1
|
Liu T, Lin L, Pan Y, Lin X, Liang M, Shao G, Feng K, Liu Y, Zhang X, Xie Q. Construction and efficacy of recombinant Newcastle disease virus co-expressing VP2 and VP3 proteins of very virulent infectious bursal disease virus. Poult Sci 2025; 104:104388. [PMID: 39644723 PMCID: PMC11665685 DOI: 10.1016/j.psj.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024] Open
Abstract
Infectious bursal disease (IBD), triggered by the infectious bursal disease virus (IBDV), poses a substantial risk to the poultry industry due to its immunosuppressive nature and the emergence of highly virulent strains. Traditional vaccination strategies have limitations, prompting the need for novel approaches. This study aimed to develop a recombinant Newcastle disease virus (NDV) vector vaccine co-expressing IBDV VP2 and VP3 proteins to enhance immunogenicity and protective efficacy against IBDV. The recombinant Newcastle disease virus (rNDV) expressing both VP2 and VP3 (rNDV-VP2-VP3) was generated and compared to rNDV expressing VP2 alone (rNDV-VP2). The genetic stability and growth pattern of rNDV were evaluated and its immunogenicity was assessed in specific pathogen free (SPF) chickens. rNDV-VP2-VP3 vaccines induced higher levels of neutralising antibodies, no damage to immune organs, and significantly lower viral loads in the bursa of the falciparum. rNDV-VP2 group showed partial protection, while the placebo group exhibited severe lesions and higher mortality, suggesting that the vaccine was effective in preventing IBDV-induced damage. These findings suggest that co-expression of VP2 and VP3 in NDV vectors is a viable strategy for the development of an effective IBDV vaccine, providing a safe and effective method for controlling IBD in poultry.
Collapse
Affiliation(s)
- Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xiaoling Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ming Liang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yaxin Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
2
|
Kurtbeyoğlu GA, Akan M. Molecular characterisation of IBDV isolates in Turkey revealed reassortant strains. Br Poult Sci 2024; 65:699-707. [PMID: 39076144 DOI: 10.1080/00071668.2024.2379950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024]
Abstract
1. Infectious bursal disease (IBD) is an acute, highly contagious viral disease of chickens caused by a virus (IBDV) which has a bi-segmented, double-stranded RNA genome. It has five viral proteins in its structure; the VP1 gene is encoded in segment B and the other four are in segment A.2. In this study, bursae of Fabricius and spleen samples taken from chickens suspected of having clinical or subclinical IBD from a total of 50 chicken flocks located in different geographical regions of Turkey were examined.3. The RT-PCR analysis of the VP2 gene showed that 30 of the 50 samples (60%) tested positive. Eight positive isolates were chosen and RT-PCR was performed to amplify the VP1 gene.4. The study showed that reassortant field strains that cause clinical or subclinical disease are currently circulating in broiler flocks across Turkey.
Collapse
Affiliation(s)
- G A Kurtbeyoğlu
- Faculty of Veterinary Medicine, Department of Microbiology, Ankara University, Ankara, Turkey
| | - M Akan
- Faculty of Veterinary Medicine, Department of Microbiology, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Shahsavandi S, Ebrahimi MM, Nazari A, Khalili I. Effects of ultra-filtration purification of infectious bursal disease virus on immune responses and cytokine activation in specific pathogen free chickens. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:49-55. [PMID: 38464605 PMCID: PMC10921136 DOI: 10.30466/vrf.2023.2009350.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 03/12/2024]
Abstract
Purification is an important step in the production of viral vaccines that strongly affects product recovery and subsequent immune responses. The present study was carried out with the aim of improving the purification of infectious bursal disease virus (IBDV) by the tangential flow filtration (TFF) method. Then, the effect of the purified virus on the induction of immune responses against IBDV in specific pathogen free (SPF) chickens was investigated. The IBD07IR strain was propagated in embryonated SPF eggs. The virus was purified using a 100 kDa cassette. The quality of the recovered viruses was evaluated by titration. A total number of 60 SPF chickens were randomly divided into three groups (n = 20) and received the concentrated viral antigen, commercial live IBDV vaccine and phosphate-buffered saline at the age of 3 weeks by eye drop method. The bursa of Fabricius was examined histopathologically for possible changes. Sera were collected at 1-week intervals from day 0 until the end of 6 weeks after vaccination. The IBDV-specific antibody levels, induction of cell-mediated immunity and mRNA expression levels of cytokines were evaluated. The results showed that despite a relative raise in virus titer from 7.66 to 8.17 embryo infectious dose (EID)50 mL-1 following purification, both the purified IBDV and commercial vaccine are able to induce strong immune responses against the virus. Within a context of egg-based IBDV vaccine production, a single-step TFF can be applied for the relatively purification. This platform requires a further study in the selection of multiple membranes to optimize the operating conditions and final product.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mohammad Majid Ebrahimi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ali Nazari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Iraj Khalili
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
