1
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
3
|
Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021; 13:pharmaceutics13122015. [PMID: 34959297 PMCID: PMC8707165 DOI: 10.3390/pharmaceutics13122015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid-based therapeutics have demonstrated their efficacy in the treatment of various diseases and vaccine development. Antisense oligonucleotide (ASO) technology exploits a single-strand short oligonucleotide to either cause target RNA degradation or sterically block the binding of cellular factors or machineries to the target RNA. Chemical modification or bioconjugation of ASOs can enhance both its pharmacokinetic and pharmacodynamic performance, and it enables customization for a specific clinical purpose. ASO-based therapies have been used for treatment of genetic disorders, cancer and viral infections. In particular, ASOs can be rapidly developed for newly emerging virus and their reemerging variants. This review discusses ASO modifications and delivery options as well as the design of antiviral ASOs. A better understanding of the viral life cycle and virus-host interactions as well as advances in oligonucleotide technology will benefit the development of ASO-based antiviral therapies.
Collapse
|
4
|
Mauro ML, Bettini PP. Agrobacterium rhizogenes rolB oncogene: An intriguing player for many roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:10-18. [PMID: 34029941 DOI: 10.1016/j.plaphy.2021.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The rolB oncogene is one of the so-called rol genes found in the T-DNA region of the Agrobacterium rhizogenes Ri plasmid and involved in the hairy root syndrome, a tumour characterized by adventitious root overgrowth on plant stem. rolB produces in plants a peculiar phenotype that, together with its root-inducing capacity, has been connected to auxin sensitivity. The gene is able to modify the plant genetic programme to induce meristem cells and direct them to differentiate not only roots, but also other cells, tissues or organs. Besides its essential function in hairy root pathogenesis, the rolB role has been progressively extended to cover several physiological aspects in the transgenic plants: from secondary metabolites production and ROS inhibition, to abiotic and biotic stress tolerance and photosynthesis improvement. Some of the observed effects could be determined, at least in part, through microRNAs molecules, suggesting an epigenetic control rolB-mediated. These multifaceted capacities could allow plants to withstand adverse environmental conditions, enhancing fitness. In spite of this expanding knowledge, functional analyses did not detect yet any definitive rolB-derived biochemical product, even if more than one enzymatic activity has been ascribed to it. Moreover, phylogenetic and evolutionary studies evidenced no homology with any plant sequences but, otherwise, it belongs to the Plast family, a group of rolB-homologous bacterial genes. Finally, the finding of sequences similar to rolB in plants not infected by A. rhizogenes suggests a hypothetical plant origin for this gene, implying different possibilities about its evolution.
Collapse
Affiliation(s)
- Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Priscilla P Bettini
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto f.no, FI, Italy.
| |
Collapse
|
5
|
Hepatitis C virus core protein activates proteasomal activator 28 gamma to downregulate p16 levels via ubiquitin-independent proteasomal degradation. Heliyon 2021; 7:e06134. [PMID: 33553768 PMCID: PMC7851347 DOI: 10.1016/j.heliyon.2021.e06134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Proteasomal activator 28 gamma (PA28γ), an essential constituent of the 20S proteasome, is frequently overexpressed in hepatocellular carcinoma. Hepatitis C virus (HCV) core protein is recently known to activate PA28γ expression in human hepatocytes via upregulation of p53 levels; however, its role in HCV tumorigenesis remains unknown. Here, we found that HCV core-activated PA28γ downregulates p16 levels via ubiquitin-independent proteasomal degradation. As a result, HCV core protein activated the Rb-E2F pathway to stimulate cell cycle progression from G1 to S phase, resulting in an increase in cell proliferation. The potential of HCV core protein to induce these effects was almost completely abolished by either PA28γ knockdown or p16 overexpression, confirming the role of the PA28γ-mediated p16 degradation in HCV tumorigenesis.
Collapse
|
6
|
Aftab A, Afzal S, Idrees M, Shahid AA. p53 and rb promoter methylation in hepatitis C virus-related chronic hepatitis and hepatocellular carcinoma. Future Virol 2021. [DOI: 10.2217/fvl-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To identify methylation in p53 and rb during hepatitis C virus (HCV) infection in individuals in Pakistan. Materials & methods: Methylation-specific PCR was used on liver biopsies from hepatocellular carcinoma and chronic hepatitis C patients and on blood samples from healthy individuals. Real-time PCR was used to assess changes in the expression of p53 and rb in Huh-7 cells transfected with HCV-3a. Results: The p53 and rb promoters were methylated in hepatocellular carcinoma patients. The presence of HCV-3a- Core (p = 0.03), HCV-3a- NS-3 (p = 0.01) and HCV-3a- NS-5a (p = 0.02) downregulated p53 expression. Exposure to HCV-3a- Core (p = 0.04) downregulated rb expression. Conclusion: It can be hypothesized that HCV-induced epigenetic modifications may lead to the development of hepatic cancer that in turn inactivates p53 and rb.
Collapse
Affiliation(s)
- Ayma Aftab
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Hashempour T, Dehghani B, Musavi Z, Moayedi J, Hasanshahi Z, Sarvari J, Hosseini SY, Hosseini E, Moeini M, Merat S. Impact of IL28 Genotypes and Modeling the Interactions of HCV Core Protein on Treatment of Hepatitis C. Interdiscip Sci 2020; 12:424-437. [PMID: 32656614 DOI: 10.1007/s12539-020-00382-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/02/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mutations in the core CVR region of hepatitis C virus (HCV) and polymorphisms of interleukin 28B (IL28B) are associated with progression toward liver disease and in response to therapy. In addition, interactions of the core protein with some cell interactors can be related to HCV liver damage. AIM This study aimed to evaluate the effect of core mutations as well as IL28B polymorphism on clinical features, sustained virological response (SVR) in 1a and 3a HCV genotypes amongst Iranian HCV infected patients, and the impact of mutations on core protein properties, antigenic properties, and interactions with HCV inhibitors, using several bioinformatics tools. METHODS Seventy-nine Iranian patients infected with HCV genotypes 1a and 3a and diagnosed with chronic active hepatitis were examined. Plasma viral RNA was used to amplify and sequence the HCV Core gene; also, HCV viral load, molecular genotyping, and the liver enzymes were determined for all samples. The sequencing results were analyzed by several reliable bioinformatics tools to determine the physicochemical properties, B cell epitopes, post-modification changes, and secondary/tertiary structures; and evaluate the interactions with 4 drugs by docking method. RESULT There were some substitutions in core CVR related to ALT and AST enzymes that can lead to HCV advanced liver disease. The most prevalent mutation for 3a genotypes was a substitution in aa 162 (I to V) while we did not find any mutation in 1a responder group. Polymorphism of the rs8099917 showed that the majority of patients had TG heterozygous and carried CT genotype at the rs12979860. Analysis indicated several phosphorylation sits for core protein as well as two important disulfide bonds. Immunogenic prediction showed that core protein can strongly induce the immune system. Interaction analysis, using the docking method revealed two potential interactors (Vitronectin and SETD2). CONCLUSION Generally, mutations in all core CVR regions in all patients showed a relationship between such substitutions and higher liver enzymes that can result in advanced liver disease progression in HCV infected patients. Furthermore, immunoinformatics analysis determined the possible immunodominant regions to be considered in HCV vaccine designs. Furthermore, no association between SVR and IL28B polymorphism was shown. In silico analysis determined modification sites, structures, B-cell epitopes of core protein and interactions with several interactors can lead to persistent HCV infection in the cell and the progress of liver diseases.
