1
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Luo Y, Frederick A, Martin JM, Scaria A, Cheng SH, Armentano D, Wadsworth SC, Vincent KA. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines. Hum Gene Ther Methods 2017; 28:124-138. [PMID: 28504553 DOI: 10.1089/hgtb.2016.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.
Collapse
Affiliation(s)
- Yuxia Luo
- 1 Sanofi Genzyme , Framingham, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Schmidt M, Gil-Farina I, Büning H. Reply to "Wild-type AAV Insertions in Hepatocellular Carcinoma Do Not Inform Debate Over Genotoxicity Risk of Vectorized AAV". Mol Ther 2016; 24:661-2. [PMID: 27081718 DOI: 10.1038/mt.2016.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Irene Gil-Farina
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Presence of a trs-Like Motif Promotes Rep-Mediated Wild-Type Adeno-Associated Virus Type 2 Integration. J Virol 2015; 89:7428-32. [PMID: 25972561 DOI: 10.1128/jvi.00426-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
High-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration.
Collapse
|
5
|
Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 2014; 88:11253-63. [PMID: 25031342 DOI: 10.1128/jvi.01356-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Collapse
|
6
|
High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration. J Virol 2013; 87:8559-68. [PMID: 23720718 DOI: 10.1128/jvi.01135-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Viral integrations are important in human biology, yet genome-wide integration profiles have not been determined for many viruses. Adeno-associated virus (AAV) infects most of the human population and is a prevalent gene therapy vector. AAV integrates into the human genome with preference for a single locus, termed AAVS1. However, the genome-wide integration of AAV has not been defined, and the principles underlying this recombination remain unclear. Using a novel high-throughput approach, integrant capture sequencing, nearly 12 million AAV junctions were recovered from a human cell line, providing five orders of magnitude more data than were previously available. Forty-five percent of integrations occurred near AAVS1, and several thousand novel integration hotspots were identified computationally. Most of these occurred in genes, with dozens of hotspots targeting known oncogenes. Viral replication protein binding sites (RBS) and transcriptional activity were major factors favoring integration. In a first for eukaryotic viruses, the data reveal a unique asymmetric integration profile with distinctive directional orientation of viral genomes. These studies provide a new understanding of AAV integration biology through the use of unbiased high-throughput data acquisition and bioinformatics.
Collapse
|
7
|
Targeted integration of a rAAV vector into the AAVS1 region. Virology 2012; 433:356-66. [PMID: 22981435 DOI: 10.1016/j.virol.2012.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) has been reported to integrate in a site-specific manner into chromosome 19 (a site designated AAVS1), a phenomenon that could be exploited for ex vivo targeted gene therapy. Recent studies employing LM-PCR to determine AAV integration loci; however, have, contrary to previous results with less reliable methods, concluded that the proclivity for AAV integration at AAVS1 is minimal. We tested this conclusion employing LM-PCR protocols designed to avoid bias. Hep G2 cells were infected with rAAV2-GFP and coinfected with wt AAV2 to supply Rep in trans. Sorted cells were cloned and cultured. In 26 clones that retained fluorescence, DNA was extracted and AAV-genomic junctions amplified by two LM-PCR methods. Sequencing was performed without bacterial cloning. Of these 26 clones it was possible to assign a genomic integration site to 14, of which 9 were in the AAVS1 region. In three additional clones, rAAV integration junction were to an integrated wt AAV genome while two were to an rAAV genome. We also show that integration of the AAV-GFP genome can be achieved without cointegration of the AAV genome. Based on the pattern of integrants we propose, for potential use in ex vivo targeted gene therapy, a simplified PCR method to identify clones that have rAAV genomes integrated into AAVS1.
