradication through ART. While this ability to persist in the face of therapy is generally considered to be attributable to a reservoir of latently infected cells, there is debate as to how this reservoir is maintained and in particular, whether there is replenishment of the reservoir by low level, residual replication. Novel antiviral agents targeting the viral integrase offer tools to explore the viral reservoirs that persist in the face of ART and we have shown that raltegravir perturbs these reservoirs as evidenced by an accumulation of episomal DNA upon rategravir intensification (Buzon et al., 2010). Through “deep sequencing” technology, we have longitudinally analyzed the genotypes of HIV episomes and integrated HIV DNA to evaluate whether they represent interrelated sequences or whether they have distinct origins. Statistical methods showed molecular compartmentalization, among and within episomal and integrated HIV-1 DNA samples, and suggest that episomal DNA in PBMC originates from a cellular/anatomic reservoir that is not revealed by sequencing of proviral DNA in PBMC in this study. These, and other data, suggest that ongoing replication, which can be blocked by adding raltegravir, occurs from proviruses that are genetically distinguishable from those detected at >1% frequency in these circulating blood cells.
Collapse
Affiliation(s)
- Maria J. Buzón
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Francisco M. Codoñer
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Pou
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria C. Puertas
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marta Massanella
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Judith Dalmau
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M. Llibre
- Unitat VIH, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mario Stevenson
- University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Julià Blanco
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Unitat VIH, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Paredes
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Unitat VIH, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Martinez-Picado
- Institut de Recerca de la SIDA, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
35
|
Metzner KJ, Leemann C, Di Giallonardo F, Grube C, Scherrer AU, Braun D, Kuster H, Weber R, Guenthard HF. Reappearance of minority K103N HIV-1 variants after interruption of ART initiated during primary HIV-1 infection. PLoS One 2011; 6:e21734. [PMID: 21754996 PMCID: PMC3130779 DOI: 10.1371/journal.pone.0021734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the Zurich Primary HIV infection study (ZPHI), minority drug-resistant HIV-1 variants were detected in some acutely HIV-1-infected patients prior to initiation of early antiretroviral therapy (ART). Here, we investigated the reappearance of minority K103N and M184V HIV-1 variants in these patients who interrupted efficient early ART after 8-27 months according to the study protocol. These mutations are key mutations conferring drug resistance to reverse transcriptase inhibitors and they belong to the most commonly transmitted drug resistance mutations. METHODOLOGY/PRINCIPAL FINDINGS Early ART was offered to acutely HIV-1-infected patients enrolled in the longitudinal prospective ZPHI study. Six patients harboring and eleven patients not harboring drug-resistant viruses at low frequencies prior to ART were included in this substudy. Minority K103N and M184V HIV-1 variants were quantified in longitudinal plasma samples after treatment interruption by allele-specific real-time PCR. All 17 patients were infected with HIV-1 subtype B between 04/2003 and 09/2005 and received LPV/r+AZT+3TC during primary HIV-1 infection (PHI). Minority K103N HIV-1 variants reappeared after cessation of ART in two of four patients harboring this variant during PHI and even persisted in one of those patients at frequencies similar to the frequency observed prior to ART (<1%). The K103N mutation did not appear during treatment interruption in any other patient. Minority M184V HIV-1 variants were detected in two patients after ART interruption, one harboring and one not harboring these variants prior to ART. CONCLUSION Minority K103N HIV-1 variants, present in acutely HIV-1 infected patients prior to early ART, can reappear and persist after interruption of suppressive ART containing two nucleoside/nucleotide analogue reverse transcriptase inhibitors and a ritonavir-boosted protease inhibitor. TRIAL REGISTRATION Clinicaltrials.gov NCT00537966.
Collapse
Affiliation(s)
- Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhu W, Jiao Y, Lei R, Hua W, Wang R, Ji Y, Liu Z, Wei F, Zhang T, Shi X, Wu H, Zhang L. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy. PLoS One 2011; 6:e21081. [PMID: 21687638 PMCID: PMC3110824 DOI: 10.1371/journal.pone.0021081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/18/2011] [Indexed: 12/26/2022] Open
Abstract
Background Despite prolonged treatment with highly active antiretroviral therapy (HAART), the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. Methodology/Principal Findings In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS) levels did not reveal any significant changes in the same treatment period. Conclusions/Significance Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART.