4
|
Castón JR. The Basic Architecture of Viruses. Subcell Biochem 2024; 105:55-78. [PMID: 39738944 DOI: 10.1007/978-3-031-65187-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses are elegant macromolecular assemblies and constitute a paradigm of the economy of genomic resources; they must use simple general principles to complete their life cycles successfully. Viruses need only one or a few different capsid structural subunits to build an infectious particle, which is possible for two reasons: extensive use of symmetry and built-in conformational flexibility. Although viruses come in many shapes and sizes, two major symmetric assemblies are found: icosahedral and helical. The enormous diversity of virus structures appears to be derived from one or a limited number of basic schemes that became more complex by consecutive incorporation of additional structural elements. The intrinsic structural polymorphism of the viral proteins results in dynamic capsids. The study of virus structures is required to understand structure-function relationships, including those related to morphogenesis and antigenicity, among many others. These structural foundations can be extended to other macromolecular complexes that control many fundamental processes in biology.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Bao K, Qi X, Li Y, Gong M, Wang X, Zhu P. Cryo-EM structures of infectious bursal disease viruses with different virulences provide insights into their assembly and invasion. Sci Bull (Beijing) 2022; 67:646-654. [PMID: 36546126 DOI: 10.1016/j.scib.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
Infectious bursal disease virus (IBDV) causes a highly contagious immunosuppressive disease in chickens, resulting in significant economic losses. The very virulent IBDV strain (vvIBDV) causes high mortality and cannot adapt to cell culture. In contrast, attenuated strains of IBDV are nonpathogenic to chickens and can replicate in cell culture. Although the crystal structure of T = 1 subviral particles (SVP) has been reported, the structures of intact IBDV virions with different virulences remain elusive. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the vvIBDV Gx strain and its attenuated IBDV strain Gt at resolutions of 3.3 Å and 3.2 Å, respectively. Compared with the structure of T = 1 SVP, IBDV contains several conserved structural elements unique to the T = 13 virion. Notably, the N-terminus of VP2, which is disordered in the SVP, interacts with the SF strand of VP2 from its neighboring trimer, completing the β-sheet of the S domain. This interaction helps to form a contact network by tethering the adjacent VP2 trimers and contributes to the assembly and stability of the IBDV virion. Structural comparison of the Gx and Gt strains indicates that H253 and T284 in the VP2 P domain of Gt, in contrast to Gx, form a hydrogen bond with a positively charged surface. This suggests that the combined mutations Q253H/A284T and the associated structural electrostatic features of the attenuated Gt strain may contribute to adaptation to cell culture. Furthermore, a negatively charged groove in VP2, containing an integrin binding IDA motif that is critical for virus attachment, was speculated to play a functional role in the entry of IBDV.
Collapse
Affiliation(s)
- Keyan Bao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minqing Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Lian J, Wang Z, Xu Z, Pang Y, Leng M, Tang S, Zhang X, Qin J, Chen F, Lin W. Pathogenicity and molecular characterization of infectious bursal disease virus in China. Poult Sci 2021; 101:101502. [PMID: 34871986 PMCID: PMC8649399 DOI: 10.1016/j.psj.2021.101502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Infectious bursal disease virus (IBDV) caused an acute and highly contagious infectious disease, resulting in considerable economic losses in the world poultry industry. Although this disease was well-controlled under the widely use of commercial vaccines, the novel variant IBDV strain emerged due to the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported the epidemic and pathogenicity of IBDV in Hubei Province from May to August 2020. We isolated 12 IBDV strains from the broiler flocks, including 9 novel variants, 2 very virulent strains and 1 medium virulent strain. Interestingly, we identified a series of changes of amino acid sites in the VP2. Further analysis indicated that the novel variant IBDV strains caused damage to bursa of fabricius and spleen, leading to immunosuppression. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the evolution of IBDV.
Collapse
Affiliation(s)
- Jiamin Lian
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, P.R. China
| | - Zhouyi Xu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, P.R. China
| | - Yanling Pang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mei Leng
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Shuang Tang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xinheng Zhang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.; Key Laboratory of Healthy Animal Husbandry and Environmental Control of Guangdong Province, Guangzhou, 510642, Guangdong, P.R. China
| | - Jianping Qin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, P.R. China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.; Key Laboratory of Healthy Animal Husbandry and Environmental Control of Guangdong Province, Guangzhou, 510642, Guangdong, P.R. China
| | - Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.; Key Laboratory of Healthy Animal Husbandry and Environmental Control of Guangdong Province, Guangzhou, 510642, Guangdong, P.R. China..