Collapse
|
8
|
van Rensburg R, Beyer I, Yao XY, Wang H, Denisenko O, Li ZY, Russell DW, Miller DG, Gregory P, Holmes M, Bomsztyk K, Lieber A. Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 2012; 20:201-14. [PMID: 22436965 PMCID: PMC3661409 DOI: 10.1038/gt.2012.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Achieving transgene integration into preselected genomic sites is currently one of the central tasks in stem cell gene therapy. A strategy to mediate such targeted integration involves site specific endonucleases. Two genomic sites within the MBS85 and CCR5 genes [AAVS1 and CCR5 zinc finger nuclease (CCR5-ZFN) site, respectively] have recently been suggested as potential target regions for integration as their disruption has no functional consequence. We hypothesized that efficient transgene integration maybe affected by DNA accessibility of endonucleases and therefore studied the transcriptional and chromatin status of the AAVS1 and CCR5 sites in eight human induced pluripotent stem (iPS) cell lines and pooled CD34+ hematopoietic stem cells. Matrixchromatin immunoprecipitation (ChIP) assays demonstrated that the CCR5 site and surrounding regions possessed a predominantly closed chromatin configuration consistent with its transcriptionally inactivity in these cell types. In contrast, the AAVS1 site was located within a transcriptionally active region and exhibited an open chromatin configuration in both iPS cells and hematopoietic stem cells. To show that the AAVS1 site is readily amendable to genome modification, we expressed Rep78, an AAV2-derived protein with AAVS1-specific endonuclease activity, in iPS cells after adenoviral gene transfer. We showed that Rep78 efficiently associated with the AAVS1 site and triggered genome modifications within this site. On the other hand, binding to and modification of the CCR5-ZFN site by a zinc-finger nuclease was relatively inefficient. Our data suggest a critical influence of chromatin structure on efficacy of site-specific endonucleases used for genome editing.
Collapse
Affiliation(s)
- R van Rensburg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 2010; 6:e1000985. [PMID: 20628575 PMCID: PMC2900306 DOI: 10.1371/journal.ppat.1000985] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 06/03/2010] [Indexed: 01/21/2023] Open
Abstract
Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome. This is the first unbiased genome-wide analysis of wildtype AAV integration combined with a thorough bioinformatic analysis of preferred genomic motifs and patterns in the neighbourhood of the integration sites identified. The preference of Rep-dependent AAV integration near multiple consensus Rep-binding sites was lost in the case of AAV vector integration in the absence of Rep expression. Our findings challenge the commonly accepted notion of site-specific AAV targeting to AAVS1 on chromosome 19q13.42. Although AAVS1 contains a canonical Rep-binding site, numerous additional sites including the newly identified hotspots AAVS2 on chromosome 5p13.3 and AAVS3 on chromosome 3p24.3 harbour functional Rep-binding sites suitable for AAV integration. AAV vectors are quickly moving forward in the clinic and Rep-dependent vector targeting strategies are being actively pursued. Detailed information of AAV wildtype versus recombinant AAV vector integration sites and preferences are needed to evaluate the safety profile of AAV vectors in gene therapy.
Collapse
|
10
|
Abstract
The nonpathogenic human adeno-associated virus type 2 (AAV-2) has adopted a unique mechanism to site-specifically integrate its genome into the human MBS85 gene, which is embedded in AAVS1 on chromosome 19. The fact that AAV has evolved to integrate into this ubiquitously transcribed region and that the chromosomal motifs required for integration are located a few nucleotides upstream of the translation initiation start codon of MBS85 suggests that the transcriptional activity of MBS85 might influence site-specific integration and thus might be involved in the evolution of this mechanism. In order to begin addressing this question, we initiated the characterization of the human MBS85 promoter region and compared its transcriptional activity to that of the AAV-2 p5 promoter. Our results clearly indicate that AAVS1 is defined by a complex transcriptional environment and that the MBS85 promoter shares key regulatory elements with the viral p5 promoter. Furthermore, we provide evidence for bidirectional MBS85 promoter activity and demonstrate that the minimal motifs required for AAV site-specific integration are present in the 5' untranslated region of the gene and play a posttranscriptional role in the regulation of MBS85 expression. These findings should provide a framework to further elucidate the complex interactions between the virus and its cellular host in this unique pathway to latency.