Collapse
Affiliation(s)
- Weijun Zhu
- AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmei Jiao
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Rongyue Lei
- AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yunxia Ji
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Zhiying Liu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xuanlin Shi
- Comprehensive AIDS Research Center and Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
- * E-mail: (LZ); (HW)
| | - Linqi Zhang
- AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Comprehensive AIDS Research Center and Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
- * E-mail: (LZ); (HW)
| |
Collapse
|
37
|
Abstract
Although highly active antiretroviral therapy has enabled constant progress in reducing HIV-1 replication, in some patients who are "aviremic" during treatment, the problem of insufficient immune restoration remains, and this exposes them to the risk of immune deficiency-associated pathologies. Various mechanisms may combine and account for this impaired immunologic response to treatment. A first possible mechanism is immune activation, which may be because of residual HIV production, microbial translocation, co-infections, immunosenescence, or lymphopenia per se. A second mechanism is ongoing HIV replication. Finally, deficient thymus output, sex, and genetic polymorphism influencing apoptosis may impair immune reconstitution. In this review we will discuss the tools at our disposal to identify the various mechanisms at work in a given patient and the specific therapeutic strategies we could propose based on this etiologic diagnosis.
Collapse
|
38
|
Sharkey M, Babic DZ, Greenough T, Gulick R, Kuritzkes DR, Stevenson M. Episomal viral cDNAs identify a reservoir that fuels viral rebound after treatment interruption and that contributes to treatment failure. PLoS Pathog 2011; 7:e1001303. [PMID: 21383975 PMCID: PMC3044693 DOI: 10.1371/journal.ppat.1001303] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/21/2011] [Indexed: 12/26/2022] Open
Abstract
Viral reservoirs that persist in HIV-1 infected individuals on antiretroviral therapy (ART) are the major obstacle to viral eradication. The identification and definition of viral reservoirs in patients on ART is needed in order to understand viral persistence and achieve the goal of viral eradication. We examined whether analysis of episomal HIV-1 genomes provided the means to characterize virus that persists during ART and whether it could reveal the virus that contributes to treatment failure in patients on ART. For six individuals in which virus replication was highly suppressed for at least 20 months, proviral and episomal genomes present just prior to rebound were phylogenetically compared to RNA genomes of rebounding virus after therapy interruption. Episomal envelope sequences, but not proviral envelope sequences, were highly similar to sequences in rebounding virus. Since episomes are products of recent infections, the phylogenetic relationships support the conclusion that viral rebound originated from a cryptic viral reservoir. To evaluate whether the reservoir revealed by episomal sequence analysis was of clinical relevance, we examined whether episomal sequences define a viral population that contributes to virologic failure in individuals receiving the CCR5 antagonist, Vicriviroc. Episomal envelope sequences at or near baseline predicted treatment failure due to the presence of X4 or D/M (dual/mixed) viral variants. In patients that did not harbor X4 or D/M viruses, the basis for Vicriviroc treatment failure was indeterminate. Although these samples were obtained from viremic patients, the assay would be applicable to a large percentage of aviremic patients, based on previous studies. Summarily, the results support the use of episomal HIV-1 as an additional or alternative approach to traditional assays to characterize virus that is maintained during long-term, suppressive ART. Infection by HIV-1 and the related effects on human health continue to be a major problem throughout the world. Since the early 1980's, more than 25 million people have died from AIDS and the only treatment option for infected individuals is likely to be life-long treatment with a combination of antiviral drugs. While antiviral drug therapy can reduce viral replication to levels that are undetectable by currently used assays, there is a rapid recrudescence of viremia upon interruption of therapy. This indicates that there are viral reservoirs, undetectable by conventional diagnostic assays that sustain the virus in the face of ART. We have developed an alternative or additional approach to study cryptic viral replication based on episomal HIV-1 genomes. Although HIV-1 episomes are not suitable substrates for integration and thus are dead-end products in the viral life cycle, episomal HIV-1 genomes are useful surrogate markers of viral replication since they are labile and indicative of recent infection events. Here we have used episomal HIV-1 analysis to study the reservoir that fuels viral rebound during treatment interruption and to demonstrate the utility of this approach in guiding the clinical treatment of infected individuals.