| |
Collapse
|
7
|
Marusic C, Drissi Touzani C, Bortolami A, Donini M, Zanardello C, Lico C, Rage E, Fellahi S, El Houadfi M, Terregino C, Baschieri S. The expression in plants of an engineered VP2 protein of Infectious Bursal Disease Virus induces formation of structurally heterogeneous particles that protect from a very virulent viral strain. PLoS One 2021; 16:e0247134. [PMID: 33592038 PMCID: PMC7886152 DOI: 10.1371/journal.pone.0247134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious Bursal Disease Virus (IBDV), the etiological agent of Gumboro disease, causes mortality and immunosuppression in chickens and major losses to poultry industry worldwide. The IBDV major capsid protein VP2 is considered the best candidate for the production of novel subunit vaccines. This structural protein contains the major conformational epitopes responsible for the induction of IBDV neutralizing antibodies in chickens and has been demonstrated able to form supramolecular structures in yeast and insect cells. The aim of this study was to express an engineered version of the VP2 protein (His-pVP2) to verify its ability to self-assemble into virus-like particles in plants. The recombinant VP2 was transiently expressed by agroinfiltration in Nicotiana benthamiana and transmission electron microscopy of sucrose density gradient fractions revealed the presence of a mixed population of differently shaped particles ranging from spherical capsids, with a diameter between ~25 and ~70 nm, to tubular structures, with variable length (from 100 to 400 nm). The recombinant VP2-based particles when used for the intramuscular immunization of specific-pathogen-free chicks resulted able to induce the production of anti-IBDV specific antibodies at titers comparable to those induced by a commercial vaccine. Moreover, all the immunized birds survived to the challenge with a Moroccan very virulent IBDV strain with no major histomorphological alterations of the Bursa of Fabricius, similarly to what obtained with the commercial inactivated vaccine.
Collapse
Affiliation(s)
- Carla Marusic
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Charifa Drissi Touzani
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Alessio Bortolami
- Specialized Virology and Experimental Research Department Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Claudia Zanardello
- Diagnostic Services, Histopathology, Parasitology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Emile Rage
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Siham Fellahi
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Mohammed El Houadfi
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Calogero Terregino
- Specialized Virology and Experimental Research Department Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| |
Collapse
|
8
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Li G, Kuang H, Guo H, Cai L, Chu D, Wang X, Hu J, Rong J. Development of a recombinant VP2 vaccine for the prevention of novel variant strains of infectious bursal disease virus. Avian Pathol 2020; 49:557-571. [PMID: 32658552 DOI: 10.1080/03079457.2020.1791314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since 2017, novel variant strains of infectious bursal disease virus (nvIBDV) have been detected in China, while the current vaccines on the market against very virulent IBDV have limited protection against this subtype virus. In this context, a strain of the virus has been isolated, and sequencing alignment and bird regression experiments showed that the virus was IBDV, belonging to the nvIBDV subtype (and named IBDV FJ-1812). Furthermore, the Escherichia coli expression system was used to successfully express soluble nvIBDV rVP2, which is specifically recognized by an anti-IBDV standard serum and anti-nvIBDV positive serum, and could be assembled into 14 - 17 nm virus-like particles. Based on the purified nvIBDV rVP2, we developed an IBDV FJ-1812 VP2 VLP vaccine at a laboratory scale to evaluate protection by this vaccine; in addition, we also prepared an IBDV JZ 3/02 VP2 subunit vaccine targeting very virulent IBDV and evaluated its cross-protection against nvIBDV. Results of bird experiments showed that the nvIBDV rVP2 vaccine could induce high titres of specific antibodies, completely protect the bursa of Fabricius from viral infection, and provide 100% immune protection to SPF and Ross 308 broiler chickens. Furthermore, the IBDV JZ 3/02 VP2 subunit vaccine targeting very virulent IBDV could provide 60% protection for SPF chickens and 80% protection for Ross 308 broiler chickens. This report provides important technical supports for the prevention and control of nvIBDV in the future.
Collapse
Affiliation(s)
- Guopan Li
- College of Life Science, Yangtze University, Jingzhou, People's Republic of China
| | - Hongyan Kuang
- The First Clinical Medical College, Yangtze University, Jingzhou, People's Republic of China
| | - Huaxiong Guo
- Department of Pathology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, People's Republic of China
| | - Lianshen Cai
- State Key Laboratory of Animal Genetic Engineering Vaccine, Qingdao Yebio Biological Engineering Co., Ltd., Qingdao, People's Republic of China
| | - Dianfeng Chu
- State Key Laboratory of Animal Genetic Engineering Vaccine, Qingdao Yebio Biological Engineering Co., Ltd., Qingdao, People's Republic of China
| | - Xi Wang
- College of Life Science, Yangtze University, Jingzhou, People's Republic of China
| | - Jixiong Hu
- College of Life Science, Yangtze University, Jingzhou, People's Republic of China
| | - Jun Rong
- College of Life Science, Yangtze University, Jingzhou, People's Republic of China.,State Key Laboratory of Animal Genetic Engineering Vaccine, Qingdao Yebio Biological Engineering Co., Ltd., Qingdao, People's Republic of China
| |
Collapse
|
10
|
Gómez E, Cassani MF, Lucero MS, Parreño V, Chimeno Zoth S, Berinstein A. Development of diagnostic tools for IBDV detection using plants as bioreactors. AMB Express 2020; 10:95. [PMID: 32436057 PMCID: PMC7239984 DOI: 10.1186/s13568-020-01029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds, thus causing important economic losses in the poultry industry. Multimeric particles with different architectures based on the capsid protein VP2 have been widely produced for different purposes. We hereby show the production and easy recovery of IBDV subviral particles (SVP) from transiently transformed Nicotiana benthamiana. The SVP, which were observed by electronic microscopy, proved to be antigenically and immunogenically similar to the virion. Indeed, anti-IBDV antibodies from samples of infected birds recognized these SVP and, when injected intramuscularly, these subviral particles also evoked a humoral immune response in chickens. We developed an in-house ELISA using SVP as coating reagent that demonstrated to be highly accurate and in good agreement with a commercial ELISA. This study demonstrates that the recombinant antigen generated and the technology used to produce it are suitable for developing a diagnostic tool against Infectious bursal disease.