Collapse
|
11
|
Zhang C, Cortez NG, Berns KI. Characterization of a bipartite recombinant adeno-associated viral vector for site-specific integration. Hum Gene Ther 2007; 18:787-97. [PMID: 17760515 DOI: 10.1089/hum.2007.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) is the only virus known to integrate into a specific locus in the human genome. The locus, AAVS1, is on the q arm of chromosome 19 at position 13.4. AAV is currently a popular vector for human gene therapy. However, current vectors do not contain two important elements needed for site-specific integration, that is, the rep gene or the P5 promoter, although they do integrate with low frequency at random locations in the human genome. We have designed a bipartite vector that does insert the transgene into AAVS1. One component, rAAVSVAV2, contains the rep gene, driven by the simian virus 40 early promoter rather than the P5 promoter. Thus, the integration enhancer element (IEE) within P5, which greatly enhances site-specific integration, has been deleted. The other component, rAAVP5UF11, contains the P5 IEE plus the transgene with associated regulatory elements. We have created clones of transduced HeLa cells, most of which appear to have the transgene inserted in AAVS1. We have not detected any clones that have rep inserted anywhere. With the optimal multiplicity of infection and ratio of rAAVSVAV2 and rAAVP5UF11, the transgene integrated specifically at AAVS1 with high efficiency (>60%). Most importantly, the cloned cell lines with the AAVS1 site-specific integrated green fluorescent protein (GFP) were healthy and stably expressed GFP for 35 passages. An AAV vector that would integrate at a specific site with high frequency could offer significant advantage in the transduction of progenitor cells and stem cells ex vivo and engineered cells could be used for human gene therapy. AAV site-specific integration gene therapy could provide a novel approach for diseases that need long-term gene expression.
Collapse
Affiliation(s)
- C Zhang
- Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
12
|
Feng D, Chen J, Yue Y, Zhu H, Xue J, Jia WW. A 16bp Rep Binding Element is Sufficient for Mediating Rep-dependent Integration into AAVS1. J Mol Biol 2006; 358:38-45. [PMID: 16516232 DOI: 10.1016/j.jmb.2006.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/01/2006] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
Adeno-associated virus (AAV) is a non-pathogenic virus and the only known eukaryotic virus capable of targeting human chromosome 19 for integration at a well-characterized AAVS1 site. Its site-specific integration is mediated by Rep68 and Rep78, viral proteins that bind to both the viral genome and AAVS1 site on ch19 through a specific Rep-binding element (RBE) located in both the viral genome and AAVS1. There are three RBEs in the AAV genome: two identical ones in both inverted terminal repeats (ITR) and another one in a recently discovered region termed the P5 integration efficiency element (P5IEE) that encompasses the viral P5 promoter. In order to identify the viral cis-acting sequence essential for Rep-mediated integration, we tested a series of constructs containing various lengths of P5IEE and compared the two RBEs from ITR (RBE(itr)) and P5IEE (RBE(p5)) in terms of their efficiency in Rep-dependent integration. Methods employed included a colony-forming assay, a PCR-based assay and Southern blotting analysis. We found that 16bp of the RBE cis-element was sufficient for mediating Rep-dependent site-specific integration. Furthermore, RBE(itr) was both more effective and specific than the RBE(p5) in Rep-dependent integration at the AAVS1 site. These findings added new information on the mechanism of Rep-dependent AAV genome insertion at the AAVS1 site and may be helpful in developing new high efficiency vectors for site-specific transgene integration.