Collapse
Affiliation(s)
- Mark Sharkey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Dunja Z. Babic
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Thomas Greenough
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Roy Gulick
- Weill Medical College of Cornell University, New York, New York, United States of America
| | - Daniel R. Kuritzkes
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United State of America
| | - Mario Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
The gut mucosal viral reservoir in HIV-infected patients is not the major source of rebound plasma viremia following interruption of highly active antiretroviral therapy. J Virol 2011; 85:4772-82. [PMID: 21345945 DOI: 10.1128/jvi.02409-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interruption of suppressive highly active antiretroviral therapy (HAART) in HIV-infected patients leads to increased HIV replication and viral rebound in peripheral blood. Effects of therapy interruption on gut-associated lymphoid tissue (GALT) have not been well investigated. We evaluated longitudinal changes in viral replication and emergence of viral variants in the context of T cell homeostasis and gene expression in GALT of three HIV-positive patients who initiated HAART during primary HIV infection but opted to interrupt therapy thereafter. Longitudinal viral sequence analysis revealed that a stable proviral reservoir was established in GALT during primary HIV infection that persisted through early HAART and post-therapy interruption. Proviral variants in GALT and peripheral blood mononuclear cells (PBMCs) displayed low levels of genomic diversity at all times. A rapid increase in viral loads with a modest decline of CD4(+) T cells in peripheral blood was observed, while gut mucosal CD4(+) T cell loss was severe following HAART interruption. This was accompanied by increased mucosal gene expression regulating interferon (IFN)-mediated antiviral responses and immune activation, a profile similar to those found in HAART-naive HIV-infected patients. Sequence analysis of rebound virus suggested that GALT was not the major contributor to the postinterruption plasma viremia nor were GALT HIV reservoirs rapidly replaced by HIV rebound variants. Our data suggest an early establishment and persistence of viral reservoirs in GALT with minimal diversity. Early detection of and therapy for HIV infection may be beneficial in controlling viral evolution and limiting establishment of diverse viral reservoirs in the mucosal compartment.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW HIV infection is controlled but not cured by combination antiretroviral therapy. HIV may persist for a number of reasons, including ongoing cycles of HIV infection or viral persistence as latent, or HIV replication in long-lived cells containing HIV proviruses. Therapeutic consequences of these alternative mechanisms are significant and distinct. If ongoing replication remains during current antiretroviral therapy, then improvements in potency will be useful in eradication strategies. Alternatively, long-lived cells with integrated proviruses will not be affected by improvements in therapy directed against active infection, and new strategies will be necessary for HIV eradication. Technologic advances have made it possible to carry out a series of drug intensification protocols in well suppressed patients; these and other analyses for HIV replication have been useful to elucidate the nature of HIV persistence on therapy. RECENT FINDINGS A number of clinical studies intensifying antiretroviral therapy carried out in the last several years have yielded new findings regarding the ability to detect the presence of ongoing replication. Decreases in persistent viremia have not been consistently detected in individuals on potent combination antiretroviral therapy. Evidence for persistent replication has been reported in patients using sensitive assays of cell-associated HIV. SUMMARY HIV viremia persists despite combination antiretroviral therapy. Antiretroviral drug intensification does not lower the level of HIV measured in plasma, suggesting current therapy arrests active virus replication. HIV eradication will most likely require therapy in addition to potent antiretroviral therapy.
