1
|
Yang Y, Delcourte L, van Belleghem C, Fonte S, Gerard K, Baconnais S, Callon M, Le Cam E, Fogeron ML, Levrero M, Faivre-Moskalenko C, Böckmann A, Lecoq L. Structure and nucleic acid interactions of the S Δ60 domain of the hepatitis delta virus small antigen. Proc Natl Acad Sci U S A 2025; 122:e2411890122. [PMID: 40324079 DOI: 10.1073/pnas.2411890122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Infection with hepatitis delta virus (HDV) causes the most severe form of viral hepatitis, affecting more than 15 million people worldwide. HDV is a small RNA satellite virus of the hepatitis B virus (HBV) that relies on the HBV envelope for viral particle assembly. The only specific HDV component is the ribonucleoprotein (RNP), which consists of viral RNA (vRNA) associated with the small (S) and large (L) delta antigens (HDAg). While the structure of the HDAg N-terminal assembly domain is known, here we address the structure of the remaining SΔ60 protein using NMR. We show that SΔ60 contains two intrinsically disordered regions separated by a helix-loop-helix motif and that this structure is conserved in the full-length protein. Solution NMR analysis revealed that SΔ60 binds to both full-length and truncated vRNA, highlighting the role of the helical regions in submicromolar affinity interactions. The resulting complex contains approximately 120 SΔ60 proteins per RNA. Our results provide a model for the arginine-rich domains in RNP assembly and RNA interactions. In addition, we show that a cluster of acidic residues within the structured region of SΔ60 is critical for HDV replication, possibly mimicking the nucleosome acidic patch involved in the recruitment of chromatin remodelers. Our work thus provides the molecular basis for understanding the role of the C-terminal RNA-binding domain of S-HDAg in HDV infection.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Loïc Delcourte
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Carolanne van Belleghem
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Simone Fonte
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
| | - Kassandra Gerard
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR CNRS 5672, Lyon 69342, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Massimo Levrero
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
- Department of Hepatology, Hospices Civils de Lyon, Lyon 69004, France
- Faculté de Médecine Lyon Est, University Claude Bernard Lyon 1, Lyon 69003, France
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| |
Collapse
|
2
|
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol 2021; 12:652962. [PMID: 34234753 PMCID: PMC8256844 DOI: 10.3389/fmicb.2021.652962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.
Collapse
Affiliation(s)
- Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Marilou H Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Abstract
While this volume covers many different aspects of hepatitis delta virus (HDV) replication, the focus in this chapter is on studies of the structure and replication of the HDV RNA genome. An evaluation of such studies is not only an integral part of our understanding of HDV infections but it also sheds new light on some important aspects of cell biology, such as the fidelity of RNA transcription by a host RNA polymerase and on various forms of post-transcriptional RNA processing. Representations of the replication of the RNA genome are frequently simplified to a form of rolling-circle model, analogous to what have been described for plant viroids. One theme of this review is that such models, even after some revision, deceptively simplify the complexity of HDV replication and can fail to make clear major questions yet to be solved.
Collapse
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
4
|
Abstract
Intrinsic to the life cycle of hepatitis delta virus (HDV) is the fact that its RNAs undergo different forms of posttranscriptional RNA processing. Transcripts of both the genomic RNA and its exact complement, the antigenomic RNA, undergo ribozyme cleavage and RNA ligation. In addition, antigenomic RNA transcripts can undergo 5' capping, 3' polyadenylation, and even RNA editing by an adenosine deaminase. This study focused on the processing of antigenomic RNA transcripts. Two approaches were used to study the relationship between the events of polyadenylation, ribozyme cleavage, and RNA ligation. The first represented an examination under more controlled conditions of mutations in the poly(A) signal, AAUAAA, which is essential for this processing. We found that when a separate stable source of deltaAg-S, the small delta protein, was provided, the replication ability of the mutated RNA was restored. The second approach involved an examination of the processing in transfected cells of specific Pol II DNA-directed transcripts of HDV antigenomic sequences. The DNA constructs used were such that the RNA transcripts were antigenomic and began at the same 5' site as the mRNA produced during RNA-directed HDV genome replication. A series of such constructs was assembled in order to test the relative abilities of the transcripts to undergo processing by polyadenylation or ribozyme cleavage at sites further 3' on a multimer of HDV sequences. The findings from the two experimental approaches led to significant modifications in the rolling-circle model of HDV genome replication.
