1
|
Ahrendsen JT, Nong Y, Huo Y, Steele J, Anderson MP. CD8 cytotoxic T-cell infiltrates and cellular damage in the hypothalamus in human obesity. Acta Neuropathol Commun 2023; 11:163. [PMID: 37814324 PMCID: PMC10563257 DOI: 10.1186/s40478-023-01659-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
Rare cases of paraneoplastic obesity in children suggest sporadic obesity might also arise from an adaptive immune cell-mediated mechanism. Since the hypothalamus is a central regulator of feeding behavior and energy expenditure, we quantified lymphocytic inflammation in this region in a cohort of obese and non-obese human post-mortem brains. We report that CD8-positive cytotoxic T-cells are increased in hypothalamic median eminence/arcuate nucleus (ME/Arc) and bed nucleus of the stria terminalis in 40% of obese compared to non-obese patients, but not in other hypothalamic nuclei or brain regions. CD8 T-cells were most abundant in individuals with concurrent obesity and diabetes. Markers of cytotoxic T-cell induced damage, activated caspase 3 and poly-ADP ribose, were also elevated in the ME/Arc of obese patients. To provoke CD8 cytotoxic T-cell infiltrates in ventromedial region of hypothalamus in mice we performed stereotactic injections of an adeno-associated virus expressing immunogenic green fluorescent protein or saline. AAV but not saline injections triggered hypothalamic CD8 T-cell infiltrates associated with a rapid weight gain in mice recapitulating the findings in human obesity. This is the first description of the neuropathology of human obesity and when combined with its reconstitution in a mouse model suggests adaptive immunity may drive as much as 40% of the human condition.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yuda Huo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jasmine Steele
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew P Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| |
Collapse
|
2
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
3
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Int J Chronic Dis 2016; 2016:7030795. [PMID: 28004036 PMCID: PMC5143720 DOI: 10.1155/2016/7030795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
The global obesity epidemic, dubbed “globesity” by the World Health Organisation, is a pressing public health issue. The aetiology of obesity is multifactorial incorporating both genetic and environmental factors. Recently, epidemiological studies have observed an association between microbes and obesity. Obesity-promoting microbiome and resultant gut barrier disintegration have been implicated as key factors facilitating metabolic endotoxaemia. This is an influx of bacterial endotoxins into the systemic circulation, believed to underpin obesity pathogenesis. Adipocyte dysfunction and subsequent adipokine secretion characterised by low grade inflammation, were conventionally attributed to persistent hyperlipidaemia. They were thought of as pivotal in perpetuating obesity. It is now debated whether infection and endotoxaemia are also implicated in initiating and perpetuating low grade inflammation. The fact that obesity has a prevalence of over 600 million and serves as a risk factor for chronic diseases including cardiovascular disease and type 2 diabetes mellitus is testament to the importance of exploring the role of microbes in obesity pathobiology. It is on this basis that Massachusetts General Hospital is sponsoring the Faecal Microbiota Transplant for Obesity and Metabolism clinical trial, to study the impact of microbiome composition on weight. The association of microbes with obesity, namely, adenovirus infection and metabolic endotoxaemia, is reviewed.
Collapse
|
5
|
|
6
|
HAINER V, ZAMRAZILOVÁ H, KUNEŠOVÁ M, BENDLOVÁ B, ALDHOON-HAINEROVÁ I. Obesity and Infection: Reciprocal Causality. Physiol Res 2015; 64:S105-19. [DOI: 10.33549/physiolres.933130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.