Collapse
Affiliation(s)
- Tayebeh Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Moeini
- Gastroenterology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
10
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
11
|
Lee JS, Tabata K, Twu WI, Rahman MS, Kim HS, Yu JB, Jee MH, Bartenschlager R, Jang SK. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 2019; 15:e1008021. [PMID: 31525236 PMCID: PMC6762199 DOI: 10.1371/journal.ppat.1008021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L. All positive-strand RNA viruses replicate their genomes in distinct membrane-associated compartments designated replication organelles. The compartmentalization of viral replication machinery allows the enrichment and coordination of cellular and viral factors required for RNA replication and the evasion from innate host defense systems. Hepatitis C virus (HCV), a prototype member of the Flaviviridae family, rearranges intracellular membranes to construct replication organelles composed primarily of double-membrane vesicles (DMVs) which are morphologically similar to autophagosomes. Nonstructural protein 5A (NS5A), which is essential for HCV replication, induces DMV formation. Here, we report that NS5A triggers DMV formation through interactions with RACK1 and components of the vesicle nucleation complex acting at the early stage of autophagy. These results illustrate how a virus skews cellular machineries to utilize them for its replication by hijacking cellular proteins through protein-protein interactions. This research sheds light on the molecular basis of replication organelle formation by HCV and possibly other viruses employing organelles with DMV morphology.
Collapse
Affiliation(s)
- Jae Seung Lee
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Hee Sun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Jin Bae Yu
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Min Hyeok Jee
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sung Key Jang
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- * E-mail:
| |
Collapse
|
12
|
Identification of Keratin 23 as a Hepatitis C Virus-Induced Host Factor in the Human Liver. Cells 2019; 8:cells8060610. [PMID: 31216713 PMCID: PMC6628310 DOI: 10.3390/cells8060610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Keratin proteins form intermediate filaments, which provide structural support for many tissues. Multiple keratin family members are reported to be associated with the progression of liver disease of multiple etiologies. For example, keratin 23 (KRT23) was reported as a stress-inducible protein, whose expression levels correlate with the severity of liver disease. Hepatitis C virus (HCV) is a human pathogen that causes chronic liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma. However, a link between KRT23 and hepatitis C virus (HCV) infection has not been reported previously. In this study, we investigated KRT23 mRNA levels in datasets from liver biopsies of chronic hepatitis C (CHC) patients and in primary human hepatocytes experimentally infected with HCV, in addition to hepatoma cells. Interestingly, in each of these specimens, we observed an HCV-dependent increase of mRNA levels. Importantly, the KRT23 protein levels in patient plasma decreased upon viral clearance. Ectopic expression of KRT23 enhanced HCV infection; however, CRIPSPR/Cas9-mediated knockout did not show altered replication efficiency. Taken together, our study identifies KRT23 as a novel, virus-induced host-factor for hepatitis C virus.
Collapse
|
13
|
Lin JP, Fan YK, Liu HM. The 14-3-3η chaperone protein promotes antiviral innate immunity via facilitating MDA5 oligomerization and intracellular redistribution. PLoS Pathog 2019; 15:e1007582. [PMID: 30742689 PMCID: PMC6386420 DOI: 10.1371/journal.ppat.1007582] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
MDA5 belongs to the RIG-I-like receptor family and plays a non-redundant role in recognizing cytoplasmic viral RNA to induce the production of type I IFNs. Upon RNA ligand stimulation, we observed the redistribution of MDA5 from the cytosol to mitochondrial membrane fractions. However, the molecular mechanisms of MDA5 activation remain less understood. Here we show that 14-3-3η is an essential accessory protein for MDA5-dependent type I IFN induction. We found that several 14-3-3 isoforms may interact with MDA5 through the CARDs (N-MDA5), but 14-3-3η was the only isoform that could enhance MDA5-dependent IFNβ promoter activities in a dose-dependent manner. Knock-down of 14-3-3η in Huh7 cells impaired and delayed the kinetics of MDA5 oligomerization, which is a critical step for MDA5 activation. Consequently, the MDA5-dependent IFNβ promoter activities as well as IFNβ mRNA expression level were also decreased in the 14-3-3η knocked-down cells. We also demonstrated that 14-3-3η is essential in boosting the activation of MDA5-dependent antiviral innate immunity during viral infections. In conclusion, our results uncover a novel function of 14-3-3η to promote the MDA5-dependent IFNβ induction pathway by reducing the immunostimulatory potential of viral dsRNA within MDA5 activation signaling pathway. In this study, we utilized biochemistry and molecular biology approaches to defines the molecular mechanisms by which melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic RNA helicase and pattern recognition receptor molecule, is regulated by 14-3-3η to govern its innate immune signaling activity. During viral infection RIG-I-like receptors (RLRs), including MDA5, play essential roles in initiating type I interferon signaling pathway and preventing virus infection or replication in host cells. Besides, the establishment of well functional adaptive immune response to viruses is depending on the timely activation of innate immune antiviral signaling pathway. Our results suggested that the activation of MDA5 is promoted by the chaperone protein 14-3-3η. The lack of 14-3-3η in host cells leads to the kinetically-delayed oligomerization of MDA5, which is a key steps of the activation of MDA5-mediated anti-viral signaling pathway. These findings reveal a novel component which participating in the control system of MDA5-dependent signaling pathway. Viral proteins which antagonize 14-3-3η to impair MDA5-dependent antiviral signaling may be suitable targets for antiviral therapy or be modified to generate potential vaccine strains.
Collapse
Affiliation(s)
- Jhih-Pu Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Kuan Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Helene Minyi Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Makjaroen J, Somparn P, Hodge K, Poomipak W, Hirankarn N, Pisitkun T. Comprehensive Proteomics Identification of IFN-λ3-regulated Antiviral Proteins in HBV-transfected Cells. Mol Cell Proteomics 2018; 17:2197-2215. [PMID: 30097535 PMCID: PMC6210224 DOI: 10.1074/mcp.ra118.000735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/10/2018] [Indexed: 12/16/2022] Open
Abstract
Interferon lambda (IFN-λ) is a relatively unexplored, yet promising antiviral agent. IFN-λ has recently been tested in clinical trials of chronic hepatitis B virus infection (CHB), with the advantage that side effects may be limited compared with IFN-α, as IFN-λ receptors are found only in epithelial cells. To date, IFN-λ's downstream signaling pathway remains largely unelucidated, particularly via proteomics methods. Here, we report that IFN-λ3 inhibits HBV replication in HepG2.2.15 cells, reducing levels of both HBV transcripts and intracellular HBV DNA. Quantitative proteomic analysis of HBV-transfected cells was performed following 24-hour IFN-λ3 treatment, with parallel IFN-α2a and PBS treatments for comparison using a dimethyl labeling method. The depth of the study allowed us to map the induction of antiviral proteins to multiple points of the viral life cycle, as well as facilitating the identification of antiviral proteins not previously known to be elicited upon HBV infection (e.g. IFITM3, XRN2, and NT5C3A). This study also shows up-regulation of many effectors involved in antigen processing/presentation indicating that this cytokine exerted immunomodulatory effects through several essential molecules for these processes. Interestingly, the 2 subunits of the immunoproteasome cap (PSME1 and PSME2) were up-regulated whereas cap components of the constitutive proteasome were down-regulated upon both IFN treatments, suggesting coordinated modulation toward the antigen processing/presentation mode. Furthermore, in addition to confirming canonical activation of interferon-stimulated gene (ISG) transcription through the JAK-STAT pathway, we reveal that IFN-λ3 restored levels of RIG-I and RIG-G, proteins known to be suppressed by HBV. Enrichment analysis demonstrated that several biological processes including RNA metabolism, translation, and ER-targeting were differentially regulated upon treatment with IFN-λ3 versus IFN-α2a. Our proteomic data suggests that IFN-λ3 regulates an array of cellular processes to control HBV replication.