Collapse
Affiliation(s)
- DengMin Feng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
13
|
François A, Guilbaud M, Awedikian R, Chadeuf G, Moullier P, Salvetti A. The cellular TATA binding protein is required for rep-dependent replication of a minimal adeno-associated virus type 2 p5 element. J Virol 2005; 79:11082-94. [PMID: 16103159 PMCID: PMC1193596 DOI: 10.1128/jvi.79.17.11082-11094.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The p5 promoter region of adeno-associated virus type 2 (AAV-2) is a multifunctional element involved in rep gene expression, Rep-dependent replication, and site-specific integration. We initially characterized a 350-bp p5 region by its ability to behave like a cis-acting replication element in the presence of Rep proteins and adenoviral factors. The objective of this study was to define the minimal elements within the p5 region required for Rep-dependent replication. Assays performed in transfected cells (in vivo) indicated that the minimal p5 element was composed by a 55-bp sequence (nucleotides 250 to 304 of wild-type AAV-2) containing the TATA box, the Rep binding site, the terminal resolution site present at the transcription initiation site (trs(+1)), and a downstream 17-bp region that could potentially form a hairpin structure localizing the trs(+1) at the top of the loop. Interestingly, the TATA box was absolutely required for in vivo but dispensable for in vitro, i.e., cell-free, replication. We also demonstrated that Rep binding and nicking at the trs(+1) was enhanced in the presence of the cellular TATA binding protein, and that overexpression of this cellular factor increased in vivo replication of the minimal p5 element. Together, these studies identified the minimal replication origin present within the AAV-2 p5 promoter region and demonstrated for the first time the involvement of the TATA box, in cis, and of the TATA binding protein, in trans, for Rep-dependent replication of this viral element.
Collapse
|
14
|
Llosa M, de la Cruz F. Bacterial conjugation: a potential tool for genomic engineering. Res Microbiol 2005; 156:1-6. [PMID: 15636742 DOI: 10.1016/j.resmic.2004.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 12/29/2022]
Abstract
Bacterial conjugation is a mechanism for horizontal DNA transfer with potential for universal DNA delivery. The conjugal machinery can be separated into three functional modules: the relaxosome, the coupling protein, and a type IV protein secretion system. Module interchangeability among different conjugative systems opens up the possibility of "a la carte" engineering of DNA delivery into virtually any cell type.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain.
| | | |
Collapse
|
15
|
Gonçalves MAFV. Adeno-associated virus: from defective virus to effective vector. Virol J 2005; 2:43. [PMID: 15877812 PMCID: PMC1131931 DOI: 10.1186/1743-422x-2-43] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/06/2005] [Indexed: 11/10/2022] Open
Abstract
The initial discovery of adeno-associated virus (AAV) mixed with adenovirus particles was not a fortuitous one but rather an expression of AAV biology. Indeed, as it came to be known, in addition to the unavoidable host cell, AAV typically needs a so-called helper virus such as adenovirus to replicate. Since the AAV life cycle revolves around another unrelated virus it was dubbed a satellite virus. However, the structural simplicity plus the defective and non-pathogenic character of this satellite virus caused recombinant forms to acquire centre-stage prominence in the current constellation of vectors for human gene therapy. In the present review, issues related to the development of recombinant AAV (rAAV) vectors, from the general principle to production methods, tropism modifications and other emerging technologies are discussed. In addition, the accumulating knowledge regarding the mechanisms of rAAV genome transduction and persistence is reviewed. The topics on rAAV vectorology are supplemented with information on the parental virus biology with an emphasis on aspects that directly impact on vector design and performance such as genome replication, genetic structure, and host cell entry.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
16
|