Collapse
Affiliation(s)
- V. HAINER
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Bil-Lula I, Sochocka M, Zatońska K, Szuba A, Sawicki G, Woźniak M. Adenovirus type 9 enhances differentiation and decreases cytokine release from preadipocytes. J Med Virol 2014; 87:230-9. [DOI: 10.1002/jmv.24009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
| | - Marta Sochocka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Science; Wroclaw Poland
| | - Katarzyna Zatońska
- Department of Social Medicine; Wroclaw Medical University; Wroclaw Poland
| | - Andrzej Szuba
- Department of Clinical Nursing; Wroclaw Medical University; Wroclaw Poland
| | - Grzegorz Sawicki
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| | - Mieczysław Woźniak
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| |
Collapse
|
8
|
Aetiological factors behind adipose tissue inflammation: an unexplored research area. Public Health Nutr 2012; 16:27-35. [PMID: 22464010 DOI: 10.1017/s1368980012000894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways ahead for future research in the field. DESIGN We searched the literature for potential determinants of obesity with inflammation through MEDLINE by applying the MeSH headings 'obesity' and 'inflammation' in combination with specific terms for a series of environmental and genetic factors. RESULTS Numerous articles reported on the association between environmental or genetic factors and respectively obesity and inflammation, whereas only a few studies assessed obesity and inflammation as a combined outcome. Among suggested determinants for obesity with inflammation were Adenovirus-36, the gut microbiota, trans-fatty acids, and the four genes FTO, MC4R, TNF-α and LEPR. CONCLUSIONS We present a limited number of factors potentially contributing to the development of obesity with inflammation, while concluding that overall the area is indeed sparsely investigated. We present ideas for future studies that can identify relevant aetiological factors. This identification is essential for targeted prevention of obesity with inflammation and the clinical consequences thereof.
Collapse
|
9
|
Dhurandhar NV. A framework for identification of infections that contribute to human obesity. THE LANCET. INFECTIOUS DISEASES 2012; 11:963-9. [PMID: 22115071 DOI: 10.1016/s1473-3099(11)70274-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
WHO has declared obesity to be a global epidemic. Obesity management strategies mainly target behavioural components of the disorder, but are only marginally effective. A comprehensive understanding of the causative factors of obesity might provide more effective management approaches. Several microbes are causatively and correlatively linked with obesity in animals and human beings. If infections contribute to human obesity, then entirely different prevention and treatment strategies and public health policies could be needed to address this subtype of the disorder. Ethical reasons preclude experimental infection of human beings with candidate microbes to unequivocally determine their contribution to obesity. As an alternative, the available information about the adipogenic human adenovirus Ad36 has been used to create a template that can be used to examine comprehensively the contributions of specific candidate microbes to human obesity. Clinicians should be aware of infectobesity (obesity of infectious origin), and its potential importance in effective obesity management.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Infection and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
10
|
Abstract
Diet and sedentary lifestyle, interacting with "thrifty" genes, are widely accepted as the principal cause of the current global obesity epidemic. However, a number of alternative etiologies for obesity have been proposed, including "drifty" genes, viruses, bacteria, environmental toxins, social network effects, maternal imprinting, sleep deprivation, and others. These Grand Rounds reviews the background of some of these unconventional ideas and evidence for or against their roles in the obesity epidemic.
Collapse
|
11
|
Na HN, Nam JH. Infectobesity: a New Area for Microbiological and Virological Research. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.2.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ha-Na Na
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| |
Collapse
|
12
|
Inflammation in neuroviral diseases. J Neural Transm (Vienna) 2010; 117:899-906. [PMID: 20390431 DOI: 10.1007/s00702-010-0402-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
During any viral infection of the central nervous system (CNS), the extent and nature of neural cell alterations are dictated by the localization of virus replication and, possibly, persistence. However, one additional source of CNS damage comes from the immune response that develops following CNS viral infection. Indeed, despite of its major role in controlling virus spread in the infected CNS, the immune system is equipped with numerous molecular effectors shared with the nervous system that may greatly alter the homeostasis and function of neural cells. Proinflammatory cytokines and metalloproteases belong to this inflammatory cascade. Besides neurovirulence, the crosstalk engaged between neural and immune cells is a major factor determining the outcome of neuroviral infections.
Collapse
|
13
|
Wang CM, Kaltenboeck B. Exacerbation of chronic inflammatory diseases by infectious agents: Fact or fiction? World J Diabetes 2010; 1:27-35. [PMID: 21537425 PMCID: PMC3083881 DOI: 10.4239/wjd.v1.i2.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/27/2010] [Accepted: 04/03/2010] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammatory diseases caused by obesity represent critical public health concerns worldwide. In these diseases such as metabolic syndrome, diabetes and atherosclerosis, adipose tissue acts as an endocrine organ that releases large quantities of inflammatory mediators into circulation. Besides classically recognized effectors on the development of obesity and resultant conditions, infection has attracted attention as an enhancer of chronic inflammatory diseases. Infectious diseases have long been associated with obesity, metabolic syndrome, diabetes and atherosclerosis. However, the infectious hypothesis for chronic inflammatory diseases has been challenged by inconclusive clinical trials. Nevertheless, the large body of evidence accumulated over decades on the association of infectious diseases with obesity, diabetes and cardiovascular disease should not be disregarded. Instead, re-formulation of hypotheses of the mechanisms by which microbes affect obesity-associated diseases may be required with an emphasis on the early events in the progression of such diseases and the multifactorial nature of pathogen-host interactions. This review focuses on pathogens that directly promote obesity and on pathogens that cause chronic infections and thereby enhance metabolic diseases in obese patients. A new perspective on the interaction between infections and obesity-related diseases may improve management of chronic inflammatory diseases that rank high among global threats to human health.
