1
|
Dunham J, van Driel N, Eggen BJ, Paul C, 't Hart BA, Laman JD, Kap YS. Analysis of the cross-talk of Epstein-Barr virus-infected B cells with T cells in the marmoset. Clin Transl Immunology 2017; 6:e127. [PMID: 28243437 PMCID: PMC5311918 DOI: 10.1038/cti.2017.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the well-known association of Epstein–Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression. In the current study, we examined the ex vivo cross-talk between lymph node mononuclear cells (MNCs) from EAE marmosets and (semi-) autologous EBV-infected B-lymphoblastoid cell lines (B-LCLs). Results presented here demonstrate that infection with EBV B95-8 has a strong impact on gene expression profile of marmoset B cells, particularly those involved with antigen processing and presentation or co-stimulation to T cells. At the cellular level, we observed that MNC co-culture with B-LCLs induced decrease of CCR7 expression on T cells from EAE responder marmosets, but not in EAE monkeys without clinically evident disease. B-LCL interaction with T cells also resulted in significant loss of CD27 expression and reduced expression of IL-23R and CCR6, which coincided with enhanced IL-17A production. These results highlight the profound impact that EBV-infected B-LCL cells can have on second and third co-stimulatory signals involved in (autoreactive) T-cell activation.
Collapse
Affiliation(s)
- Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Neuroscience, University Groningen, University Medical Center, Groningen, The Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Bart Jl Eggen
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Chaitali Paul
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Neuroscience, University Groningen, University Medical Center, Groningen, The Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| |
Collapse
|
2
|
Chen H, Zheng X, Di B, Wang D, Zhang Y, Xia H, Mao Q. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol 2013. [DOI: 10.1016/j.jbiotec.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Yoshino K, Kishibe K, Nagato T, Ueda S, Komabayashi Y, Takahara M, Harabuchi Y. Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27. Br J Haematol 2012. [PMID: 23206232 DOI: 10.1111/bjh.12136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nasal natural killer (NK)/T cell lymphoma (NNKTL) is associated with Epstein-Barr virus (EBV). The present study analysed gene expression patterns of the NNKTL cell lines SNK6, SNK1 and SNT8, which are positive for EBV and latent membrane protein (LMP)-1, using a complementary DNA array analysis. We found that CD70 was specifically expressed in SNK6 and SNT8. Reverse transcription polymerase chain reaction and flow cytometric analyses confirmed that CD70 was expressed in all 3 NNKTL cell lines, but not in the other EBV-positive NK-cell lines. In vitro studies showed that NNKTL cell lines proliferated, in a dose-dependent fashion, in response to exogenous soluble CD27, which is the ligand for CD70. In NNKTL patients, we confirmed that the CD70 was expressed on the lymphoma cells in NNKTL tissues and that soluble CD27 was present in sera at higher levels as compared to healthy individuals. Finally, complement-dependent cytotoxicity assay showed that anti-CD70 antibody mediated effective complement-dependent killing of NNKTL cells and the affected target CD70 expression on the cells. These results suggest that CD70 acts as a functional receptor binding to soluble CD27, resulting in lymphoma progression and that immunotherapy using anti-CD70 antibody may be a potential candidate for treatment for NNKTL.