Collapse
Affiliation(s)
- Jiradej Makjaroen
- From the ‡Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- §Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- ¶Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- §Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- ¶Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kenneth Hodge
- ¶Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Witthaya Poomipak
- ¶Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- §Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- ¶Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Zhou Y, Wang Q, Yang Q, Tang J, Xu C, Gai D, Chen X, Chen J. Histone Deacetylase 3 Inhibitor Suppresses Hepatitis C Virus Replication by Regulating Apo-A1 and LEAP-1 Expression. Virol Sin 2018; 33:418-428. [PMID: 30328580 DOI: 10.1007/s12250-018-0057-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors show clinical promise for the treatment of cancers, including hepatocellular carcinoma (HCC). In this study, we investigated the effect of HDAC inhibitor treatment on hepatitis C virus (HCV) replication in Huh7 human liver cells and in a mouse model of HCV infection. Viral replication was markedly suppressed by the HDAC3 inhibitor at concentrations below 1 mmol/L, with no cellular toxicity. This was accompanied by upregulation of liver-expressed antimicrobial peptide 1(LEAP-1) and downregulation of apolipoprotein-A1 (Apo-A1), as determined by microarray and quantitative RT-PCR analyses. Moreover, HDAC3 was found to modulate the binding of CCAAT-enhancer-binding protein α (C/EBPα), hypoxia-inducible factor 1α (HIF1α), and signal transducer and activator of transcription 3 (STAT3) to the LEAP-1 promoter. HDAC3 inhibitor treatment also blocked HCV replication in a mouse model of HCV infection. These results indicate that epigenetic therapy with HDAC3 inhibitor may be a potential treatment for diseases associated with HCV infection such as HCC.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qian Wang
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jielin Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongwei Gai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
16
|
Wang H, Wang H, Yu Z, Liu H. Alternative treatment strategies to sorafenib in patients with advanced hepatocellular carcinoma: a meta-analysis of randomized Phase III trials. Onco Targets Ther 2018; 11:5195-5201. [PMID: 30214225 PMCID: PMC6118246 DOI: 10.2147/ott.s171918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction This meta-analysis was conducted to evaluate efficacy and safety in patients treated with sorafenib vs other tyrosine-kinase inhibitors (TKIs) or selective internal radiotherapy (SIRT) for advanced hepatocellular carcinoma (HCC). Methods Electronic databases were systematically reviewed for randomized Phase III trials comparing sorafenib with other TKIs or SIRT in advanced HCC. Sorafenib was defined as the control arm. Other TKIs or SIRT was defined as the experimental arm. Overall survival (OS), time to progression (TTP), objective response rate (ORR), disease-control rate (DCR), and adverse events (AEs) were reviewed. Four trials in the other-TKI group (n=4,218) and two in the SIRT group (n=819) were eligible. Results Compared with sorafenib, other TKIs showed similar benefit on OS (HR 1.08, 95% CI 0.93–1.24; P=0.31) and TTP (HR 0.86, 95% CI 0.66–1.12; P=0.26) for advanced HCC. A significant increase in ORR (RR 1.67, 95% CI 1.15–2.43; P=0.008) was found with other TKIs, but no increase in DCR (RR 1.11, 95% CI 0.98–1.26; P=0.11) was observed. Other TKIs were associated with more frequent grade 3/4 AEs than sorafenib, including hypertension (P<0.00001), thrombocytopenia (P=0.002), fatigue (P<0.00001), decreased appetite (P<0.00001), and vomiting (P<0.0001). For locally advanced HCC, neither OS (HR 1.14, 95% CI 0.98–1.32; P=0.09) nor TTP (HR 0.87, 95% CI 0.74–1.02; P=0.10) differed significantly in SIRT and sorafenib. There was an increase in ORR (RR 2.60, 95% CI 1.69–4.00; P<0.0001), but no improvement in DCR (RR 0.91, 95% CI 0.81–1.02; P=0.11) in the SIRT group. Fewer patients treated with SIRT had grade 3/4 AEs than those treated with sorafenib, including diarrhea (P<0.0001), fatigue (P=0.0006), and hand–foot syndrome (P=0.0002). Other TKIs were noninferior to sorafenib in OS and TTP in advanced HCC, but with increased risk of toxicities. Conclusion Patients with locally advanced HCC treated with SIRT got similar efficacy with less toxicity to those treated with sorafenib.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiation Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China,
| | - Hefang Wang
- Department of Radiation Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China,
| | - Zhichong Yu
- Department of Radiation Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China,
| | - Honghao Liu
- Department of Radiation Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China,
| |
Collapse
|
17
|
Zhu L, Tang X, Xing J, Sheng X, Zhan W. Differential proteome of haemocyte subpopulations responded to white spot syndrome virus infection in Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:82-93. [PMID: 29427599 DOI: 10.1016/j.dci.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In our previous study, the differentially expressed proteins have been identified by proteomic analysis in total haemocytes of shrimp (Fenneropenaeus chinensis) after white spot syndrome virus (WSSV) infection. To further investigate the differential response of haemocyte subpopulations to WSSV infection, granulocytes and hyalinocytes were separated from healthy and WSSV-infected shrimp by immunomagnetic bead (IMB) method, respectively. Then two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to analyze the differentially expressed proteins in haemocyte subpopulations between healthy and WSSV-infected shrimp. The results of flow cytometry (FCM) showed that about 98% of granulocytes and about 96% of hyalinocytes in purity were obtained. Quantitative intensity analysis revealed that 26 protein spots in granulocytes and 24 spots in hyalinocytes were significantly changed post WSSV infection. Among them, 24 proteins in granulocytes and 23 proteins in hyalinocytes were identified by MS analysis, which could be divided into eight categories according to Gene Ontology. The identification of prophenoloxidase (proPO), proPO 2 and peroxiredoxin in WSSV-infected granulocytes was consistent with the facts that the proPO-activating system and peroxiredoxin were mainly existed in granulocytes. The phagocytosis of hyalinocytes seemed to be enhanced during the infection, because several proteins that involved in phagocytosis, including clathrin heavy chain, ADP ribosylation factor 4 and Alpha2 macroglobulin were up-regulated in hyalinocytes upon WSSV infection. Our results also reflected the vital biological significance of calcium ion binding proteins in granulocytes and ATPase/GTPase in hyalinocytes during WSSV infection. The data in this study verified the roles of granulocytes and hyalinocytes involved in WSSV infection, and differentially expressed proteins identified in granulocytes and hyalinocytes had a close correlation with their function characteristics.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
18
|
Differential abundance and transcription of 14-3-3 proteins during vegetative growth and sexual reproduction in budding yeast. Sci Rep 2018; 8:2145. [PMID: 29391437 PMCID: PMC5794856 DOI: 10.1038/s41598-018-20284-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/02/2022] Open
Abstract
14-3-3 is a family of relatively low molecular weight, acidic, dimeric proteins, conserved from yeast to metazoans including humans. Apart from their role in diverse cellular processes, these proteins are also known for their role in several clinical implications. Present proteomic and biochemical comparison showed increased abundance and differential phosphorylation of these proteins in meiotic cells. Double deletion of bmh1−/−bmh2−/− leads to complete absence of sporulation with cells arrested at G1/S phase while further incubation of cells in sporulating media leads to cell death. In silico analysis showed the presence of 14-3-3 interacting motifs in bonafide members of kinetochore complex (KC) and spindle pole body (SPB), while present cell biological data pointed towards the possible role of yeast Bmh1/2 in regulating the behaviour of KC and SPB. We further showed the involvement of 14-3-3 in segregation of genetic material and expression of human 14-3-3β/α was able to complement the function of endogenous 14-3-3 protein even in the complex cellular process like meiosis. Our present data also established haplosufficient nature of BMH1/2. We further showed that proteins synthesized during mitotic growth enter meiotic cells without de novo synthesis except for meiotic-specific proteins required for induction and meiotic progression in Saccharomyces cerevisiae.