Collapse
Affiliation(s)
- Cheng-Ming Wang
- Cheng-Ming Wang, Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St. Kitts, West Indies
| | | |
Collapse
|
14
|
Abstract
The aetiology of obesity is multifactorial. An understanding of the contributions of various causal factors is essential for the proper management of obesity. Although it is primarily thought of as a condition brought on by lifestyle choices, recent evidence shows there is a link between obesity and viral infections. Numerous animal models have documented an increased body weight and a number of physiologic changes, including increased insulin sensitivity, increased glucose uptake and decreased leptin secretion that contribute to an increase in body fat in adenovirus-36 infection. Other viral agents associated with increasing obesity in animals included canine distemper virus, rous-associated virus 7, scrapie, Borna disease virus, SMAM-1 and other adenoviruses. This review attempted to determine if viral infection is a possible cause of obesity. Also, this paper discussed mechanisms by which viruses might produce obesity. Based on the evidence presented in this paper, it can be concluded that a link between obesity and viral infections cannot be ruled out. Further epidemiologic studies are needed to establish a causal link between the two, and determine if these results can be used in future management and prevention of obesity.
Collapse
Affiliation(s)
- A K Mitra
- Department of Community Health Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA.
| | | |
Collapse
|
15
|
van Ginneken V, Sitnyakowsky L, Jeffery JE. "Infectobesity: viral infections (especially with human adenovirus-36: Ad-36) may be a cause of obesity. Med Hypotheses 2009; 72:383-8. [PMID: 19138827 DOI: 10.1016/j.mehy.2008.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 01/01/2023]
Abstract
In recent years viral infections have been recognized as possible cause of obesity, alongside the traditionally recognized causes (genetic inheritance, and behaviour/environmental causes such as diet exercise, cultural practices and stress). Although four viruses have been reported to induce obesity (infectoobesity) in animal models (chickens, mice, sheep, goat, dogs, rats and hamsters), until recently the viral etiology of human obesity has not received sufficient attention, possibly because the four viruses are not able to infect humans. In a series of papers over the last ten years, however, the group of Prof. Dhurandhar (Pennington Biomedical Research Center, LA, USA) demonstrated that a human adenovirus, adenovirus-36 (Ad-36), is capable of inducing adiposity in experimentally infected chickens, mice and non-human primates (marmosets). Ad-36 is known to increase the replication, differentiation, lipid accumulation and insulin sensitivity in fat cells and reduces those cells' leptin secretion and expression. It also affects human primary preadipocytes. In rats increased adiposity was observed due to Ad-36 infection. Recent studies have shown that, in the USA, antibodies to Ad-36 were more prevalent in obese subjects (30%) than in non-obese subjects (11%). We postulate that Ad-36 may be a contributing factor to the worldwide rising problem of obesity. We suggest the extension of comparative virological studies between North America and Europe, and studies between discordant twins (both dizygous and monozygous).
Collapse
Affiliation(s)
- Vincent van Ginneken
- Plant Research International, Agrosystems Research, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | | | |
Collapse
|
16
|
Vuaillat C, Varrin-Doyer M, Bernard A, Sagardoy I, Cavagna S, Chounlamountri I, Lafon M, Giraudon P. High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol 2007; 193:38-51. [PMID: 18006081 DOI: 10.1016/j.jneuroim.2007.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/10/2007] [Accepted: 09/28/2007] [Indexed: 12/25/2022]
Abstract
Collapsin Response Mediator Protein (CRMP)-2 is involved in T-cell polarization and migration. To address the role of CRMP2 in neuroinflammation, we analyzed its involvement in lymphocyte recruitment to the central nervous system in mouse infected with neurotropic and non-neurotropic virus strains (RABV, CDV). A sub-population of early-activated CD69+CD3+ T lymphocytes highly expressing CRMP2 (CRMP2hi) peaked in the blood, lymph nodes and brain of mice infected with neurotropic viruses, and correlated with severity of disease. They displayed high migratory properties reduced by CRMP2 blocking antibody. These data point out the potential use of CRMP2 as a peripheral indicator of neuroinflammation.