Collapse
Affiliation(s)
- Kazumi Yoshino
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
O'Neill AM, Smith AN, Spangler EA, Whitley EM, Schleis SE, Bird RC, Curiel DT, Thacker EE, Smith BF. Resistance of canine lymphoma cells to adenoviral infection due to reduced cell surface RGD binding integrins. Cancer Biol Ther 2011; 11:651-8. [PMID: 21321486 DOI: 10.4161/cbt.11.7.14690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recombinant adenovirus vectors (Ad) have been recognized as effective in vivo gene delivery vehicles and utilized as gene therapy agents for a number of cancers. The elucidation of viral entry mechanisms has allowed the development of recombinant vectors that exploit existing cell surface receptors to achieve entry into the cell. B lymphocytes are normally resistant to infection by adenovirus 5, likely due to the lack of the Coxsackie and Adenovirus receptor (CAR). Using reverse-transcriptase PCR and flow cytometry, the CD40 receptor has been shown to be expressed on many lymphoma cells. We exploited this finding to develop a gene therapy strategy for treatment of canine B cell lymphoma. Ad5 was targeted to cells expressing CD40 via CD40 ligand (CD40L) and was effective in infecting CD40-expressing control cells; however, both primary canine lymphoma cells and cell lines demonstrated limited evidence of transduction. Following receptor binding, adenovirus entry into cells may require interaction with α(v)β(3/5) integrins; we demonstrate that canine lymphoma cells are deficient in these integrins. Reduced α(v)β(3) integrin expression may render these cells incapable of internalizing Ad vectors. Thus, any viral targeting approaches for treatment of canine lymphoma must also take into account the potential lack of internalization signals.
Collapse
Affiliation(s)
- Ann Marie O'Neill
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hogg RT, Thorpe P, Gerard RD. Retargeting adenoviral vectors to improve gene transfer into tumors. Cancer Gene Ther 2010; 18:275-87. [PMID: 21183946 PMCID: PMC3060954 DOI: 10.1038/cgt.2010.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene targeting to tumors using adenoviral vectors holds great potential for cancer imaging and therapy, but the limited efficacy of current methods used to improve delivery to target tissues and reduce unwanted interactions remain substantial barriers to further development. Progress in characterizing the set of molecular interactions used by adenoviral vectors to infect particular tissues has aided the development of novel strategies for retargeting vectors to tumor cells. One method is chemical retargeting of adenovirus using bispecific antibodies against both viral capsid proteins and tumor-specific cell surface molecules. This approach can be combined either with competitive inhibitors designed to reduce viral tropism in undesired tissues, or with traditional therapeutics to increase the expression of surface molecules for improved tumor targeting. Ablating liver cell-specific interactions through mutation of capsid proteins or chemical means are promising strategies for reducing adenovirus-induced liver toxicity. The nature of tumor neovasculature also influences adenoviral delivery, and the use of vascular disrupting agents such as combretastatin can help elucidate these contributions. In this investigation, we evaluate a variety of these methods for retargeting adenoviral vectors to tumor cells in vitro and in vivo, and assess the contributions of specific molecular and tissue interactions that affect adenoviral transgene delivery.
Collapse
Affiliation(s)
- R T Hogg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8753, USA
| | | | | |
Collapse
|
6
|
Abstract
Bifunctional polyethylene glycol (PEG) molecules provide a novel approach to retargeting viral vectors without the need to genetically modify the vector. Modification of the surface of adenovirus with heterofunctional PEG allows further modification of the capsid with ligands. In addition, heterofunctional PEG modification ablates the normal tropism of the virus and reduces transduction of non-target tissues in vivo. Moreover, the addition of PEG chains to the surface of the virus shields antigen-binding sites, significantly reducing the susceptibility of the virus to antibody neutralization. Finally, T cell subsets from mice exposed to the PEGylated vector demonstrate a marked decrease in Th1 and Th2 responses, suggesting that PEG modification may help reduce the immune response to the vector.
Collapse
|
7
|
Zaia JA. The status of gene vectors for the treatment of diabetes. Cell Biochem Biophys 2007; 48:183-90. [PMID: 17709888 DOI: 10.1007/s12013-007-0023-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus type 1 (DM1) represents one of the most obvious targets for successful treatment by gene transfer. The disease provides targets and methods for therapy that include suppression of autoimmunity, restoration of insulin responsiveness, functional replacement of pancreatic islets, and correction of vascular and nerve damage associated with prolonged hyperglycemia. The pathogenesis of DM1 is well understood and gene sequences are known that would support these various approaches for genetic intervention. However, a key limitation at present is the availability of efficient and reliable methods for delivery and sustained expression of the transferred DNA. Most genetic vectors are derived from viruses, and recent improvements in adenovirus-derived, lentivirus-derived, and adeno-associated virus-derived vectors suggest that these will have successful application to diabetes in the future.