Collapse
|
19
|
Villalba M, Pérez V, Herrera L, Stepke C, Maldonado N, Fredericksen F, Yáñez A, Olavarría VH. Infectious pancreatic necrosis virus infection of fish cell lines: Preliminary analysis of gene expressions related to extracellular matrix remodeling and immunity. Vet Immunol Immunopathol 2017; 193-194:10-17. [PMID: 29129223 DOI: 10.1016/j.vetimm.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/30/2022]
Abstract
The pathogenic infectious pancreatic necrosis virus (IPNV) causes high economic losses in fish farming. This virus can modulate several cellular processes during infection, but little is known about the infection mechanism. To investigate gene activation in response to IPNV, CHSE/F and SHK-1 cell line were infected with a cytopathic Sp field isolate of IPNV, and the expression profiles of proinflammatory, antiviral cytokine, and extracellular matrix markers were analyzed. IPNV induced the production of perlecan, fibulin-1, matrix metalloproteinase-2, 14-3-3β, interleukin-1β, Mx1, and interferon regulatory factors-1, -3, and -9. Interestingly, IPNV-mediated activity was blocked by pharmacological inhibitors of the NF-κB signaling pathway. These results, together with in silico analyses showing the presence of several regulatory consensus-target motifs, suggest that IPNV regulates gene expressions in fish through the activation of several key transcription factors. Collectively, these data indicate that IPNV is a viral regulator of expression for extracellular-matrix and immune markers, even during early infection. Finally, this is the first report in fish to find IPNV modulating the activation of interleukin-1β production primarily through the NF-κB pathway.
Collapse
Affiliation(s)
- Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Valeria Pérez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Laura Herrera
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Cristopher Stepke
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
20
|
Kumar R. An account of fungal 14-3-3 proteins. Eur J Cell Biol 2017; 96:206-217. [PMID: 28258766 DOI: 10.1016/j.ejcb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
14-3-3s are a group of relatively low molecular weight, acidic, dimeric, protein(s) conserved from single-celled yeast to multicellular vertebrates including humans. Despite lacking catalytic activity, these proteins have been shown to be involved in multiple cellular processes. Apart from their role in normal cellular physiology, recently these proteins have been implicated in various medical consequences. In this present review, fungal 14-3-3 protein localization, interactions, transcription, regulation, their role in the diverse cellular process including DNA duplication, cell cycle, protein trafficking or secretion, apoptosis, autophagy, cell viability under stress, gene expression, spindle positioning, role in carbon metabolism have been discussed. In the end, I also highlighted various roles of yeasts 14-3-3 proteins in tabular form. Thus this review with primary emphasis on yeast will help in appreciating the significance of 14-3-3 proteins in cell physiology.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
21
|
Zhang L, Li Q, Ding X, Zhang B, Zhang Q, Qu X, Huo Y, Yang J, Wang S. Antisense Oligonucleotides Targeting Raf-1 Block Japanese Encephalitis Virus In Vitro and In Vivo. Nucleic Acid Ther 2017; 27:78-86. [PMID: 28051352 DOI: 10.1089/nat.2016.0626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Japanese encephalitis virus (JEV) infections represent a major health concern in Southeast Asia since no effective treatments are available. Recently, several reports have demonstrated that inhibition of certain host cell proteins prevents viral infection. Raf-1 kinase is a central component of many signaling pathways involved in normal cell growth and oncogenic transformation, and Ras/Raf/ERK signaling activation has been observed during viral infections (including JEV infection). In this study, Raf-1 was confirmed to be upregulated by JEV infection, which suggested that Raf-1 might be important for JEV infection and might be a target for novel anti-JEV drugs. To determine the role of Raf-1 during the JEV infection process, antisense oligonucleotides (ASODNs) were used to downregulate Raf-1 expression in JEV-infected baby hamster kidney (BHK-21) cells and African green monkey kidney (Vero) cells. From five ASODNs candidates tested, Raf-1-1 (Raf-1 antisense) significantly downregulated Raf-1 protein expression levels, significantly inhibited cytopathic effect (CPE) in cultured cells, and reduced JEV RNA levels in cell medium without affecting cell viability. Furthermore, it also demonstrated that ASODN Raf-1-1 possessed therapeutic effects by using a lethal JEV infection mouse model. In conclusion, data presented in this report demonstrated that ASODN Raf-1-1 could suppress Raf-1 protein and that Raf-1 inhibition suppressed JEV replication in vitro and in vivo. These data provided evidence for targeting Raf-1 in the development of novel anti-JEV therapies. In addition, Raf-1-1 represents potential drugs that can be adapted for treating JEV infections.
Collapse
Affiliation(s)
- Li Zhang
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China .,2 Tianjin Institute of Health and Environmental Medicine , Tianjin, People's Republic of China
| | - Qingjun Li
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China .,3 Henan University of Traditional Chinese Medicine , Zhengzhou, People's Republic of China
| | - Xiaoran Ding
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China
| | - Bo Zhang
- 4 Department of Pharmacy, Peking Union Medical College Hospital , Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiling Zhang
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China
| | - Xinyan Qu
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China .,5 Shandong Analysis and Test Center , Shandong Academy of Science, Jinan, People's Republic of China
| | - Yujia Huo
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China
| | - Jing Yang
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China .,3 Henan University of Traditional Chinese Medicine , Zhengzhou, People's Republic of China
| | - Shengqi Wang
- 1 Beijing Institute of Radiation Medicine , Beijing, People's Republic of China .,3 Henan University of Traditional Chinese Medicine , Zhengzhou, People's Republic of China
| |
Collapse
|
22
|
Virus-derived small RNAs in the penaeid shrimp Fenneropenaeus chinensis during acute infection of the DNA virus WSSV. Sci Rep 2016; 6:28678. [PMID: 27349643 PMCID: PMC4923869 DOI: 10.1038/srep28678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 01/16/2023] Open
Abstract
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are two classes of small RNAs (sRNAs) that are critical for virus-host interplay via the RNA interference (RNAi) pathway. One virus-derived siRNA and numerous miRNAs has been reported for the double-stranded DNA virus white spot syndrome virus (WSSV), however, the expression profiles of these different types of sRNAs have not been assessed. Here, by sequencing the sRNAs and mRNAs of WSSV-infected Chinese shrimp (Fenneropenaeus chinensis), we found that the viral transcripts were universally targeted by WSSV-derived siRNAs, supporting a pivotal role for RNAi in the anti-viral immunity of shrimp. The genesis of WSSV-derived siRNAs was associated with long RNA structures. Moreover, by separating miRNAs from siRNAs, 12 WSSV miRNAs were identified. Investigation of conserved viral miRNA targets in different host species indicated the involvement of viral miRNAs in host immune responses. Collectively, our data provide new insights into the role of the RNAi pathway in the interplay between DNA viruses and crustaceans.