Collapse
|
17
|
Abstract
Obesity is a serious chronic disease that has numerous etiologies. The prevalence of obesity has increased dramatically since about 1980 in the United States and worldwide in both developed and developing countries. This rapid spread is compatible with an infectious origin. This review discusses the 5 animal viruses and 3 human viruses that have been shown to cause obesity and examines the evidence to date for virus-induced obesity. The obesogenic animal viruses include canine distemper virus, Rous-associated virus type 7, Borna disease virus, scrapie agent, and SMAM-1. The first 4 viruses attack the central nervous system to produce obesity. SMAM-1, an avian adenovirus from India, acts directly on adipocytes and is the only animal virus that is associated with human obesity. The 3 human adenoviruses, adenovirus (Ad) 36, Ad-37, and Ad-5, that are associated with obesity also affect adipocytes directly. These viruses stimulate enzymes and transcription factors that cause accumulation of triglycerides and differentiation of preadipocytes into mature adipocytes. Ad-5 and Ad-37 have been shown to cause obesity in animals. Ad-36 has been studied the most and is the only human adenovirus to date that has been linked with human obesity. Ad-36 causes obesity in chickens, mice, rats, and monkeys and was present in 30% of obese humans and 11% of nonobese humans. In twins discordant for infection with Ad-36, the infected twins were heavier and fatter than their cotwins. The growing body of evidence demonstrating that viruses produce human obesity supports the concept that at least some of the worldwide epidemic of obesity in the past 25 years is due to viral infections.
Collapse
Affiliation(s)
- Richard L Atkinson
- Obetech Obesity Research Center, 800 E Leigh St, Suite 50, Richmond, VA 23219, USA.
| |
Collapse
|
18
|
Abstract
OBJECTIVE Obesity is a serious public health problem associated with increased morbidity and mortality. Although the causes for obesity are unclear, it seems that environmental, genetic, neural and endocrine factors contribute to its development. However, the rapid global spread of obesity resembles epidemiologically the spread of an infectious disease. Thus far, little consideration has been given to the possibility that the epidemic of obesity could be due to an infectious agent. Seven viruses and a scrapie agent have been implicated in obesity. DESIGN This review evaluates the infectious pathogens and the evidence that these viruses are associated with obesity and concludes that a strong evidence base is emerging that associates certain viruses with obesity. CONCLUSION More work is however required to elucidate the mechanisms of weight gain after viral infection. In the mean time, discounting viruses as a contributing factor to obesity would deprive us of a potential new avenue of investigating and treating the ever increasing epidemic of obesity.
Collapse
Affiliation(s)
- A Vasilakopoulou
- Department of Metabolic Medicine, Hammersmith Hospital, Imperial College, London, UK
| | | |
Collapse
|
19
|
Brunner JM, Plattet P, Majcherczyk P, Zurbriggen A, Wittek R, Hirling H. Canine distemper virus infection of primary hippocampal cells induces increase in extracellular glutamate and neurodegeneration. J Neurochem 2007; 103:1184-95. [PMID: 17680994 DOI: 10.1111/j.1471-4159.2007.04819.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Pasarica M, Dhurandhar NV. Infectobesity: Obesity of Infectious Origin. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 52:61-102. [PMID: 17425944 DOI: 10.1016/s1043-4526(06)52002-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rapid increase in obesity and the associated health care costs have prompted a search for better approaches for its prevention and management. Such efforts may be facilitated by better understanding the etiology of obesity. Of the several etiological factors, infection, an unusual causative factor, has recently started receiving greater attention. In the last two decades, 10 adipogenic pathogens were reported, including human and nonhuman viruses, scrapie agents, bacteria, and gut microflora. Some of these pathogens are associated with human obesity, but their causative role in human obesity has not been established. This chapter presents information about the natural hosts, signs and symptoms, and pathogenesis of the adipogenic microorganisms. If relevant to humans, "Infectobesity" would be a relatively novel, yet extremely significant concept. A new perspective about the infectious etiology of obesity may stimulate additional research to assess the contribution of hitherto unknown pathogens to human obesity and possibly to prevent or treat obesity of infectious origins.