Collapse
|
11
|
Nandhakumar D, Rajasekhar R, Logeshwaran G, Ravishankar C, Sebastian SR, Anoopraj R, Sumod K, Mani BK, Chaithra G, Deorao CV, John K. Identification and genetic analysis of infectious bursal disease viruses from field outbreaks in Kerala, India. Trop Anim Health Prod 2020; 52:989-997. [PMID: 31705355 DOI: 10.1007/s11250-019-02084-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/11/2019] [Indexed: 02/02/2023]
Abstract
Recurrent infectious bursal disease (IBD) outbreaks were reported in different regions of Kerala, India. This paper reports the comparative genetic analysis of the hypervariable region of the VP2 gene of IBD virus isolates from the field outbreaks in Kerala. In phylogenetic analysis, the obtained field isolates fall into genogroup 1 and 3. In genogroup 3, all vvIBDV isolates shared a common ancestor with other south Indian isolates but isolates 9/CVASP/IBDV, 10/CVASP/IBDV, 12/CVASP/IBDV, 14/CVASP/IBDV and 17/CVASP/IBDV are most recently evolved and are diverged from the south Indian isolates. The amino acid sequence of 22 isolates was analysed, out of which 18 had conserved amino acids which were characteristic of vvIBDV. All the vvIBDV isolates obtained in the study had phenylalanine and valine at the position 240 and 294, respectively, similar to recently evolved Indian IBDV isolate (MDI14). But we observed T269A and S299N mutations in the isolate 6/CVASP/IBDV, and it is the first report of such mutations at these positions in India IBDV isolates. The isolate 11/CVASP/IBDV had a unique mutation of V225A which is not yet reported in IBDV isolates. Two isolates (15/CVASP/IBDV and 18/CVASP/IBDV) were 100% amino acid similar to intermediate plus vaccine strain. The isolates 8/CVASP/IBDV/VP2 and 19/CVASP/IBDV had amino acids unique for the intermediate vaccine with mutations observed at H253Q and V256I in 19/CVASP/IBDV, T270A and novel mutation N279Y in isolate 8/CVASP/IBDV. These two isolates had non-virulent classical heptapeptide sequence 'SWSARGS'; nevertheless, they produce field outbreaks of IBD. This is the first report of genetic characterisation of IBDV in Kerala, India.
Collapse
Affiliation(s)
- D Nandhakumar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - R Rajasekhar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India.
| | - G Logeshwaran
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - Chintu Ravishankar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - Stephy Rose Sebastian
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - R Anoopraj
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - K Sumod
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - Binu K Mani
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - G Chaithra
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - Chandankar Vaidehi Deorao
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| | - Koshy John
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Lakkidi P.O., Pookode, Kerala, 673576, India
| |
Collapse
|
12
|
Wang Y, Fan L, Jiang N, Gao L, Li K, Gao Y, Liu C, Cui H, Pan Q, Zhang Y, Wang X, Qi X. Naturally occurring cell-adapted classic strain of infectious bursal disease virus. Vet Microbiol 2020; 243:108620. [PMID: 32273006 DOI: 10.1016/j.vetmic.2020.108620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/25/2023]
Abstract
Infectious bursal disease virus (IBDV), the etiological agent of infectious bursal disease (IBD), is a variable RNA virus of Avibirnavirus. Some artificially attenuated vaccine strains of IBDV can adapt to cell culture of chicken embryo fibroblast (CEF) cell or its immortalized cell line DF1 in vitro while wild-type IBDV cannot. In this study, for the first time, a naturally occurring cell-adapted classic strain (genogroup 1) of IBDV named IBD17JL01 was identified in China. Animal experiments showed that IBD17JL01 could severely damage the central immune organ of infected chickens. Sequence analysis of the full-length genome revealed the peculiar molecular characteristics of IBD17JL01 with a few amino acid substitutions that might be involved in cell-tropism, antigenicity, and virulence of IBDV. Identification of this novel strain is beneficial to our understanding of the complexity of the epidemiology of IBDV. And the expansion of viral cell-tropism might increase the potential risk of the reassortment of different IBDVs including the live vaccines.