Collapse
|
23
|
Klebl BM, Kurtenbach A, Salassidis K, Daub H, Herget T. Host Cell Targets in HCV Therapy: Novel Strategy or Proven Practice? ACTA ACUST UNITED AC 2016; 16:69-90. [PMID: 15889531 DOI: 10.1177/095632020501600201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel antiviral drugs against hepatitis C is a challenging and competitive area of research. Progress of this research has been hampered due to the quasispecies nature of the hepatitis C virus, the absence of cellular infection models and the lack of easily accessible and highly representative animal models. The current combination therapy consisting of interferon-α and ribavirin mainly acts by supporting host cell defence. These therapeutics are the prototypic representatives of indirect antiviral agents as they act on cellular targets. However, the therapy is not a cure, when considered from the long-term perspective, for almost half of the chronically infected patients. This draws attention to the urgent need for more efficient treatments. Novel anti-hepatitis C treatments under study are directed against a number of so-called direct antiviral targets such as polymerases and proteases, which are encoded by the virus. Although such direct antiviral approaches have proven to be successful in several viral indications, there is a risk of resistant viruses developing. In order to avoid resistance, the development of indirect antiviral compounds has to be intensified. These act on host cell targets either by boosting the immune response or by blocking the virus host cell interaction. A particularly interesting approach is the development of inhibitors that interfere with signal transduction, such as protein kinase inhibitors. The purpose of this review is to stress the importance of developing indirect antiviral agents that act on host cell targets. In doing so, a large source of potential targets and mechanisms can be exploited, thus increasing the likelihood of success. Ultimately, combination therapies consisting of drugs against direct and indirect viral targets will most probably provide the solution to fighting and eradicating hepatitis C virus in patients.
Collapse
|
24
|
Jeswin J, Xie XL, Ji QL, Wang KJ, Liu HP. Proteomic analysis by iTRAQ in red claw crayfish, Cherax quadricarinatus, hematopoietic tissue cells post white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 50:288-96. [PMID: 26845698 PMCID: PMC7111676 DOI: 10.1016/j.fsi.2016.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 05/23/2023]
Abstract
To elucidate proteomic changes of Hpt cells from red claw crayfish, Cherax quadricarinatus, we have carried out isobaric tags for relative and absolute quantitation (iTRAQ) of cellular proteins at both early (1 hpi) and late stage (12 hpi) post white spot syndrome virus (WSSV) infection. Protein database search revealed 594 protein hits by Mascot, in which 17 and 30 proteins were present as differentially expressed proteins at early and late viral infection, respectively. Generally, these differentially expressed proteins include: 1) the metabolic process related proteins in glycolysis and glucogenesis, DNA replication, nucleotide/amino acid/fatty acid metabolism and protein biosynthesis; 2) the signal transduction related proteins like small GTPases, G-protein-alpha stimulatory subunit, proteins bearing PDZ- or 14-3-3-domains that help holding together and organize signaling complexes, casein kinase I and proteins of the MAP-kinase signal transduction pathway; 3) the immune defense related proteins such as α-2 macroglobulin, transglutaminase and trans-activation response RNA-binding protein 1. Taken together, these protein information shed new light on the host cellular response against WSSV infection in a crustacean cell culture.
Collapse
Affiliation(s)
- Joseph Jeswin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiao-lu Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiao-lin Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ke-jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
25
|
|
26
|
Martínez F, Rodrigo G, Aragonés V, Ruiz M, Lodewijk I, Fernández U, Elena SF, Daròs JA. Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics 2016; 17:87. [PMID: 26830344 PMCID: PMC4735970 DOI: 10.1186/s12864-016-2394-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The genomes of plant viruses have limited coding capacity, and to complete their infectious cycles, viral factors must target, direct or indirectly, many host elements. However, the interaction networks between viruses and host factors are poorly understood. The genus Potyvirus is the largest group of plus-strand RNA viruses infecting plants. Potyviral nuclear inclusion a (NIa) plays many roles during infection. NIa is a polyprotein consisting of two domains, viral protein genome-linked (VPg) and protease (NIaPro), separated by an inefficiently utilized self-proteolytic site. To gain insights about the interaction between potyviral NIa and the host cell during infection, we constructed Tobacco etch virus (TEV, genus Potyvirus) infectious clones in which the VPg or the NIaPro domains of NIa were tagged with the affinity polypeptide Twin-Strep-tag and identified the host proteins targeted by the viral proteins by affinity purification followed by mass spectrometry analysis (AP-MS). RESULTS We identified 232 different Arabidopsis thaliana proteins forming part of complexes in which TEV NIa products were also involved. VPg and NIaPro specifically targeted 89 and 76 of these proteins, respectively, whereas 67 proteins were targeted by both domains and considered full-length NIa targets. Taking advantage of the currently known A. thaliana interactome, we constructed a protein interaction network between TEV NIa domains and 516 host proteins. The most connected elements specifically targeted by VPg were G-box regulating factor 6 and mitochondrial ATP synthase δ subunit; those specifically targeted by NIaPro were plasma membrane aquaporin PIP2;7 and actin 7, whereas those targeted by full-length NIa were heat shock protein 70-1 and photosystem protein LHCA3. Moreover, a contextualization in the global A. thaliana interactome showed that NIa targets are not more connected with other host proteins than expected by chance, but are in a position that allows them to connect with other host proteins in shorter paths. Further analysis of NIa-targeted host proteins revealed that they are mainly involved in response to stress, metabolism, photosynthesis, and localization. Many of these proteins are connected with the phytohormone ethylene. CONCLUSIONS Potyviral NIa targets many host elements during infection, establishing a network in which information is efficiently transmitted.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Marta Ruiz
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Iris Lodewijk
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Unai Fernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
- The Santa Fe Institute, Santa Fe, NM, USA.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
27
|
Tasaka-Fujita M, Sugiyama N, Kang W, Masaki T, Masaski T, Murayama A, Yamada N, Sugiyama R, Tsukuda S, Watashi K, Asahina Y, Sakamoto N, Wakita T, Shin EC, Kato T. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression. Sci Rep 2015; 5:13994. [PMID: 26365522 PMCID: PMC4568458 DOI: 10.1038/srep13994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV.
Collapse
Affiliation(s)
- Megumi Tasaka-Fujita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nao Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wonseok Kang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
28
|
Abstract
Hepatitis C virus (HCV) is a leading etiology of hepatocellular carcinoma (HCC). The interaction of HCV with its human host is complex and multilayered; stemming in part from the fact that HCV is a RNA virus with no ability to integrate in the host's genome. Direct and indirect mechanisms of HCV-induced HCC include activation of multiple host pathways such as liver fibrogenic pathways, cellular and survival pathways, interaction with the immune and metabolic systems. Host factors also play a major role in HCV-induced HCC as evidenced by genomic studies identifying polymorphisms in immune, metabolic, and growth signaling systems associated with increased risk of HCC. Despite highly effective direct-acting antiviral agents, the morbidity and incidence of liver-related complications of HCV, including HCC, is likely to persist in the near future. Clinical markers to selectively identify HCV subjects at higher risk of developing HCC have been reported however they require further validation, especially in subjects who have experienced sustained virological response. Molecular biomarkers allowing further refinement of HCC risk are starting to be implemented in clinical platforms, allowing objective stratification of risk and leading to individualized therapy and surveillance for HCV individuals. Another role for molecular biomarker-based stratification could be enrichment of HCC chemoprevention clinical trials leading to smaller sample size, shorter trial duration, and reduced costs.