Collapse
Affiliation(s)
- Magdalena Pasarica
- Department of Infections and Obesity, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
21
|
Vangipuram SD, Yu M, Tian J, Stanhope KL, Pasarica M, Havel PJ, Heydari AR, Dhurandhar NV. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes (Lond) 2006; 31:87-96. [PMID: 16703005 DOI: 10.1038/sj.ijo.0803366] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Human adenovirus Ad-36 causes adiposity in animal models and enhances differentiation and lipid accumulation in human and 3T3-L1 preadipocytes, which may, in part, explain the adipogenic effect of Ad-36. We determined the consequences of Ad-36 infection on leptin and glucose metabolism in fat cells. DESIGN 3T3-L1 preadipocytes were used to determine the effect of infection by human adenoviruses Ad-36, Ad-2, Ad-9 and Ad-37 on leptin secretion and lipid accumulation. Rat primary adipocytes were used to determine the effect of Ad-36 infection on leptin secretion and glucose uptake in vitro. Furthermore, the effect of Ad-36 on expressions of leptin and selected genes of de novo lipogenesis pathway of visceral adipose tissue were compared ex vivo, between Ad-36 infected and uninfected control rats. RESULTS Ad-36 suppressed the expression of leptin mRNA in 3T3-L1 cells by approximately 58 and 52% on days 3 and 5 post-infection, respectively. Leptin release normalized to cellular lipid content was 51% lower (P<0.002) in the Ad-36 infected 3T3-L1 cells. Lipid accumulation was significantly greater and leptin secretion was lower for the 3T3-L1 cells infected with other human adenoviruses Ad-9, Ad-36, or Ad-37. Whereas, human adenovirus Ad-2 did not influence cellular lipid accumulation or the leptin release. In rat primary adipocytes, Ad-36 reduced leptin release by about 40% in presence of 0.48 (P<0.01) or 1.6 nM insulin (P<0.05) and increased glucose uptake by 93% (P<0.001) or 18% (P<0.05) in presence of 0 or 0.48 nM insulin, respectively. Next, the adipose tissue of Ad-36 infected rats showed two to fivefold lower leptin mRNA expression, and 1.6- to 21-fold greater expressions for acetyl Co-A carboxylase-1 and 1.2- to 6.3-fold greater expressions for fatty acid synthase, key genes of de novo lipogenesis, compared to the uninfected weight and adiposity matched controls. CONCLUSION The in vitro and ex vivo studies show that Ad-36 modulates adipocyte differentiation, leptin production and glucose metabolism. Whether such a modulation contributes to enhanced adipogenesis and consequent adiposity in Ad-36 infected animals or humans needs to be determined.
Collapse
Affiliation(s)
- S D Vangipuram
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rathod M, Vangipuram SD, Krishnan B, Heydari AR, Holland TC, Dhurandhar NV. Viral mRNA expression but not DNA replication is required for lipogenic effect of human adenovirus Ad-36 in preadipocytes. Int J Obes (Lond) 2006; 31:78-86. [PMID: 16652125 DOI: 10.1038/sj.ijo.0803358] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Human adenovirus Ad-36 causes adiposity in animal models and shows association with human obesity. Ad-36 enhances differentiation of 3T3-L1 and human preadipocytes, without cell lysis, a characteristic that may contribute to its adipogenic effect observed in vivo. Ad-2, another human adenovirus is nonadipogenic in animals and in 3T3-L1 cells and shows no correlation with human obesity. The objective of this study was to determine the adipogenic roles of viral mRNA and DNA, which may explain the differential effects of Ad-36 and Ad-2 on preadipocyte differentiation. METHODS This study determined the duration of selected Ad-36 gene expression in 3T3-L1 cells, and the effect on preadipocytes differentiation, when Ad-36 gene expression was attenuated by Cidofovir, an antiadenoviral agent. RESULTS The results showed that Ad-36, but not Ad-2, expresses viral mRNA. Ad-36 gene expression peaked at 2-4 days postinoculation and very low levels persisted after day 7. Despite the viral mRNA expression, Ad-36 infection of 3T3-L1 cells was abortive as indicated by a progressive decrease in viral DNA quantity. Attenuation of Ad-36 mRNA expression by Cidofovir reduced the adipogenic effect of the virus. CONCLUSION In conclusion, viral mRNA expression, although transient, is a prerequisite for enhancing differentiation of preadipocytes by Ad-36. Viral DNA replication was not required for the effect. This is the first evidence for the role of gene expression of an adipogenic human virus in enhancing preadipocytes differentiation. This study provides the basis for further understanding novel regulatory modulators of preadipocytes differentiation.