Collapse
Affiliation(s)
- Yulong Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Linjin Fan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Nan Jiang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
13
|
Zafar M, Shah MA, Shehzad A, Tariq A, Habib M, Muddassar M, Shah MS, Iqbal M, Hemmatzadeh F, Rahman M. Characterization of the highly immunogenic VP2 protrusion domain as a diagnostic antigen for members of Birnaviridae family. Appl Microbiol Biotechnol 2020; 104:3391-3402. [PMID: 32088761 PMCID: PMC7222154 DOI: 10.1007/s00253-020-10458-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/13/2022]
Abstract
Birnaviridae is a family of viruses (birnaviruses) which consists of four genera, members of which cause diseases in fish, birds, mollusks, and insects. The genome of birnaviruses encodes the highly immunogenic VP2 capsid protein. In order to demonstrate that the VP2 protein can be exploited as a diagnostic antigen for birnaviruses, we developed a lateral flow assay based on the surface-exposed VP2 protrusion domain of a representative birnavirus, infectious bursal disease virus (IBDV) of serotype 1 which causes the highly devastating infectious bursal disease in chickens. The biophysical characterization of the purified domain reveals that the domain predominantly consists of β-sheets, exists in a trimeric form, and remains folded at high temperatures, making it suitable for diagnostic purposes. Owing to its highly immunogenic nature and excellent biophysical properties, we employed the VP2 protrusion domain in a gold nanoparticle-based lateral flow assay for rapid detection of anti-IBDV antibodies in serum samples of infected chickens. Our results indicate that the domain binds anti-IBDV antibodies with high specificity during laboratory testing and on-site testing. The lateral flow assay reported here yields comparable results in a qualitative manner as obtained through a commercial enzyme-linked immunosorbent assay (ELISA). As VP2 is a common capsid protein of birnaviruses, the lateral flow assay can be generalized for other birnaviruses, and members of Tetraviridae and Nodaviridae families which contain homologous VP2 capsid proteins.
Collapse
Affiliation(s)
- Maryam Zafar
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan.,School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia
| | - Majid Ali Shah
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Aamir Shehzad
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Anam Tariq
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Mudasser Habib
- Vaccine Development Group, Animal Sciences Division, NIAB, Faisalabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS-University Islamabad, Park Road, Islamabad, Pakistan
| | | | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia.
| | - Moazur Rahman
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. .,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan. .,School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia.
| |
Collapse
|
14
|
Drissi Touzani C, Fellahi S, Fassi Fihri O, Gaboun F, Khayi S, Mentag R, Lico C, Baschieri S, El Houadfi M, Ducatez M. Complete genome analysis and time scale evolution of very virulent infectious bursal disease viruses isolated from recent outbreaks in Morocco. INFECTION GENETICS AND EVOLUTION 2019; 77:104097. [PMID: 31678239 DOI: 10.1016/j.meegid.2019.104097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022]
Abstract
Emerging of very virulent infectious bursal disease virus (vvIBDV) genotype in poultry flocks in Morocco were characterized. VP2 sequence analysis showed that the strains of Moroccan vvIBDV genotypes clustered separately from classic and vaccine strains reference of IBDV. The full-length genome of four Moroccan vvIBDV strains was determined, in order to get a more exhaustive molecular characterization allowing to conduct the evolution time scale and speculations on their origin. In a phylogenetic tree, nucleotide sequences of segment A and B formed a common branch with those vvIBDV references strains published in GenBank, but they clearly grouped into a distinct subcluster. An alignment of deduced amino acid sequences segment B, confirmed the presence of the conserved TDN tripeptide found in all of the vvIBDV genotype and revealed the presence of 2 substitutions I472L and E688D specific for the vvIBDV Moroccan isolates. The deduced amino acid sequences of segment A genes showed the presence of the "signature" typical of the vvIBDV genotype and revealed the presence of 7 aa substitutions specific for the vvIBDV Moroccan strains. The evolution rate for IBDV VP2 gene was estimated at 5.875 × 10-4 substitutions/site/year. The estimation of the time to most common recent ancestor of Moroccan vvIBDV based on the VP2 sequences available was 31 years, corresponding to 3 years earlier than the first vvIBDV case detection in layers in the country.