Jang MY, Yarborough OH, Conyers GB, McPhie P, Owens RA. Stable secondary structure near the nicking site for adeno-associated virus type 2 Rep proteins on human chromosome 19. J Virol 2005; 79:3544-56. [PMID: 15731249 PMCID: PMC1075745 DOI: 10.1128/jvi.79.6.3544-3556.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus serotype 2 (AAV-2) can preferentially integrate its DNA into a 4-kb region of human chromosome 19, designated AAVS1. The nicking activity of AAV-2's Rep68 or Rep78 proteins is essential for preferential integration. These proteins nick at the viral origin of DNA replication and at a similar site within AAVS1. The current nicking model suggests that the strand containing the nicking site is separated from its complementary strand prior to nicking. In AAV serotypes 1 through 6, the nicking site is flanked by a sequence that is predicted to form a stem-loop with standard Watson-Crick base pairing. The region flanking the nicking site in AAVS1 (5'-GGCGGCGGT/TGGGGCTCG-3' [the slash indicates the nicking site]) lacks extensive potential for Watson-Crick base pairing. We therefore performed an empirical search for a stable secondary structure. By comparing the migration of radiolabeled oligonucleotides containing wild-type or mutated sequences from the AAVS1 nicking site to appropriate standards, on native and denaturing polyacrylamide gels, we have found evidence that this region forms a stable secondary structure. Further confirmation was provided by circular dichroism analyses. We identified six bases that appear to be important in forming this putative secondary structure. Mutation of five of these bases, within the context of a double-stranded nicking substrate, reduces the ability of the substrate to be nicked by Rep78 in vitro. Four of these five bases are outside the previously recognized GTTGG nicking site motif and include parts of the CTC motif that has been demonstrated to be important for integration targeting.
Collapse
Affiliation(s)
- Ming Y Jang
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8, Rm. 310, National Institutes of Health, Department of Health and Human Services, 8 Center Dr. MSC 0840, Bethesda, MD 20892-0840, USA
| | | | | | | | | |
Collapse
|
17
|
Hamilton H, Gomos J, Berns KI, Falck-Pedersen E. Adeno-associated virus site-specific integration and AAVS1 disruption. J Virol 2004; 78:7874-82. [PMID: 15254160 PMCID: PMC446113 DOI: 10.1128/jvi.78.15.7874-7882.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) is a single-stranded DNA virus with a unique biphasic lifestyle consisting of both a productive and a latent phase. Typically, the productive phase requires coinfection with a helper virus, for instance adenovirus, while the latent phase dominates in healthy cells. In the latent state, AAV is found integrated site specifically into the host genome at chromosome 19q13.4 qtr (AAVS1), the only animal virus known to integrate in a defined location. In this study we investigated the latent phase of serotype 2 AAV, focusing on three areas: AAV infection, rescue, and integration efficiency as a function of viral multiplicity of infection (MOI); efficiency of site-specific integration; and disruption of the AAVS1 locus. As expected, increasing the AAV MOI resulted in an increase in the percentage of cells infected, with 80% of cells infected at an MOI of 10. Additional MOI only marginally effected a further increase in percentage of infected cells. In contrast to infection, we found very low levels of integration at MOIs of less than 10. At an MOI of 10, at which 80% of cells are infected, less than 5% of clonal cell lines contained integrated AAV DNA. At an MOI of 100 or greater, however, 35 to 40% of clonal cell lines contained integrated AAV DNA. Integration and the ability to rescue viral genomes were highly correlated. Analysis of integrated AAV indicated that essentially all integrants were AAVS1 site specific. Although maximal integration efficiency approached 40% of clonal cell lines (essentially 50% of infected cells), over 80% of cell lines contained a genomic disruption at the AAVS1 integration locus on chromosome 19 ( approximately 100% of infected cells). Rep expression by itself and in the presence of a plasmid integration substrate was able to mediate this disruption of the AAVS1 site. We further characterized the disruption event and demonstrated that it resulted in amplification of the AAVS1 locus. The data are consistent with a revised model of AAV integration that includes preliminary expansion of a defined region in AAVS1.