Collapse
Affiliation(s)
- Xingcao Nie
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
5
|
Abstract
The endonuclease dicer cleaves RNAs that are 100% double stranded and certain RNAs with extensive but <100% pairing to release approximately 21-nucleotide (nt) fragments. Circular 1,679-nt genomic and antigenomic RNAs of human hepatitis delta virus (HDV) can fold into a rod-like structure with 74% pairing. However, during HDV replication in hepatocytes of human, woodchuck, and mouse origin, no approximately 21-nt RNAs were detected. Likewise, in vitro, purified recombinant dicer gave <0.2% cleavage of unit-length HDV RNAs. Similarly, rod-like RNAs of potato spindle tuber viroid (PSTVd) and avocado sunblotch viroid (ASBVd) were only 0.5% cleaved. Furthermore, when a 66-nt hairpin RNA with 79% pairing, the putative precursor to miR-122, which is an abundant liver micro-RNA, replaced one end of HDV genomic RNA, it was poorly cleaved, both in vivo and in vitro. In contrast, this 66-nt hairpin, in the absence of appended HDV sequences, was >80% cleaved in vitro. Other 66-nt hairpins derived from one end of genomic HDV, PSTVd, or ASBVd RNAs were also cleaved. Apparently, for unit-length RNAs of HDV, PSTVd, and ASBVd, it is the extended structure with <100% base pairing that confers significant resistance to dicer action.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
6
|
O'Malley B, Lazinski D. A hepatitis B surface antigen mutant that lacks the antigenic loop region can self-assemble and interact with the large hepatitis delta antigen. J Virol 2002; 76:10060-3. [PMID: 12208986 PMCID: PMC136526 DOI: 10.1128/jvi.76.19.10060-10063.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel hepatitis B virus surface antigen mutant harboring a deletion of most of the major antigenic loop region was competent for self-assembly and secretion. Although the mutant protein was competent for interaction with and incorporation of free large hepatitis delta antigen, it was partially defective in hepatitis delta virus RNP incorporation.
Collapse
Affiliation(s)
- Brendan O'Malley
- Department of Molecular Biology and Microbiology and the Raymond and Beverly Sackler Research Foundation Laboratory, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
7
|
Moraleda G, Taylor J. Host RNA polymerase requirements for transcription of the human hepatitis delta virus genome. J Virol 2001; 75:10161-9. [PMID: 11581384 PMCID: PMC114590 DOI: 10.1128/jvi.75.21.10161-10169.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Replication of the genome of hepatitis delta virus (HDV) requires RNA-directed RNA synthesis using a host polymerase(s). This manuscript reviews the relevant published evidence. It also provides two new studies, both of which made use of transiently transfected Huh7 cells undergoing HDV RNA-directed RNA synthesis. For the first study, RNA transcription inhibitors were added to the transfected cells for periods of 1 to 2 days, after which assays of the effects on the accumulation of processed unit-length genomic HDV RNA were performed. For the second study, nuclei were isolated at 6 days after transfection, and then in vitro runoff transcription was used to assay the effects of RNA transcription inhibitors. Overall, the data support the interpretation that HDV transcription does not require host polymerase I or III (pol I or III) but at least primarily involves an enzyme resembling pol II.
Collapse
Affiliation(s)
- G Moraleda
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | |
Collapse
|
8
|
Liu YT, Brazas R, Ganem D. Efficient hepatitis delta virus RNA replication in avian cells requires a permissive factor(s) from mammalian cells. J Virol 2001; 75:7489-93. [PMID: 11462021 PMCID: PMC114984 DOI: 10.1128/jvi.75.16.7489-7493.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 05/07/2001] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a highly pathogenic human RNA virus whose genome is structurally related to those of plant viroids. Although its spread from cell to cell requires helper functions supplied by hepatitis B virus (HBV), intracellular HDV RNA replication can proceed in the absence of HBV proteins. As HDV encodes no RNA-dependent RNA polymerase, the identity of the (presumably cellular) enzyme responsible for this reaction remains unknown. Here we show that, in contrast to mammalian cells, avian cells do not support efficient HDV RNA replication and that this defect cannot be rescued by provision of HDV gene products in trans. Contrary to earlier assertions, this defect is not due to enhanced apoptosis triggered in avian cells by HDV. Fusion of avian cells to mammalian cells rescues HDV replication in avian nuclei, indicating that the nonpermissive phenotype of avian cells is not due to the presence of dominantly acting inhibitors of replication. Rather, avian cells lack one or more essential permissive factors present in mammalian cells. These results set the stage for the identification of such factors and also explain the failure of earlier efforts to transmit HDV infection to avian hosts harboring indigenous hepadnaviruses.
Collapse
Affiliation(s)
- Y T Liu
- Howard Hughes Medical Institute and Departments of Microbiology & Immunology and Medicine, University of California Medical Center, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
9
|
Chang J, Sigal LJ, Lerro A, Taylor J. Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol 2001; 75:3469-73. [PMID: 11238873 PMCID: PMC114140 DOI: 10.1128/jvi.75.7.3469-3473.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As early as 5 days after DNA copies of the hepatitis delta virus (HDV) genome or even in vitro-transcribed HDV RNA sequences were injected into the mouse tail vein using the hydrodynamics-based transfection procedure of F. Liu et al. (Gene Ther. 6:1258-1266, 1999), it was possible to detect in the liver by Northern analyses of RNA, immunoblots of protein, and immunostaining of liver sections what were considered typical features of HDV genome replication. This transfection strategy should have valuable applications for in vivo studies of HDV replication and pathogenesis and may also be useful for studies of other hepatotropic viruses.
Collapse
Affiliation(s)
- J Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | |
Collapse
|