Collapse
Affiliation(s)
- Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Hsu YC, Wu CY, Lin JT. Hepatitis C Virus Infection, Antiviral Therapy, and Risk of Hepatocellular Carcinoma. Semin Oncol 2015; 42:329-38. [PMID: 25843737 DOI: 10.1053/j.seminoncol.2014.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Siegel AB, El-Khoueiry AB, Finn RS, Guthrie KA, Goyal A, Venook AP, Blanke CD, Verna EC, Dove L, Emond J, Kato T, Samstein B, Busuttil R, Remotti H, Coffey A, Brown Jr RS. Phase I trial of sorafenib following liver transplantation in patients with high-risk hepatocellular carcinoma. Liver Cancer 2015; 4:115-25. [PMID: 26020033 PMCID: PMC4439789 DOI: 10.1159/000367734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Liver transplantation offers excellent long-term survival for hepatocellular carcinoma (HCC) patients who fall within established criteria. For those outside such criteria, or with high-risk pathologic features in the explant, HCC recurrence rates are higher. We conducted a multicenter phase I trial of sorafenib in liver transplantation patients with high-risk HCC. Subjects had HCC outside the Milan criteria (pre- or post-transplant), poorly differentiated tumors, or vascular invasion. We used a standard 3+3 phase I design with a planned duration of treatment of 24 weeks. Correlative studies included the number of circulating endothelial cells (CECs), plasma biomarkers, and tumor expression of p-Erk, p-Akt, and c-Met in tissue micro-arrays. We enrolled 14 patients with a median age of 63 years. Of these, 93% were men and 71% had underlying hepatitis C virus (HCV) and 21% had HBV. The maximum tolerated dose of sorafenib was 200 mg BID. Grade 3-4 toxicities seen in >10% of subjects included leukopenia (21%), elevated gamma-glutamyl transferase (21%), hypertension (14%), hand-foot syndrome (14%) and diarrhea (14%). Over a median follow-up of 953 days, one patient died and four recurred. The mean CEC number at baseline was 21 cells/4 ml for those who recurred, and 80 cells/4 ml for those who did not (p=0.10). Mean soluble vascular endothelial growth factor receptor-2 levels decreased after 1 month on sorafenib (p=0.09), but did not correlate with recurrence. There was a trend for tumor c-Met expression to correlate with increased risk of recurrence. Post-transplant sorafenib was found to be feasible and tolerable at 200 mg PO BID. The effect of post-transplant sorafenib on recurrence-free survival is potentially promising but needs further validation in a larger study.
Collapse
Affiliation(s)
- Abby B. Siegel
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | | | | | | | - Abhishek Goyal
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | - Alan P. Venook
- Helen Diller Family Comprehensive Cancer Center, San Francisco, Calif., USA
| | | | - Elizabeth C. Verna
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | - Lorna Dove
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | - Jean Emond
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | - Tomoaki Kato
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | - Benjamin Samstein
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| | | | - Helen Remotti
- Division of Pathology and Cell Biology, Columbia University, New York, N.Y., USA
| | - Amy Coffey
- Division of Pathology and Cell Biology, Columbia University, New York, N.Y., USA
| | - Robert S. Brown Jr
- Columbia University Medical Center Departments of Medicine and Surgery, New York, N.Y., USA
| |
Collapse
|
31
|
Shao YY, Shau WY, Chan SY, Lu LC, Hsu CH, Cheng AL. Treatment efficacy differences of sorafenib for advanced hepatocellular carcinoma: a meta-analysis of randomized clinical trials. Oncology 2015; 88:345-52. [PMID: 25572912 DOI: 10.1159/000369559] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/03/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a heterogeneous disease. We explored whether any specific subgroups of patients may gain more survival benefits from sorafenib as the first-line therapy for advanced HCC. METHODS PubMed and the Cochrane library were searched for phase III clinical trials that compared sorafenib with other treatments as first-line therapy for advanced HCC. We retrieved data from the published articles and then calculated synthesized hazard ratios (HRs) of overall mortality for patients of different subgroups, using patients who received other treatments as the reference. RESULTS Four phase III clinical trials comparing sorafenib with other treatments were included in this study. The HRs were not significantly different between patients from various geographic regions (p = 0.183), patients with different Eastern Cooperative Oncology Group performance statuses (p = 0.699), or patients with different tumor involvement (p = 0.221). By contrast, the synthesized HR for hepatitis C virus (HCV)+ patients was 0.65 [95% confidence interval (CI) 0.53-0.80], which was significantly lower than that for HCV- patients (0.87, 95% CI 0.79-0.96, p = 0.013). CONCLUSIONS As the first-line therapy for advanced HCC, sorafenib might provide more survival benefits to HCV+ patients than to HCV- patients.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Department of Oncology, National Taiwan University Hospital, New Taipei City, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Hepatitis C virus (HCV) is one of the major etiologic agents of liver cancer. HCV is an RNA virus that, unlike hepatitis B virus, is unable to integrate into the host genome. Through complex interactions between viral and host proteins that induce host responses and promote inflammation, fibrosis, and ultimately cirrhosis, HCV infection can result in the development of hepatocellular carcinoma (HCC). The HCV oncogenic process involves genetic and epigenetic alterations and oncogenic effects mediated by viral proteins in the activation of cellular oncogenes, inactivation of tumor-suppressor genes, and dysregulation of multiple signal-transduction pathways. Advances in genetics and gene expression profiling have enhanced our current understanding of the pathways involved in HCV-associated liver cancer development. In this review, we summarize the current understanding of mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Ming V Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
33
|
Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol 2014; 61:S79-90. [PMID: 25443348 PMCID: PMC4435677 DOI: 10.1016/j.jhep.2014.07.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is one of the major aetiologic agents that causes hepatocellular carcinoma (HCC) by generating an inflammatory, fibrogenic, and carcinogenic tissue microenvironment in the liver. HCV-induced HCC is a rational target for cancer preventive intervention because of the clear-cut high-risk condition, cirrhosis, associated with high cancer incidence (1% to 7% per year). Studies have elucidated direct and indirect carcinogenic effects of HCV, which have in turn led to the identification of candidate HCC chemoprevention targets. Selective molecular targeted agents may enable personalized strategies for HCC chemoprevention. In addition, multiple experimental and epidemiological studies suggest the potential value of generic drugs or dietary supplements targeting inflammation, oxidant stress, or metabolic derangements as possible HCC chemopreventive agents. While the successful use of highly effective direct-acting antiviral agents will make important inroads into reducing long-term HCC risk, there will remain an important role for HCC chemoprevention even after viral cure, given the persistence of HCC risk in persons with advanced HCV fibrosis, as shown in recent studies. The successful development of cancer preventive therapies will be more challenging compared to cancer therapeutics because of the requirement for larger and longer clinical trials and the need for a safer toxicity profile given its use as a preventive agent. Molecular biomarkers to selectively identify high-risk population could help mitigate these challenges. Genome-wide, unbiased molecular characterization, high-throughput drug/gene screening, experimental model-based functional analysis, and systems-level in silico modelling are expected to complement each other to facilitate discovery of new HCC chemoprevention targets and therapies.
Collapse
Affiliation(s)
- Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, United States.