Collapse
Affiliation(s)
- Henry Hamilton
- Molecular Biology Program, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- E Lehtonen
- Free University of Brussels, Laboratory of Experimental Neurosurgery, Interdisciplinary Research Institute (IRIBHM), B-1070 Brussels, Belgium
| | | |
Collapse
|
19
|
Li Z, Brister JR, Im DS, Muzyczka N. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication. Virology 2003; 313:364-76. [PMID: 12954205 DOI: 10.1016/s0042-6822(03)00340-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site.
Collapse
Affiliation(s)
- Zengi Li
- Department of Molecular Genetics and Microbiology College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | | |
Collapse
|
20
|
Hüser D, Weger S, Heilbronn R. Packaging of human chromosome 19-specific adeno-associated virus (AAV) integration sites in AAV virions during AAV wild-type and recombinant AAV vector production. J Virol 2003; 77:4881-7. [PMID: 12663794 PMCID: PMC152110 DOI: 10.1128/jvi.77.8.4881-4887.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) establishes latency by site-specific integration into a unique locus on human chromosome 19, called AAVS1. During the development of a sensitive real-time PCR assay for site-specific integration, AAV-AAVS1 junctions were reproducibly detected in highly purified AAV wild-type and recombinant AAV vector stocks. A series of controls documented that the junctions were packaged in AAV capsids and were newly generated during a single round of AAV production. Cloned junctions displayed variable AAV sequences fused to AAVS1. These data suggest that packaged junctions represent footprints of AAV integration during productive infection. Apparently, AAV latency established by site-specific integration and the helper virus-dependent, productive AAV cycle are more closely related than previously thought.
Collapse
Affiliation(s)
- Daniela Hüser
- Department of Virology, Institute of Infectious Diseases, Free University of Berlin, 12203 Berlin, Germany
| | | | | |
Collapse
|
21
|
Huttner NA, Girod A, Schnittger S, Schoch C, Hallek M, Büning H. Analysis of site-specific transgene integration following cotransduction with recombinant adeno-associated virus and a rep encodingplasmid. J Gene Med 2003; 5:120-9. [PMID: 12539150 DOI: 10.1002/jgm.324] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) has many advantages for gene therapeutic applications in comparison with other vector systems. One of the most promising features is the ability of wild-type (wt) AAV to integrate site-specifically into human chromosome 19. However, this feature is lost in rAAV vectors due to the removal of the rep-coding sequences. METHODS HeLa cells were transfected with a rep expression plasmid, infected by rAAV and grown with or without selection pressure. Single cell clones were generated and genomic DNA was analyzed for site-specific integration by Southern blotting analysis and fluorescence in situ hybridization (FISH). RESULTS Transfection of HeLa cells with a rep expression plasmid followed by transduction with a rAAV vector resulted in site-specific integration of the transgene at AAVS1 on human chromosome 19 in 7 of 10 cell clones analyzed. In marked contrast, transduction of cells with rAAV alone did not result in any site-specific integration of the transgene. CONCLUSIONS The high frequency with which the site-specific integration took place in the presence of Rep protein is comparable with the results observed with wtAAV. These results offer opportunities for the development of specifically integrating rAAV vectors.