Collapse
Affiliation(s)
- Charifa Drissi Touzani
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaires, IAV Hassan II, BP 6202. Rabat- Instituts, 10000 Rabat, Morocco.
| | - Siham Fellahi
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaires, IAV Hassan II, BP 6202. Rabat- Instituts, 10000 Rabat, Morocco.
| | - Ouafaa Fassi Fihri
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaires, IAV Hassan II, BP 6202. Rabat- Instituts, 10000 Rabat, Morocco.
| | - Fatima Gaboun
- Unité de Biotechnologie, CRRA-Rabat, Institut National de la Recherche Agronomique INRA, Avenue Mohamed Belarbi Alaoui B.P 6356, Rabat- Instituts, 10101 Rabat, Morocco.
| | - Slimane Khayi
- Unité de Biotechnologie, CRRA-Rabat, Institut National de la Recherche Agronomique INRA, Avenue Mohamed Belarbi Alaoui B.P 6356, Rabat- Instituts, 10101 Rabat, Morocco.
| | - Rachid Mentag
- Unité de Biotechnologie, CRRA-Rabat, Institut National de la Recherche Agronomique INRA, Avenue Mohamed Belarbi Alaoui B.P 6356, Rabat- Instituts, 10101 Rabat, Morocco.
| | - Chiara Lico
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove tecnologie, l'Energia e lo Sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy.
| | - Selene Baschieri
- Laboratory of Biotechnology, Agenzia Nazionale per le Nuove tecnologie, l'Energia e lo Sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy.
| | - Mohammed El Houadfi
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaires, IAV Hassan II, BP 6202. Rabat- Instituts, 10000 Rabat, Morocco.
| | - Mariette Ducatez
- Université de Toulouse, INRA, ENVT, IHAP, F- 31076 Toulouse, France.
| |
Collapse
|
15
|
SUMO1 Modification Facilitates Avibirnavirus Replication by Stabilizing Polymerase VP1. J Virol 2019; 93:JVI.02227-18. [PMID: 30842328 DOI: 10.1128/jvi.02227-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
SUMOylation is a posttranslational modification that has crucial roles in diverse cellular biological pathways and in various viral life cycles. In this study, we found that the VP1 protein, the RNA-dependent RNA polymerase of avibirnavirus infectious bursal disease virus (IBDV), regulates virus replication by SUMOylation during infection. Our data demonstrated that the polymerase VP1 is efficiently modified by small ubiquitin-like modifier 1 (SUMO1) in avibirnavirus-infected cell lines. Mutation analysis showed that residues 404I and 406I within SUMO interaction motif 3 of VP1 constitute the critical site for SUMO1 modification. Protein stability assays showed that SUMO1 modification enhanced significantly the stability of polymerase VP1 by inhibiting K48-linked ubiquitination. A reverse genetic approach showed that only IBDV with I404C/T and I406C/F mutations of VP1 could be rescued successfully with decreased replication ability. Our data demonstrated that SUMO1 modification is essential to sustain the stability of polymerase VP1 during IBDV replication and provides a potential target for designing antiviral drugs targeting IBDV.IMPORTANCE SUMOylation is an extensively discussed posttranslational modification in diverse cellular biological pathways. However, there is limited understanding about SUMOylation of viral proteins of IBDV during infection. In the present study, we revealed a SUMO1 modification of VP1 protein, the RNA-dependent RNA polymerase of avibirnavirus infectious bursal disease virus (IBDV). The required site of VP1 SUMOylation comprised residues 404I and 406I of SUMO interaction motif 3, which was essential for maintaining its stability by inhibiting K48-linked ubiquitination. We also showed that IBDV with SUMOylation-deficient VP1 had decreased replication ability. These data demonstrated that the SUMOylation of IBDV VP1 played an important role in maintaining IBDV replication.
Collapse
|
16
|
Ubiquitination Is Essential for Avibirnavirus Replication by Supporting VP1 Polymerase Activity. J Virol 2019; 93:JVI.01899-18. [PMID: 30429342 PMCID: PMC6340032 DOI: 10.1128/jvi.01899-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication. Ubiquitination is critical for several cellular physical processes. However, ubiquitin modification in virus replication is poorly understood. Therefore, the present study aimed to determine the presence and effect of ubiquitination on polymerase activity of viral protein 1 (VP1) of avibirnavirus. We report that the replication of avibirnavirus is regulated by ubiquitination of its VP1 protein, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV). In vivo detection revealed the ubiquitination of VP1 protein in IBDV-infected target organs and different cells but not in purified IBDV particles. Further analysis of ubiquitination confirms that VP1 is modified by K63-linked ubiquitin chain. Point mutation screening showed that the ubiquitination site of VP1 was at the K751 residue in the C terminus. The K751 ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. Polymerase activity assays indicated that the K751 ubiquitination at the C terminus of VP1 enhanced its polymerase activity. The K751-to-R mutation of VP1 protein did not block the rescue of IBDV but decreased the replication ability of IBDV. Our data demonstrate that the ubiquitination of VP1 is crucial to regulate its polymerase activity and IBDV replication. IMPORTANCE Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication.