Collapse
Affiliation(s)
- Frank Maldarelli
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
41
|
Hammer SM, Ribaudo H, Bassett R, Mellors JW, Demeter LM, Coombs RW, Currier J, Morse GD, Gerber JG, Martinez AI, Spreen W, Fischl MA, Squires KE, AIDS Clinical Trials Group (ACTG) 372A Study Team. A randomized, placebo-controlled trial of abacavir intensification in HIV-1-infected adults with virologic suppression on a protease inhibitor-containing regimen. HIV CLINICAL TRIALS 2010; 11:312-24. [PMID: 21239359 PMCID: PMC3108099 DOI: 10.1310/hct1106-312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Maximizing the durability of viral suppression is a key goal of antiretroviral therapy. The objective of AIDS Clinical Trials Group Study 372A was to determine whether the intensification strategy of adding abacavir to an effective indinavir-dual nucleoside regimen would delay the time to virologic failure. METHODS Zidovudine-experienced subjects (n=229) on therapy with indinavir + zidovudine + lamivudine with plasma HIV-1 RNA levels<500 copies/mL were randomized to abacavir 300 mg twice daily or placebo. The primary endpoint was the time to treatment failure, defined as a composite of confirmed virologic failure (2 consecutive HIV-1 RNAs>200 copies/mL) and treatment discontinuation. RESULTS At baseline, the study population was 88% male with a median age of 41 years and median CD4 cell count of 250/mm3. Median follow-up was 4.4 years. The primary endpoint was reached in 61/116 of abacavir versus 62/113 of placebo recipients (P=.77); virologic failure occurred in 34/116 and 42/113 patients, respectively (P=.22). There were no differences in the proportions of subjects with plasma HIV-1 RNA levels below 50 copies/mL, in CD4 cell count increases, nor adverse events between the arms. In the study, 17% of subjects developed nephrolithiasis, 2% experienced abacavir hypersensitivity, and 4.8% experienced at least 1 serious cardiovascular event (7 [6%] in the abacavir arm, 4 [3.5%] in the placebo arm). In additional secondary and post hoc analyses, rates of intermittent viremia, suppression below a plasma HIV-1 RNA level of 6 copies/mL, and HIV-1 proviral DNA levels in peripheral blood mononuclear cells were not significantly different in the 2 arms. CONCLUSIONS The strategy of intensification with abacavir in patients who are virologically suppressed on a stable antiretroviral regimen does not confer a clinical or virologic benefit. As antiretroviral regimens have become more potent since this trial was completed, it will be even more difficult to prove that late intensification of already virologically suppressed patients will add benefit. However, studies are warranted with drugs with new mechanisms of action to determine whether the level of persistent viremia below 50 copies/ mL can be further reduced and what influence this may have on latent HIV reservoirs.
Collapse
Affiliation(s)
- Scott M Hammer
- Division of Infectious Diseases, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Michael Robertson, Steven Schnittman, Marjorie Dehlinger, Ann Walawander, Judith Feinberg, Sharon Kohrs, Michael Para, Kathy Watson, Jorge Santana Bagur, Santiago Marrero, David Ragan, Cheryl Marcus, Joseph Eron, Hector Bolivar, Sandra Navarro, Ge-Youl Kim, Michael Klebert, Ilene Wiggins, Andrea Weiss, Dee Dee Pacheco, Jill Kunkel, Karen Cavanagh, Janet Forcht, Charles Hicks, Joan Riddle, Barbara Gripshover, Jane Baum, Kenneth Fife, Beth Zwickl, Melinda Robertson, Rebecca Creamer, Henry Balfour, Heather Vezina, William O'Brien, Gerianne Casey, Mary Albrecht, Carol Silver, Sadia Shaik, Mario Guerrero, Mussolini Africano, Luis M Mendez, Nancy Hanks, Scott Souza, Rob Roy MacGregor, Isabel Matozzo, Jane Reid, Carol Greisberger, Juan Lertora, Erin Plaia, Kim Whitely, Robert Kalayjian, Lisa Dasnoit, Tim Lane, Beverly Putnam, Graham Ray, Michael Morgan, Janet Nicotera, Susan Swindells, Frances Van Meter, Sharon Hewitt, James Horton, Melody Palmore, Betsy Hall, Valery Hughes, Todd Stroberg, Jeffery Meier, Jack Stapleton, Donna Mildvan, Gwendolyn Costantini, Harold Kessler, Ruth Davis, Joseph Pulvirenti, Timothy Cooley, Ruth Haivanis, Jane Norris, Patricia Cain, Debbke Slamowitz, Sandra Valle, Tamara O'Hara, Robert Murphy, Baiba Berzins, Neel French,