Collapse
Affiliation(s)
- Nadja A Huttner
- Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Amiss TJ, McCarty DM, Skulimowski A, Samulski RJ. Identification and characterization of an adeno-associated virus integration site in CV-1 cells from the African green monkey. J Virol 2003; 77:1904-15. [PMID: 12525625 PMCID: PMC140930 DOI: 10.1128/jvi.77.3.1904-1915.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 11/04/2002] [Indexed: 01/09/2023] Open
Abstract
Adeno-associated virus (AAV) is a classification given to a group of nonpathogenic, single-stranded DNA viruses known to reside latently in primates. During latency in humans, AAV type 2 (AAV2) preferentially integrates at a site on chromosome 19q13.3ter by targeting a sequence composed of an AAV Rep binding element (RBE), a spacer, and a nicking site. Here, we report the DNA sequence of an African green monkey AAV integration site isolated from CV-1 cells. Overall, it has 98% homology to the analogous human site, including identical spacer and nicking sequences. However, the simian RBE is expanded, having five perfect directly repeated GAGC tetramers. We carried out a number of in vitro and in vivo assays to determine the effect of this expanded RBE sequence on the Rep-RBE interaction and AAV targeted integration. Using electromobility shift assays it was demonstrated that AAV4 Rep68 bound the expanded RBE with a sixfold-greater affinity than the human RBE. To determine the basis for the affinity increase, DNase I protection and methylation interference (MI) assays were performed. Comparison of footprints on both the human and simian RBEs revealed nearly identical protection; however, MI analysis suggested greater interaction with the guanine nucleotides of the expanded RBE, thus providing a biochemical basis for the increased binding activity. In vivo, integration targeted to the simian RBE was demonstrated by PCR analysis of latently infected Cos-7 cells. Interestingly, the frequency of site-specific integration was twofold greater in Cos-7 cells than in HeLa cells. Overall, these experiments establish that the simian RBE, identified in CV-1 cells, functions analogously to the human RBE and provide further evidence for a developing model that proposes individual roles for the RBE and the spacer and nicking site elements.
Collapse
Affiliation(s)
- Terry J Amiss
- Department of Pharmacology. Gene Therapy Center. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
23
|
Hüser D, Heilbronn R. Adeno-associated virus integrates site-specifically into human chromosome 19 in either orientation and with equal kinetics and frequency. J Gen Virol 2003; 84:133-137. [PMID: 12533709 DOI: 10.1099/vir.0.18726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) establishes latency by site-specific integration into a unique locus, AAVS1, on human chromosome 19 (chr19). To study the kinetics and frequency of chr19-specific integration, a rapid, sensitive and quantitative real-time PCR assay specific for AAV inverted terminal repeat (ITR)-chr19 junction sequences was developed. Since the assay only detected right-hand AAV ITR-specific integration events, the development of a complementary left-hand ITR-specific real-time PCR assay is described. The time-course of left-hand ITR-dependent AAV integration at AAVS1 of chr19 was determined in AAV-2-infected HeLa cells. Both the kinetics and frequencies of left-hand ITR-dependent integration were found to be similar to those of the right-hand ITR. In addition, left-hand ITR-specific fusion sequences and chromosomal breakpoints within AAVS1 were variable, yet were the same as those found in right-hand ITR-chr19 junction sequences. Thus, the AAV-2 genome integrates site-specifically into chr19 with similar efficiency in either orientation.
Collapse
Affiliation(s)
- Daniela Hüser
- Department of Virology, Institute of Infectious Diseases, Free University of Berlin, Universitätsklinik Benjamin Franklin, Hindenburgdamm 27, 12203 Berlin, Germany
| | - Regine Heilbronn
- Department of Virology, Institute of Infectious Diseases, Free University of Berlin, Universitätsklinik Benjamin Franklin, Hindenburgdamm 27, 12203 Berlin, Germany
| |
Collapse
|
24
|
Hüser D, Weger S, Heilbronn R. Kinetics and frequency of adeno-associated virus site-specific integration into human chromosome 19 monitored by quantitative real-time PCR. J Virol 2002; 76:7554-9. [PMID: 12097568 PMCID: PMC136374 DOI: 10.1128/jvi.76.15.7554-7559.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) integrates specifically into a site on human chromosome 19 (chr-19) called AAVS1. To study the kinetics and frequency of chr-19-specific integration after AAV infection, we developed a rapid, sensitive, and quantitative real-time PCR assay for AAV inverted terminal repeat-chr-19-specific junctions. Despite the known variability of junction sites, conditions were established that ensured reliable quantification of integration rates within hours after AAV infection. The overall integration frequency was calculated to peak at between 10 and 20% of AAV-infected, unselected HeLa cells. At least 1 in 1,000 infectious AAV-2 particles was found to integrate site specifically up to day 4 postinfection in the absence of selection. Chromosomal breakpoints within AAVS1 agreed with those found in latently infected clonal cell lines and transgenic animals. Use of this quantitative real-time PCR will greatly facilitate the study of the early steps of wild-type and recombinant AAV vector integration.