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, United States
| | - Thomas F Baumert
- INSERM Unité 1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, and Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, France; Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States.
| |
Collapse
|
34
|
Liu J, Bai J, Zhang L, Hou C, Li Y, Jiang P. Proteomic alteration of PK-15 cells after infection by porcine circovirus type 2. Virus Genes 2014; 49:400-16. [PMID: 25103791 PMCID: PMC7089180 DOI: 10.1007/s11262-014-1106-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been identified as the essential causal agent of post-weaning multisystemic wasting syndrome, which has spread worldwide. To discover cellular protein responses of PK-15 cells to PCV2 infection, two-dimensional liquid chromatography-tandem mass spectrometry (MS) coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the proteins that were differentially expressed in PK-15 from the PCV2-infected group compared to the uninfected control group. A total of 196 cellular proteins in PK-15 that were significantly altered at different time periods post-infection were identified. These differentially expressed proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc. and their interactions. Moreover, some of these proteins were further confirmed by Western blot. The high number of differentially expressed proteins identified should be very useful in elucidating the mechanism of replication and pathogenesis of PCV2 in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
36
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
37
|
Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, Chung HC, Song X, Xu J, Poggi G, Omata M, Pitman Lowenthal S, Lanzalone S, Yang L, Lechuga MJ, Raymond E. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013; 31:4067-75. [PMID: 24081937 DOI: 10.1200/jco.2012.45.8372] [Citation(s) in RCA: 583] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Open-label, phase III trial evaluating whether sunitinib was superior or equivalent to sorafenib in hepatocellular cancer. PATIENTS AND METHODS Patients were stratified and randomly assigned to receive sunitinib 37.5 mg once per day or sorafenib 400 mg twice per day. Primary end point was overall survival (OS). RESULTS Early trial termination occurred for futility and safety reasons. A total of 1,074 patients were randomly assigned to the study (sunitinib arm, n = 530; sorafenib arm, n = 544). For sunitinib and sorafenib, respectively, median OS was 7.9 versus 10.2 months (hazard ratio [HR], 1.30; one-sided P = .9990; two-sided P = .0014); median progression-free survival (PFS; 3.6 v 3.0 months; HR, 1.13; one-sided P = .8785; two-sided P = .2286) and time to progression (TTP; 4.1 v 3.8 months; HR, 1.13; one-sided P = .8312; two-sided P = .3082) were comparable. Median OS was similar among Asian (7.7 v 8.8 months; HR, 1.21; one-sided P = .9829) and hepatitis B-infected patients (7.6 v 8.0 months; HR, 1.10; one-sided P = .8286), but was shorter with sunitinib in hepatitis C-infected patients (9.2 v 17.6 months; HR, 1.52; one-sided P = .9835). Sunitinib was associated with more frequent and severe adverse events (AEs) than sorafenib. Common grade 3/4 AEs were thrombocytopenia (29.7%) and neutropenia (25.7%) for sunitinib; hand-foot syndrome (21.2%) for sorafenib. Discontinuations owing to AEs were similar (sunitinib, 13.3%; sorafenib, 12.7%). CONCLUSION OS with sunitinib was not superior or equivalent but was significantly inferior to sorafenib. OS was comparable in Asian and hepatitis B-infected patients. OS was superior in hepatitis C-infected patients who received sorafenib. Sunitinib-treated patients reported more frequent and severe toxicity.
Collapse
Affiliation(s)
- Ann-Lii Cheng
- Ann-Lii Cheng, National Taiwan University Hospital, Taipei; Deng-Yn Lin, Chang Gung Memorial Hospital, Chang Gung University, Guishan Township, Taiwan, Republic of China; Yoon-Koo Kang, Asan Medical Center, University of Ulsan College of Medicine; Hyun-Cheol Chung, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul; Joong-Won Park, National Cancer Center, Goyang, Republic of Korea; Masatoshi Kudo, Kinki University Hospital, Osaka; Masao Omata, Yamanashi Prefecture Central Hospital, Kofu, Yamanashi, Japan; Shukui Qin, Nanjing Bayi Hospital, Nanjing; Xiangqun Song, Tumor Hospital of Guangxi Zhuang Autonomous Region, Nanning; Jianming Xu, Beijing 307 Hospital Cancer Centre, Beijing, People's Republic of China; Guido Poggi, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Maugeri, Pavia; Silvana Lanzalone, Maria Jose Lechuga, Pfizer Italia Srl, Milan, Italy; Susan Pitman Lowenthal, Pfizer Oncology, New York, NY; Liqiang Yang, Pfizer Oncology, La Jolla, CA; Eric Raymond, Service Inter Hospitalier de Cancerologie Bichat-Beaujon, Clichy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abou-Alfa GK, Venook AP. The antiangiogenic ceiling in hepatocellular carcinoma: does it exist and has it been reached? Lancet Oncol 2013; 14:e283-8. [PMID: 23725711 DOI: 10.1016/s1470-2045(13)70161-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recommendation of sorafenib as standard of care in advanced hepatocellular carcinoma has lent support to the increased use of antiangiogenic therapies. However, in three phase 3 randomised trials that compared other antiangiogenics with sorafenib, results did not show superiority or non-inferiority of the new therapies. The 10-month median overall survival shown in these studies for patients given sorafenib might be a ceiling for single-agent antiangiogenic therapy. Strategies to increase survival time include combination therapies that pair antiangiogenic treatment with biological therapy or chemotherapy. The combination of sorafenib and erlotinib was not superior to sorafenib alone, which suggests no positive interaction between antiangiogenics and tyrosine kinase inhibitors in the treatment of advanced hepatocellular carcinoma. A combination of sorafenib and doxorubicin is being assessed in a randomised phase 3 trial. Differences in patient outcome with sorafenib because of disease cause and the ethnic origin of patients suggest that sorafenib's multitarget capacity, including RAF kinase inhibition, might be important. MET inhibitors cabozantinib and tivantinib are drugs that might also bypass the so-called antiangiogenic ceiling and have led to selective treatment of patients that overexpress MET with these drugs. Although this intense period of research activity has not yet resulted in significant improvements in survival for patients with advanced hepatocellular carcinoma, we are certainly closer to a customised treatment, which should increase the antiangiogenic survival ceiling.
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Section of Gastrointestinal Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
39
|
Blum HE. Hepatitis C and Hepatocellular Carcinoma. VIRAL HEPATITIS 2013:353-361. [DOI: 10.1002/9781118637272.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
41
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
42
|
Ang C, O'Reilly EM, Abou-Alfa GK. Targeted agents and systemic therapy in hepatocellular carcinoma. Recent Results Cancer Res 2013; 190:225-46. [PMID: 22941024 DOI: 10.1007/978-3-642-16037-0_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytotoxic chemotherapy, hormonal agents, and immunotherapy have been tested in hepatocellular cancer (HCC) with marginal efficacy to date. Recent insights into the molecular pathogenesis of HCC have identified several aberrant signaling pathways that have served as targets for novel therapeutic agents. These discoveries have been translated into the clinical realm with the use of the antiangiogenic and the Raf kinase inhibitor, sorafenib, and have revealed the potential of targeted agents to produce clinically meaningful survival benefits in patients with advanced HCC. Efforts continue in the quest to improve the outcome of HCC patients through the development and evaluation of other targeted agents, and to better understand the interactions between the underlying disease biology and response to therapy. Several pathways are now implicated in hepatocarcinogenesis and agents that target these pathways continue to be developed.
Collapse
Affiliation(s)
- Celina Ang
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
43
|
Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O, Hassan M. Hepatitis C virus-related hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World J Hepatol 2012; 4:342-55. [PMID: 23355912 PMCID: PMC3554798 DOI: 10.4254/wjh.v4.i12.342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide, and thereby becomes a series global health challenge. Chronic infection with HCV is considered one of the major causes of end-stage liver disease including cirrhosis and hepatocellular carcinoma. Although the multiple functions of the HCV proteins and their impacts on the modulation of the intracellular signaling transduction processes, the drive of carcinogenesis during the infection with HCV, is thought to result from the interactions of viral proteins with host cell proteins. Thus, the induction of mutator phenotype, in liver, by the expression of HCV proteins provides a key mechanism for the development of HCV-associated hepatocellular carcinoma (HCC). HCC is considered one of the most common malignancies worldwide with increasing incidence during the past decades. In many countries, the trend of HCC is attributed to several liver diseases including HCV infection. However, the development of HCC is very complicated and results mainly from the imbalance between tumor suppressor genes and oncogenes, as well as from the alteration of cellular factors leading to a genomic instability. Besides the poor prognosis of HCC patients, this type of tumor is quite resistance to the available therapies. Thus, understanding the molecular mechanisms, which are implicated in the development of HCC during the course of HCV infection, may help to design a general therapeutic protocol for the treatment and/or the prevention of this malignancy. This review summarizes the current knowledge of the molecular mechanisms, which are involved in the development of HCV-associated HCC and the possible therapeutic strategies.