Collapse
Affiliation(s)
- John A Zaia
- Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
8
|
Israel BF, Gulley M, Elmore S, Ferrini S, Feng WH, Kenney SC. Anti-CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas. Mol Cancer Ther 2006; 4:2037-44. [PMID: 16373719 DOI: 10.1158/1535-7163.mct-05-0253] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A monoclonal antibody (Rituximab) directed against the B-cell surface antigen, CD20, is increasingly used as a therapy for B-cell lymphomas. However, CD20 is expressed on all normal mature B cells and hence is not a specific tumor target. In contrast, CD70 is expressed on highly activated lymphocytes as well as on many B-cell and T-cell lymphomas but is not expressed on the great majority of B cells and T cells. In this report, we have explored the potential utility of anti-CD70 monoclonal antibodies for treatment of CD70+ EBV+ B-cell lymphomas. Using two Burkitt's lymphoma lines (Raji and Jijoye) that express surface CD70 and a CD70- Burkitt's lymphoma line (Akata), we show that two different monoclonal antibodies directed against human CD70 allow rabbit and human complement to kill EBV+ B cells in a CD70-dependent manner in vitro. In the absence of complement, neither anti-CD70 antibody induced in vitro killing of CD70+ cell lines. Importantly, i.p. injection of anti-CD70 antibodies also inhibited the growth of CD70+ Burkitt's lymphoma cells in severe combined immunodeficient mice but did not inhibit the growth of CD70- Burkitt's lymphoma cells. These results suggest that anti-CD70 antibodies may be useful for the treatment of CD70+ B-cell lymphomas.
Collapse
Affiliation(s)
- Bruce F Israel
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
9
|
Feng WH, Hong G, Delecluse HJ, Kenney SC. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 2004; 78:1893-902. [PMID: 14747554 PMCID: PMC369434 DOI: 10.1128/jvi.78.4.1893-1902.2004] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel therapy for Epstein-Barr virus (EBV)-positive tumors involves the intentional induction of the lytic form of EBV infection combined with ganciclovir (GCV) treatment. Virally encoded kinases (thymidine kinase and BGLF4) which are expressed only during the lytic form of infection convert GCV (a nucleoside analogue) into its active, cytotoxic form. However, tightly latent EBV infection in B cells has made it difficult to identify drugs that can be used clinically to induce lytic viral infection in B-cell lymphomas. Here we demonstrate that gemcitabine and doxorubicin (but not 5-azacytidine, cis-platinum, or 5-fluorouracil) induce lytic EBV infection in EBV-transformed B cells in vitro and in vivo. Gemcitabine and doxorubicin both activated transcription from the promoters of the two viral immediate-early genes, BZLF1 and BRLF1, in EBV-negative B cells. This effect required the EGR-1 motif in the BRLF1 promoter and the CRE (ZII) and MEF-2D (ZI) binding sites in the BZLF1 promoter. GCV enhanced cell killing by gemcitabine or doxorubicin in lymphoblastoid cells transformed with wild-type EBV, but not in lymphoblastoid cells transformed by a mutant virus (with a deletion in the BZLF1 immediate-early gene) that is unable to enter the lytic form of infection. Most importantly, the combination of gemcitabine or doxorubicin and GCV was significantly more effective for the inhibition of EBV-driven lymphoproliferative disease in SCID mice than chemotherapy alone. In contrast, the combination of zidovudine and gemcitabine was no more effective than gemcitabine alone. These results suggest that the addition of GCV to either gemcitabine- or doxorubicin-containing chemotherapy regimens may enhance the therapeutic efficacy of these drugs for EBV-driven lymphoproliferative disease in patients.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- B-Lymphocytes/virology
- Cell Line, Transformed
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Therapy, Combination
- Epstein-Barr Virus Infections/drug therapy
- Epstein-Barr Virus Infections/virology
- Ganciclovir/pharmacology
- Ganciclovir/therapeutic use
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/virology
- Mice
- Mice, SCID
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Virus Activation/drug effects
- Gemcitabine
Collapse
Affiliation(s)
- Wen-hai Feng
- Department of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
10
|
Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:279-99. [PMID: 14769440 DOI: 10.1016/j.pbiomolbio.2003.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.