Collapse
Affiliation(s)
- Daniela Hüser
- Department of Virology, Institute of Infectious Diseases, Free University of Berlin, Berlin, Germany
| | | | | |
Collapse
|
25
|
Young SM, Samulski RJ. Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat. Proc Natl Acad Sci U S A 2001; 98:13525-30. [PMID: 11707592 PMCID: PMC61074 DOI: 10.1073/pnas.241508998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus (AAV) is the only known eukaryotic virus capable of targeted integration in human cells. An AAV Rep binding element (RBE) and terminal resolution site (trs) identical to the viral terminal repeats required for AAV DNA replication are located on chromosome (ch) 19. Both ch-19 RBE and trs elements have been shown to be essential for viral targeting to this locus. To characterize the role of the AAV inverted terminal repeat (ITR) cis-acting sequences in targeted integration an AAV trs mutant incapable of supporting viral replication was tested. Wild-type and mutant substrates were assayed for targeted integration after cotransfection in the presence or absence of Rep. Our results demonstrated that, in the presence of Rep78, both ITR substrates targeted to ch-19 with similar frequency. Molecular characterization of the mutant ITR integrants confirmed the presence of the trs mutation in the majority of samples tested. Complementation analysis confirmed that the mutant targeted viral genomes were unable to rescue and replicate. In addition, Rep78 induced extensive rearrangement and amplification of ch-19 sequences independent of wild-type or mutant targeting substrate. These studies demonstrate that Rep-dependent nicking of the viral cis-acting trs sequence is not a prerequisite for site-specific recombination and suggests AAV targeting is mediated by Rep78/68-dependent replication from the ch-19 origin of replication (ori). These studies have significant impact toward the understanding of AAV site-specific recombination and the development of targeting vectors.
Collapse
Affiliation(s)
- S M Young
- Curriculum in Genetics and Molecular Biology, Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
26
|
Corsini J, Cotmore SF, Tattersall P, Winocour E. The left-end and right-end origins of minute virus of mice DNA differ in their capacity to direct episomal amplification and integration in vivo. Virology 2001; 288:154-63. [PMID: 11543668 DOI: 10.1006/viro.2001.1076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously it was shown that a 53-nucleotide viral replication origin, derived from the left-end (3') telomere of minute virus of mice (MVM) DNA, directed integration of infecting MVM genomes into an Epstein-Barr virus (EBV)-based episome in cell culture. Integration depended upon the presence, in the episome, of a functional origin sequence which could be nicked by NS1, the viral initiator protein. Here we extend our studies to the genomic right-end (5') origin and report that three 131- to 135-nucleotide right-end origin sequences failed to target MVM episomal integration even though the same sequences were functional in NS1-driven DNA replication assays in vitro. Additionally, we observed amplification of episomal DNA in response to MVM infection in cell lines harboring episomes which directed integration, but not in cell lines containing episomes which did not direct integration, including those with inserts of the MVM right-end origin.
Collapse
Affiliation(s)
- J Corsini
- Math and Science Department, Chadron State College, Chadron, Nebraska 69337, USA
| | | | | | | |
Collapse
|
27
|
Wu J, Davis MD, Owens RA. A Rep recognition sequence is necessary but not sufficient for nicking of DNA by adeno-associated virus type-2 Rep proteins. Arch Biochem Biophys 2001; 389:271-7. [PMID: 11339817 DOI: 10.1006/abbi.2001.2348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.
Collapse
Affiliation(s)
- J Wu
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 310, 8 Center Drive, MSC 0840, Bethesda, Maryland 20892-0840, USA
| | | | | |
Collapse
|