Collapse
|
42
|
Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2010; 2:103-22. [PMID: 22096389 PMCID: PMC3218690 DOI: 10.2147/hiv.s6882] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Even though the treatment of human immunodeficiency virus (HIV)-infected individuals with highly active antiretroviral therapy (HAART) provides a complete control of plasma viremia to below detectable levels (<40 copies/mL plasma), there is an unequal distribution of all antiretroviral drugs across diverse cellular and anatomic compartments in vivo. The main consequence of this is the acquisition of resistance by HIV to all known classes of currently prescribed antiretroviral drugs and the establishment of HIV reservoirs in vivo. HIV has a distinct advantage of surviving in the host via both pre-and postintegration latency. The postintegration latency is caused by inert and metabolically inactive provirus, which cannot be accessed either by the immune system or the therapeutics. This integrated provirus provides HIV with a safe haven in the host where it is incessantly challenged by its immune selection pressure and also by HAART. Thus, the provirus is one of the strategies for viral concealment in the host and the provirus can be rekindled, through unknown stimuli, to create progeny for productive infection of the host. Thus, the reservoir establishment remains the biggest impediment to HIV eradication from the host. This review provides an overview of HIV reservoir sites and discusses both the virtues and problems associated with therapies/strategies targeting these reservoir sites in vivo.
Collapse
Affiliation(s)
- Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Maly Soedjono
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Yung Shwen Ho
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Viviane Conceicao
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| |
Collapse
|
43
|
Lopez CA, Vazquez M, Hill MD, Del C. Colon M, Porrata-Doria T, Johnston ICD, Lorenzo E. Characterization of HIV-1 RNA forms in the plasma of patients undergoing successful HAART. Arch Virol 2010; 155:895-903. [PMID: 20414690 PMCID: PMC2880236 DOI: 10.1007/s00705-010-0659-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/10/2010] [Indexed: 12/20/2022]
Abstract
An assay to characterize plasma human immunodeficiency virus 1 (HIV-1) sequences for patients with low viral loads was developed by combining the selective binding of anti-CD44 MicroBeads with a nested RT-PCR targeting the env C2V4 region. Sequences were obtained from 10 of 20 HIV+ patients who had viral loads below 48 copies/ml. Sequences derived from plasma were compared to those from CD14+ CD16 +monocytes and CD4+ T cells. The plasma sequences were most closely related to those amplified from monocytes, suggesting that during successful antiretroviral therapy, the predominant plasma virus originates from myeloid cells. By characterizing HIV-1 RNA sequences from 8 ml of plasma while avoiding multiple steps, which can lead to contamination and deterioration, this method can help elucidate the viral forms in patients with therapeutically suppressed HIV-1. Understanding the source of residual viremia is crucial in developing approaches for viral eradication.