Collapse
|
17
|
Mertens J, Bondia P, Allende-Ballestero C, Carrascosa JL, Flors C, Castón JR. Mechanics of Virus-like Particles Labeled with Green Fluorescent Protein. Biophys J 2018; 115:1561-1568. [PMID: 30249401 DOI: 10.1016/j.bpj.2018.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Nanoindentation with an atomic force microscope was used to investigate the mechanical properties of virus-like particles (VLPs) derived from the avian pathogen infectious bursal disease virus, in which the major capsid protein was modified by fusion with enhanced green fluorescent protein (EGFP). These VLPs assemble as ∼70-nm-diameter T = 13 icosahedral capsids with large cargo space. The effect of the insertion of heterologous proteins in the capsid was characterized in the elastic regime, revealing that EGFP-labeled chimeric VLPs are more rigid than unmodified VLPs. In addition, nanoindentation measurements beyond the elastic regime allowed the determination of brittleness and rupture force limit. EGFP incorporation results in a complex shape of the indentation curve and lower critical indentation depth of the capsid, rendering more brittle particles as compared to unlabeled VLPs. These observations suggest the presence of a complex and more constrained network of interactions between EGFP and the capsid inner shell. These results highlight the effect of fluorescent protein insertion on the mechanical properties of these capsids. Because the physical properties of the viral capsid are connected to viral infectivity and VLP transport and disassembly, our results are relevant to design improved labeling strategies for fluorescence tracking in living cells.
Collapse
Affiliation(s)
- Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | | | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
18
|
The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J Virol 2018; 92:JVI.00968-18. [PMID: 30021893 DOI: 10.1128/jvi.00968-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.
Collapse
|
19
|
Capsid Structure of dsRNA Fungal Viruses. Viruses 2018; 10:v10090481. [PMID: 30205532 PMCID: PMC6164181 DOI: 10.3390/v10090481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Most fungal, double-stranded (ds) RNA viruses lack an extracellular life cycle stage and are transmitted by cytoplasmic interchange. dsRNA mycovirus capsids are based on a 120-subunit T = 1 capsid, with a dimer as the asymmetric unit. These capsids, which remain structurally undisturbed throughout the viral cycle, nevertheless, are dynamic particles involved in the organization of the viral genome and the viral polymerase necessary for RNA synthesis. The atomic structure of the T = 1 capsids of four mycoviruses was resolved: the L-A virus of Saccharomyces cerevisiae (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). These capsids show structural variations of the same framework, with 60 asymmetric or symmetric homodimers for ScV-L-A and PsV-F, respectively, monomers with a duplicated similar domain for PcV, and heterodimers of two different proteins for RnQV1. Mycovirus capsid proteins (CP) share a conserved α-helical domain, although the latter may carry different peptides inserted at preferential hotspots. Insertions in the CP outer surface are likely associated with enzymatic activities. Within the capsid, fungal dsRNA viruses show a low degree of genome compaction compared to reoviruses, and contain one to two copies of the RNA-polymerase complex per virion.
Collapse
|
20
|
Pascual E, Mata CP, Carrascosa JL, Castón JR. Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:494001. [PMID: 29083994 PMCID: PMC7103166 DOI: 10.1088/1361-648x/aa96ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hollow protein containers are widespread in nature, and include virus capsids as well as eukaryotic and bacterial complexes. Protein cages are studied extensively for applications in nanotechnology, nanomedicine and materials science. Their inner and outer surfaces can be modified chemically or genetically, and the internal cavity can be used to template, store and/or arrange molecular cargos. Virus capsids and virus-like particles (VLP, noninfectious particles) provide versatile platforms for nanoscale bioengineering. Study of capsid protein self-assembly into monodispersed particles, and of VLP structure and biophysics is necessary not only to understand natural processes, but also to infer how these platforms can be redesigned to furnish novel functional VLP. Here we address the assembly dynamics of infectious bursal disease virus (IBDV), a complex icosahedral virus. IBDV has a ~70 nm-diameter T = 13 capsid with VP2 trimers as the only structural subunits. During capsid assembly, VP2 is synthesized as a precursor (pVP2) whose C terminus is cleaved. The pVP2 C terminus has an amphipathic helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, necessary for control of assembly, 466/456-residue pVP2 intermediates bearing this helix assemble into VLP only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for genetic insertion of proteins (cargo space ~78 000 nm3). We established an in vitro assembly/disassembly system of HT-VP2-466-based VLP for heterologous nucleic acid packaging and/or encapsulation of drugs and other molecules. HT-VP2-466 (empty) capsids were disassembled and reassembled by dialysis against low-salt/basic pH and high-salt/acid pH buffers, respectively, thus illustrating the reversibility in vitro of IBDV capsid assembly. HT-VP2-466 VLP also packed heterologous DNA by non-specific confinement during assembly. These and previous results establish the bases for biotechnological applications based on the IBDV capsid and its ability to incorporate exogenous proteins and nucleic acids.
Collapse
Affiliation(s)
- Elena Pascual
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
21
|
Mosley YYC, Wu CC, Lin TL. A free VP3 C-terminus is essential for the replication of infectious bursal disease virus. Virus Res 2017; 232:77-79. [PMID: 28189698 DOI: 10.1016/j.virusres.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Ching Ching Wu
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Tsang Long Lin
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
22
|
Heterodimers as the Structural Unit of the T=1 Capsid of the Fungal Double-Stranded RNA Rosellinia necatrix Quadrivirus 1. J Virol 2016; 90:11220-11230. [PMID: 27707923 DOI: 10.1128/jvi.01013-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-Å-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.