Collapse
Affiliation(s)
- Denis Selimovic
- Denis Selimovic, Youssef Haikel, Mohamed Hassan, Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
44
|
Morales D, Skoulakis ECM, Acevedo SF. 14-3-3s are potential biomarkers for HIV-related neurodegeneration. J Neurovirol 2012; 18:341-53. [PMID: 22811265 DOI: 10.1007/s13365-012-0121-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023]
Abstract
Over the last decade, it has become evident that 14-3-3 proteins are essential for primary cell functions. These proteins are abundant throughout the body, including the central nervous system and interact with other proteins in both cell cycle and apoptotic pathways. Examination of cerebral spinal fluid in humans suggests that 14-3-3s including 14-3-3ε (YWHAE) are up-regulated in several neurological diseases, and loss or duplication of the YWHAE gene leads to Miller-Dieker syndrome. The goal of this review is to examine the utility of 14-3-3s as a marker of human immune deficiency virus (HIV)-dependent neurodegeneration and also as a tool to track disease progression. To that end, we describe mechanisms implicating 14-3-3s in neurological diseases and summarize evidence of its interactions with HIV accessory and co-receptor proteins.
Collapse
Affiliation(s)
- Diana Morales
- Department of Physiology, Pharmacology, and Toxicology, Ponce School of Medicine and Health Sciences, Ponce 00732, Puerto Rico
| | | | | |
Collapse
|
45
|
Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 2012; 11:528-37. [PMID: 22607805 PMCID: PMC3358705 DOI: 10.1016/j.chom.2012.04.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/29/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, antiviral signaling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or "translocon" containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signaling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Department of Immunology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
| | - Stacy M. Horner
- Department of Immunology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
| | | | - Michael G. Katze
- Department of Microbiology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
- Washington Regional Primate Research Center, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195-7950, USA
| |
Collapse
|
46
|
Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 2012; 3:236-60. [PMID: 22470194 PMCID: PMC3359882 DOI: 10.18632/oncotarget.466] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/31/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies. Although the clinical diagnosis and management of early-stage HCC has improved significantly, HCC prognosis is still extremely poor. Furthermore, advanced HCC is a highly aggressive tumor with a poor or no response to common therapies. Therefore, new effective and well-tolerated therapy strategies are urgently needed. Targeted therapies have entered the field of anti-neoplastic treatment and are being used on their own or in combination with conventional chemotherapy drugs. Molecular-targeted therapy holds great promise in the treatment of HCC. A new therapeutic opportunity for advanced HCC is the use of sorafenib (Nexavar). On the basis of the recent large randomized phase III study, the Sorafenib HCC Assessment Randomized Protocol (SHARP), sorafenib has been approved by the FDA for the treatment of advanced HCC. Sorafenib showed to be able to significantly increase survival in patients with advanced HCC, establishing a new standard of care. Despite this promising breakthrough, patients with HCC still have a dismal prognosis, as it is currently the major cause of death in cirrhotic patients. Nevertheless, the successful results of the SHARP trial underscore the need for a comprehensive understanding of the molecular pathogenesis of this devastating disease. In this review we summarize the most important studies on the signaling pathways implicated in the pathogenesis of HCC, as well as the newest emerging drugs and their potential use in HCC management.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology, "Alberto Monroy" National Research Council (C.N.R), Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. J Proteomics 2012; 75:1732-41. [DOI: 10.1016/j.jprot.2011.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022]
|
48
|
Wanna W, Thipwong J, Mahakaew W, Phongdara A. Identification and expression analysis of two splice variants of the 14-3-3 epsilon from Litopenaeus Vannamei during WSSV infections. Mol Biol Rep 2011; 39:5487-93. [PMID: 22179749 DOI: 10.1007/s11033-011-1351-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/09/2011] [Indexed: 02/01/2023]
Abstract
The 14-3-3 epsilon (14-3-3ε) is a member of the 14-3-3-protein family claimed to play important roles in many biological processes. In this study, two alternative 14-3-3 epsilon mRNAs, designated as 14-3-3EL and 14-3-3ES were identified from the shrimp L. vannamei. The 14-3-3EL isoform contains an insertion of 48 nucleotides by intron retention in the pre-mRNA of 14-3-3ε. While the 14-3-3ES occurred after being fully spliced. Using the yeast two hybrid method, the pattern of dimer formation by the two alternative 14-3-3ε isoforms revealed that the shrimp 14-3-3ε formed both homodimers and heterodimers. Both 14-3-3ε transcript variants were constitutively expressed in all shrimp tissues tested but the level of the 14-3-3ES isoform was always lower. However, after white spot syndrome virus (WSSV) infection, the expression level of the two transcript variants changed. At 48 h after infection, expression of 14-3-3EL mRNA increased significantly in the gill and muscle tissue whereas the expression 14-3-3ES increased only in muscle. It was of interest that in the lymphoid organ, there was a significant down-expression of both transcript variants. From these results we suggest that 14-3-3EL and 14-3-3ES might be related to different cellular processes that are modulated during virus infection.
Collapse
Affiliation(s)
- Warapond Wanna
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| | | | | | | |
Collapse
|
49
|
Activation of the Ras/Raf/MEK pathway facilitates hepatitis C virus replication via attenuation of the interferon-JAK-STAT pathway. J Virol 2011; 86:1544-54. [PMID: 22114332 DOI: 10.1128/jvi.00688-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.
Collapse
|
50
|
Matsuda Y, Ichida T, Fukumoto M. Hepatocellular carcinoma and liver transplantation: clinical perspective on molecular targeted strategies. Med Mol Morphol 2011; 44:117-24. [PMID: 21922382 DOI: 10.1007/s00795-011-0547-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/20/2011] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) has an aggressive clinical course with frequent recurrence and metastasis. Orthotopic liver transplantation has been the only curative tool for unresectable HCC; therefore, recent advances in molecular targeted therapy may improve the prognosis of HCC. The multiple kinase inhibitor sorafenib and the macrolide antibiotic rapamycin are currently the most promising agents for treating unresectable HCC. A large population-based clinical trial revealed that sorafenib significantly prolonged the overall survival of HCC patients. However, subsequent clinical studies showed that sorafenib rarely reduced tumor volume and inadequately prolonged survival of patients with severe liver damage. To improve its therapeutic effect, the development of a predictive biomarker and a sorafenib-based combination is awaited. Another molecular targeting agent, rapamycin, has now been considered as a putative agent for preventing tumor recurrence in post-liver transplantation HCC patients, because it not only has immunosuppressive activity but also exerts an anti-tumor effect. In the near future, a combination of molecular targeting agents, such as sorafenib and rapamycin, may become a standard protocol for treating unresectable HCC. For specifying cases with more effective and less harmful modalities, further investigation in clinical and basic research to identify unexpected effects are needed.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Niigata 951-8518, Japan.
| | | | | |
Collapse
|