Collapse
Affiliation(s)
- Carlos A. Lopez
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
| | - Manuel Vazquez
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
| | - Martin D. Hill
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
| | - Maria Del C. Colon
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
| | - Tirtsa Porrata-Doria
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
| | - Ian C. D. Johnston
- Miltenyi Biotec GmbH, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Eric Lorenzo
- Molecular Virology Laboratory, Department of Physiology and Pharmacology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732 USA
- Present Address: Scientific Review Program, AIDS Research Review Branch, NIAID, Division of Extramural Activities (DEA), 6700B Rockledge Dr., Room 3134, Bethesda, MD 20892-7616 USA
| |
Collapse
|
44
|
J Buzón M, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, Palmer S, Stevenson M, Clotet B, Blanco J, Martinez-Picado J. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010; 16:460-5. [DOI: 10.1038/nm.2111] [Citation(s) in RCA: 454] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 02/08/2010] [Indexed: 11/09/2022]
|
45
|
Rong L, Perelson AS. Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol 2009; 5:e1000533. [PMID: 19834532 PMCID: PMC2752194 DOI: 10.1371/journal.pcbi.1000533] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/15/2009] [Indexed: 11/19/2022] Open
Abstract
Although potent combination therapy is usually able to suppress plasma viral loads in HIV-1 patients to below the detection limit of conventional clinical assays, a low level of viremia frequently can be detected in plasma by more sensitive assays. Additionally, many patients experience transient episodes of viremia above the detection limit, termed viral blips, even after being on highly suppressive therapy for many years. An obstacle to viral eradication is the persistence of a latent reservoir for HIV-1 in resting memory CD4(+) T cells. The mechanisms underlying low viral load persistence, slow decay of the latent reservoir, and intermittent viral blips are not fully characterized. The quantitative contributions of residual viral replication to viral and the latent reservoir persistence remain unclear. In this paper, we probe these issues by developing a mathematical model that considers latently infected cell activation in response to stochastic antigenic stimulation. We demonstrate that programmed expansion and contraction of latently infected cells upon immune activation can generate both low-level persistent viremia and intermittent viral blips. Also, a small fraction of activated T cells revert to latency, providing a potential to replenish the latent reservoir. By this means, occasional activation of latently infected cells can explain the variable decay characteristics of the latent reservoir observed in different clinical studies. Finally, we propose a phenomenological model that includes a logistic term representing homeostatic proliferation of latently infected cells. The model is simple but can robustly generate the multiphasic viral decline seen after initiation of therapy, as well as low-level persistent viremia and intermittent HIV-1 blips. Using these models, we provide a quantitative and integrated prospective into the long-term dynamics of HIV-1 and the latent reservoir in the setting of potent antiretroviral therapy.
Collapse
Affiliation(s)
- Libin Rong
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
46
|
Di Mascio M, Srinivasula S, Bhattacharjee A, Cheng L, Martiniova L, Herscovitch P, Lertora J, Kiesewetter D. Antiretroviral tissue kinetics: in vivo imaging using positron emission tomography. Antimicrob Agents Chemother 2009; 53:4086-95. [PMID: 19667288 PMCID: PMC2764156 DOI: 10.1128/aac.00419-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/28/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge on the antiviral efficacy, dosing, and toxicity of available highly active antiretroviral therapy regimens is mostly derived from plasma or blood kinetics of anti-human immunodeficiency virus (anti-HIV) drugs. However, the blood comprises only 2% of the total target cells in the body. Tissue drug levels may differ substantially from corresponding plasma levels, and drug distribution processes may be characterized by high intertissue variability, leading to suboptimal target site concentrations and the potential risk for therapeutic failures. Positron emission tomography has greatly expanded the scope of the pharmacokinetic measurements that can be performed noninvasively in animal models or humans. We have prepared [18F]FPMPA, a fluorine-18-radiolabeled analogue of tenofovir, to study antiretroviral tissue kinetics in vivo noninvasively and tested the imaging probe in rats. The biodistribution of the fluorine-18 analogue closely follows that of nonfluorinated tenofovir. Compared to that in the blood, the levels of penetration of the antiretroviral drug were found to be significantly reduced in the spleen and submandibular lymph nodes (approximately 2-fold), in the mesenteric lymph nodes and the testes (approximately 4-fold), and in the brain compartment (approximately 25-fold). Intersubject variability of the trough drug concentration (measured at 120 min) in certain tissues, like the colon (coefficient of variation, >100%), is not reflected by the intersubject variability in the blood compartment (coefficient of variation, 24%). Positron emission tomography imaging of the fluorine-18 analogue revealed the accumulation of the antiretroviral drug in the cortex of the kidneys, a potential correlate of tenofovir-induced nephrotoxicity observed in HIV-1-infected treated patients. Thus, [18F]FPMPA is a promising radiotracer for evaluation of tenofovir biodistribution under carefully controlled drug administration protocols.