Collapse
Affiliation(s)
- M Rathod
- Department of Nutrition and Food Science, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sallie R. Replicative homeostasis II: influence of polymerase fidelity on RNA virus quasispecies biology: implications for immune recognition, viral autoimmunity and other "virus receptor" diseases. Virol J 2005; 2:70. [PMID: 16115320 PMCID: PMC1260030 DOI: 10.1186/1743-422x-2-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 08/22/2005] [Indexed: 01/12/2023] Open
Abstract
Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol) generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD)" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.
Collapse
|
24
|
Griffond B, Verlaeten O, Belin MF, Risold PY, Bernard A. Specific alteration of the expression of selected hypothalamic neuropeptides during acute and late mouse brain infection using a morbillivirus: relevance to the late-onset obesity? Brain Res 2004; 1022:173-81. [PMID: 15353227 DOI: 10.1016/j.brainres.2003.10.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2003] [Indexed: 10/26/2022]
Abstract
Neurotropic viruses are involved in pathologies of the central nervous system, triggering transient or irreversible disorders, such as neurological diseases or homeostasis imbalance. In experimental animals, viruses have been shown to cause obesity, a complex disease depending on multiple factors, including genetic susceptibility and environmental components. Using a mouse model of virally induced obesity following brain infection by the Canine Distemper Virus (CDV), a morbillivirus closely related to the human measles virus, we investigated the modulation of expression of several hypothalamic neuropeptides known to intervene in the regulation of body weight and energy expenditure, both during the acute and late stages of infection. During the acute stage, while viral replication occurs, we found a dramatic decrease of expressions of neuropeptides, in particular neuropeptide Y, melanin-concentrating hormone (MCH), hypocretin, vasopressin and tachykinins, the magnitude of which seemed to be linked to the viral burden and the individual susceptibility. The effect of the virus, however, varied with the hypothalamic nucleus and neuropeptide involved, suggesting that certain circuits were affected while others remained intact. During the late stage of infection, marked recovery to the initial hypothalamic levels of peptide expression was seen in a number of lean animals, suggesting recovery of homeostasis equilibrium. Interestingly, some neuropeptidergic systems remained disturbed in mice exhibiting obese phenotype, arguing for their involvement in triggering/maintaining obesity. Even though our data could not fully explain the viral-induced obesity, they may be helpful in understanding the molecular events associated with obesity and in investigating therapeutic alternatives.
Collapse
Affiliation(s)
- Bernadette Griffond
- Laboratoire d'Histologie, Faculté de Médecine, Place Saint-Jacques, 25030 Besançon Cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- M R Weed
- Department of Psychiatry, Johns Hopkins Medical School, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
26
|
Lyons MJ, Nagashima K, Zabriskie JB. Animal models of postinfectious obesity: hypothesis and review. J Neurovirol 2002; 8:1-5. [PMID: 11847586 DOI: 10.1080/135502802317247758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M J Lyons
- Laboratory of Clinical Microbiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|
27
|
Abstract
In the U.S., the prevalence of obesity increased by 30% from 1980 to 1990, and this increase appears to be continuing. Although obesity has multiple etiologies, an overlooked possibility is obesity of an infectious origin. Six pathogens are reported to cause obesity in animals. Canine distemper virus was the first virus reported to cause obesity in mice, followed by Rous-associated virus-7, an avian retrovirus, which has been shown to cause stunting, obesity and hyperlipidemia in chickens. Next, the obesity-promoting effect of Borna disease virus was demonstrated in rats. Scrapie agents were reported to induce obesity in mice and hamsters. The final two reports were of SMAM-1, an avian adenovirus, and Ad-36, a human adenovirus that caused obesity in animals. Additionally, an association with human obesity is the unique feature of SMAM-1 and Ad-36. Although the exact mechanism of pathogen-induced obesity is unclear, infection attributable to certain organisms should be included in the long list of potential etiological factors for obesity. In addition, the involvement of some pathogens in etiology of obesity suggests the possibility of a similar role for additional pathogens.