Collapse
Affiliation(s)
- Andrew H Baker
- Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
11
|
Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, Wadsworth S, O'Riordan C. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 2003; 8:99-107. [PMID: 12842433 DOI: 10.1016/s1525-0016(03)00139-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bifunctional PEG (polyethylene glycol) molecules provide a novel approach to retargeting viral vectors without the need to genetically modify the vector. In a previous report we showed that modification of the viral capsid by the addition of a peptide with binding preference for differentiated ciliated airway epithelia allowed gene delivery to those cells by a novel entry pathway. Here we demonstrate further the versatility of this method by coupling a protein, FGF2, to the surface of an adenovirus (Ad). This modification results in the elimination of the endogenous tropism of the virus and confers upon the virus a novel route of entry. Adenoviral vectors modified by the addition of FGF2 show enhanced efficiency of transduction of the ovarian cancer cell line SKOV3.ip1. This enhancement in transduction is dependent on the binding of the coupled FGF2 to its high-affinity receptor and is independent of coxsackie and adenovirus viral receptors. In an intraperitoneal model of ovarian cancer, Ad/PEG/FGF2 generates increased transgene expression in tumor tissue compared to unmodified Ad. Furthermore, polymer modification of adenovirus vectors results in reduced localization of adenovirus to nontarget tissues and a marked decrease in Th1 and Th2 T cell responses. In conclusion, the approach described here may lead to the development of a gene therapy vector capable of targeting a therapeutic gene to diseased cells, while minimizing toxicity and expression in other tissues.
Collapse
Affiliation(s)
- Julia Lanciotti
- Genzyme Corporation, 31 New York Avenue, Framingham, Massachusetts 01701, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In September 1999, the perceptions of the use of adenoviral (Ad) vectors for gene therapy were altered when a patient exposed via the hepatic artery to a high dose of adenoviral vector succumbed to the toxicity related to vector administration. Appropriately, concerns were raised about continued use of the Ad vector system and, importantly, there were increased efforts to more fully understand the toxicity. Today it is recognized that there is no ideal vector system, and that while Ad vectors are not suitable for all applications, the significant advantages over other vector systems including efficient transduction of a variety of cell types, both quiescent and dividing, make it optimal for certain applications. These include protocols where high levels of short-term expression are sufficient to provide a therapeutic benefit. Potential target applications include therapeutic angiogenesis, administration into immune-privileged sites such as the CNS, or treatments where the adjuvant effect of adenovirus can be of benefit such as cancer vaccines. Broader applicability of Ad vectors will require resolution of toxicity issues. This review will therefore focus on studies conducted over the last 2 years that have advanced our understanding of the toxicity associated with Ad vectors, studies that have employed methods to reduce toxicity and improvements in Ad vectors themselves that will reduce toxicity by one of several mechanisms. These mechanisms include retargeting vector to the tissue of interest, minimizing or eliminating viral gene expression that is thought to result in loss of transduced cells, or by methods that seek to reduce the vector dose required for therapeutic benefit. An area where there remains significant room for improvement is when readministration of vector is required because transgene expression has decreased to background levels.