Collapse
Affiliation(s)
- Michele Di Mascio
- Division of Clinical Research, Biostatistics Research Branch, National Institue of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 2009; 260:308-31. [PMID: 19539630 PMCID: PMC2753284 DOI: 10.1016/j.jtbi.2009.06.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/20/2009] [Accepted: 06/08/2009] [Indexed: 02/02/2023]
Abstract
HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4(+) T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.
Collapse
Affiliation(s)
- Libin Rong
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
48
|
Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science 2009; 323:1304-7. [PMID: 19265012 DOI: 10.1126/science.1165706] [Citation(s) in RCA: 662] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although combination therapy for HIV infection represents a triumph for modern medicine, chronic suppressive therapy is required to contain persistent infection in reservoirs such as latently infected CD4+ lymphocytes and cells of the macrophage-monocyte lineage. Despite its success, chronic suppressive therapy is limited by its cost, the requirement of lifelong adherence, and the unknown effects of long-term treatment. This review discusses our current understanding of suppressive antiretroviral therapy, the latent viral reservoir, and the needs for and challenges of attacking this reservoir to achieve a cure.
Collapse
Affiliation(s)
- Douglas D Richman
- San Diego VA Healthcare System and University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0679, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Sahu GK, Paar D, Frost SDW, Smith MM, Weaver S, Cloyd MW. Low-level plasma HIVs in patients on prolonged suppressive highly active antiretroviral therapy are produced mostly by cells other than CD4 T-cells. J Med Virol 2009; 81:9-15. [PMID: 19031450 PMCID: PMC2912142 DOI: 10.1002/jmv.21366] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cellular source(s) and the clinical significance of persistent low-level viremia, below 50 HIV RNA copies per ml of plasma, achieved in many patients with high adherence to highly active antiretroviral therapy (HAART) remain unclear. Also, it is not clear if residual plasma HIVs during HAART can become predominant populations in the rebounding plasma viral loads after therapy interruption. Since, different HIV quasispecies tend to compartmentalize in various cell types and tissue locations in patients during chronic infection, the phylogenetic relationships between HIV sequences amplified from residual plasma viruses and CD4 T cells of five patients on long-term suppressive therapy were examined. Three of these patients stopped therapy voluntarily for 3 weeks, but only one of them demonstrated viral load rebound in plasma. In phylogenetic analyses, the residual plasma viruses were found to be distinct genetically from the majority of CD4 T cell-associated virus populations in four of five patients. The compartmental analyses revealed that in all patients, plasma- and CD4 T cell-derived viral sequences were compartmentalized separately. Interestingly, the plasma sequences obtained before and after HAART-off in two patients were produced apparently from the same compartment, which was different from the circulating CD4 T cell-compartment. These results suggest the possibility that residual plasma viruses in patients on long-term suppressive HAART may be produced persistently from a cellular source yet to be identified, and are capable of spreading quickly in vivo, accounting for the rapid rebound of viral loads in plasma after therapy interruption.
Collapse
Affiliation(s)
- Gautam K Sahu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Marsden MD, Xu J, Hamer D, Zack JA. Short communication: Activating stimuli enhance immunotoxin-mediated killing of HIV-infected macrophages. AIDS Res Hum Retroviruses 2008; 24:1399-404. [PMID: 19000022 DOI: 10.1089/aid.2008.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Strategies for purging persistent reservoirs in human immunodeficiency virus (HIV)-infected individuals may be enhanced by including agents that specifically kill virus-expressing cells. Anti-HIV envelope immunotoxins (ITs) represent one class of candidate molecules that could fulfill this function. We have previously utilized an anti-gp120 IT in conjunction with various stimulants to kill latently infected T cells ex vivo. Here we show that primary macrophages expressing HIV Env are relatively refractory to killing by IT when used alone. However, including stimulants such as prostratin or granulocyte-macrophage colony-stimulating factor to increase HIV gene expression in infected macrophages enhanced IT-mediated killing. Therefore, "activation-elimination" strategies similar to those proposed for purging the latent HIV reservoir may prove useful in clearing chronically infected macrophages in vivo.
Collapse
Affiliation(s)
- Matthew D. Marsden
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jie Xu
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Dean Hamer
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jerome A. Zack
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|