Collapse
Affiliation(s)
- N V Dhurandhar
- The Department of Nutrition and Food Science and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
28
|
Khuth ST, Akaoka H, Pagenstecher A, Verlaeten O, Belin MF, Giraudon P, Bernard A. Morbillivirus infection of the mouse central nervous system induces region-specific upregulation of MMPs and TIMPs correlated to inflammatory cytokine expression. J Virol 2001; 75:8268-82. [PMID: 11483772 PMCID: PMC115071 DOI: 10.1128/jvi.75.17.8268-8282.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection of the central nervous system (CNS) can result in perturbation of cell-to-cell communication involving the extracellular matrix (ECM). ECM integrity is maintained by a dynamic balance between the synthesis and proteolysis of its components, mainly as a result of the action of matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). An MMP/TIMP imbalance may be critical in triggering neurological disorders, in particular in virally induced neural disorders. In the present study, a mouse model of brain infection using a neurotropic strain of canine distemper virus (CDV) was used to study the effect of CNS infection on the MMP/TIMP balance and cytokine expression. CDV replicates almost exclusively in neurons and has a unique pattern of expression (cortex, hypothalamus, monoaminergic nuclei, hippocampus, and spinal cord). Here we show that although several mouse brain structures were infected, they exhibited a differential pattern in terms of MMP, TIMP, and cytokine expression, exemplified by (i) a large increase in pro-MMP9 levels, in particular in the hippocampus, which occurred mainly in neurons and was associated with in situ gelatinolytic activity, (ii) specific and significant upregulation of MT1-MMP mRNA expression in the cortex and hypothalamus, (iii) an MMP/TIMP imbalance, suggested by the upregulation of TIMP-1 mRNA in the cortex, hippocampus, and hypothalamus and of TIMP-3 mRNA in the cortex, and (iv) a concomitant region-specific large increase in expression of Th1-like cytokines, such as gamma interferon, tumor necrosis factor alpha, and interleukin 6 (IL-6), contrasting with weaker induction of Th2-like cytokines, such as IL-4 and IL-10. These data indicate that an MMP/TIMP imbalance in specific brain structures, which is tightly associated with a local inflammatory process as shown by the presence of immune infiltrating cells, differentially impairs CNS integrity and may contribute to the multiplicity of late neurological disorders observed in this viral mouse model.
Collapse
Affiliation(s)
- S T Khuth
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine RTH Laënnec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Verlaeten O, Griffond B, Khuth ST, Giraudon P, Akaoka H, Belin MF, Fellmann D, Bernard A. Down regulation of melanin concentrating hormone in virally induced obesity. Mol Cell Endocrinol 2001; 181:207-19. [PMID: 11476954 DOI: 10.1016/s0303-7207(01)00488-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Obesity is a complex disease involving genetic components and environmental factors and probably associated with the dysregulation of central homeostasis normally maintained by the hypothalamic neuroendocrine/neurotransmitter network. We previously reported that canine distemper virus (CDV), which is closely related to human measles virus, can target hypothalamic nuclei, and lead to obesity syndrome in the late stages of infection. Here, using differential display PCR, we demonstrate specific down-regulation of melanin-concentrating hormone precursor mRNA (ppMCH) in infected-obese mice. Although ppMCH was down-regulated in all infected mice during the acute stage of infection, this was only seen during the late stage of infection in infected-obese mice. In addition, ppMCH mRNA and protein expression in the lateral hypothalamus was decreased in the absence of neuronal death. These results show the importance of ppMCH in the establishment and maintenance of obesity and the involvement of a virus as an environmental factor.
Collapse
Affiliation(s)
- O Verlaeten
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine RTH Laennec, rue Guillaume Paradin, 69372 Cedex 08, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|