Collapse
Affiliation(s)
- J A St George
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, USA
| |
Collapse
|
13
|
Turturro F. Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride? Gene Ther 2003; 10:100-4. [PMID: 12571638 DOI: 10.1038/sj.gt.3301842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The literature has seen an incredible booming of publications related to the use of recombinant adenoviruses as therapeutic tools for lymphoproliferative disorders over the last decade. Several approaches of adenovirus-mediated gene expression have been used to transfect cell lines that are derived from lymphoid tumors and would have otherwise been refractory to other transfection methods. The identification of high-affinity receptor for human adenoviruses serotype 2 and 5, the coxsackie-adenovirus receptor (CAR), has raised the question about its relevance for the efficacy of recombinant adenovirus-mediated gene therapy. We review published studies that have analyzed the use of recombinant adenovirus vectors expressing cytotoxic genes for gene therapy in lymphomas, chronic lymphocytic leukemia and multiple myeloma. For simplicity, we group all these diseases under the term lymphoproliferative disorders. We analyze the use of recombinant adenovirus-mediated cytotoxicity by assessing the importance of the biochemical and intrinsic signaling pathways interacting with the products of the exogenous viral-mediated expression. Ultimately, we discuss studies that have been finalized to by-pass the limitations of the biodistribution of CAR by modifying or targeting adenovirus to other membrane proteins in cells derived from lymphoproliferative disorders.
Collapse
Affiliation(s)
- F Turturro
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
14
|
Feng WH, Westphal E, Mauser A, Raab-Traub N, Gulley ML, Busson P, Kenney SC. Use of adenovirus vectors expressing Epstein-Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors. J Virol 2002; 76:10951-9. [PMID: 12368338 PMCID: PMC136642 DOI: 10.1128/jvi.76.21.10951-10959.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome is present in a variety of tumor types, including virtually all undifferentiated nasopharyngeal carcinomas (NPC) and a portion of gastric carcinomas. The uniform presence of the EBV genome in certain tumors (versus only a very small number of normal B cells) suggests that novel therapies which specifically target EBV-positive cells for destruction might be effective for treating such tumors. Although the great majority of EBV-positive tumor cells are infected with one of the latent forms of EBV infection, expression of either viral immediate-early protein (BZLF1 or BRLF1) is sufficient to convert the virus to the lytic form of infection. Induction of the lytic form of EBV infection could potentially result in death of the tumor cell. Here we have examined the efficacy of adenovirus vectors expressing the BZLF1 or BRLF1 proteins for treatment of EBV-positive epithelial tumors. The BZLF1 and BRLF1 vectors induced preferential killing of EBV-positive, versus EBV-negative, gastric carcinoma cells in vitro. Infection of C18 NPC tumors (grown in nude mice) with either the BZLF1 or BRLF1 vector, but not a control adenovirus vector, induced expression of early lytic EBV genes in tumor cells. Injection of C18 tumors with the BZLF1 or BRLF1 adenovirus vector, but not the control vector, also significantly inhibited growth of the tumors in nude mice. The addition of ganciclovir did not significantly affect the antitumor effect of the BZLF1 and BRLF1 adenovirus vectors. These results suggest a potential cancer therapy against EBV-related tumors.
Collapse
Affiliation(s)
- Wen-hai Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Replication-defective vectors based on human adenovirus serotypes 2 and 5 (Ad2 and Ad5) possess a number of attributes which favor their use as gene delivery vehicles in gene therapy applications. However, the widespread distribution of the primary cellular receptor for Ad, the coxsackievirus and adenovirus receptor (CAR), allows Ad vectors to infect a broad range of cells in the host. Conversely, a number of tissues which represent important targets for gene therapy, such as the airway epithelium and cancer cells, are refractory to Ad infection due a paucity of CAR. Thus, there is a strong rationale for the development of CAR-independent Ad vectors capable of enhanced specificity and efficiency of gene transfer to target cells. In this article we review the approaches which have been employed to generate tropism-modified Ad vectors. These targeting strategies have led to improvements in the safety and efficacy of Ad vectors and have the potential to yield an increased therapeutic benefit in the human clinical context.
Collapse
Affiliation(s)
- Brian G Barnett
- Department of Medicine, Division of Human Gene Therapy and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|