Collapse
|
23
|
Wang M, Pan Q, Lu Z, Li K, Gao H, Qi X, Gao Y, Wang X. An optimized, highly efficient, self-assembled, subvirus-like particle of infectious bursal disease virus (IBDV). Vaccine 2016; 34:3508-14. [PMID: 27164218 DOI: 10.1016/j.vaccine.2016.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/01/2022]
Abstract
Infectious bursal disease virus (IBDV) causes immunosuppression in young chickens, leading to increased susceptibility to other diseases and a reduction in the immune response to other vaccines. Thus, IBDV results in great economic losses to the poultry industry. The most effective method of prevention is vaccination. However, medium-virulence vaccines can cause bursal pathological damage and immunosuppression. Here, we describe a safer, self-assembled, subvirus-like particle (sVP) vaccine without a complex purification process. The IBD-VP2 gene was cloned into Pichia pastoris, and the expressed protein self-assembled into T=1 sVPs (∼23nm). Immunization experiments showed that the sVP vaccine elicited high IBDV-neutralizing antibodies in each group, and all birds survived challenge with very virulent IBDV (vvIBDV). Additionally, IBDV RNA was not detected, and sterile immunity was achieved. In conclusion, the IBD-sVP is a suitable candidate for a recombinant subunit vaccine against IBDV.
Collapse
Affiliation(s)
- Miao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Zhen Lu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
24
|
Molecular characteristics and evolutionary analysis of a very virulent infectious bursal disease virus. SCIENCE CHINA-LIFE SCIENCES 2015; 58:731-8. [PMID: 26245145 DOI: 10.1007/s11427-015-4900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023]
Abstract
Infectious bursal disease virus (IBDV) poses a significant threat to the poultry industry. Viral protein 2 (VP2), the major structural protein of IBDV, has been subjected to frequent mutations that have imparted tremendous genetic diversity to the virus. To determine how amino acid mutations may affect the virulence of IBDV, we built a structural model of VP2 of a very virulent strain of IBDV identified in China, vvIBDV Gx, and performed a molecular dynamics simulation of the interaction between virulence sites. The study showed that the amino acid substitutions that distinguish vvIBDV from attenuated IBDV (H253Q and T284A) favor a hydrophobic and flexible conformation of β-barrel loops in VP2, which could promote interactions between the virus and potential IBDV-specific receptors. Population sequence analysis revealed that the IBDV strains prevalent in East Asia show a significant signal of positive selection at virulence sites 253 and 284. In addition, a signal of co-evolution between sites 253 and 284 was identified. These results suggest that changes in the virulence of IBDV may result from both the interaction and the co-evolution of multiple amino acid substitutions at virulence sites.
Collapse
|
25
|
Kumar CS, Hazarika NMJ, Kumar S. Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus. Arch Virol 2015; 160:2359-66. [DOI: 10.1007/s00705-015-2505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
26
|
Sahare AA, Bedekar MK, Jain SK, Singh A, Singh S, Sarkhel BC. Inhibition of infectious bursal disease virus by vector delivered SiRNA in cell culture. Anim Biotechnol 2015; 26:58-64. [PMID: 25153457 DOI: 10.1080/10495398.2014.886584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µ g. The result showed ∼95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.
Collapse
Affiliation(s)
- Amol Ashok Sahare
- a Animal Biotechnology Center, JNKVV Campus, Adhartal , Jabalpur , Madhya Pradesh , India
| | | | | | | | | | | |
Collapse
|
27
|
Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J Virol 2014; 89:2563-74. [PMID: 25520499 DOI: 10.1128/jvi.03025-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. IMPORTANCE Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign antigens, which could be a conserved epitope to elicit broadly neutralizing antibodies or several variable epitopes effective against a large number of viral strains. We report the biochemical, structural, and immunological characterization of chimeric VLPs derived from infectious bursal disease virus (IBDV), an important poultry pathogen. To test the potential of IBDV VLPs as a vaccine vehicle, we used the enhanced green fluorescent protein and two fragments derived from the hemagglutinin and the M2 matrix protein of the human murine-adapted influenza virus. The IBDV capsid protein fused to influenza virus peptides formed assemblies able to protect mice against viral challenge. Our studies establish the basis for a new generation of multivalent IBDV-based vaccines.
Collapse
|
28
|
An influenza A virus hemagglutinin (HA) epitope inserted in and expressed from several loci of the infectious bursal disease virus genome induces HA-specific antibodies. Arch Virol 2014; 159:2033-41. [DOI: 10.1007/s00705-014-2036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
29
|
Rescue of infectious birnavirus from recombinant ribonucleoprotein complexes. PLoS One 2014; 9:e87790. [PMID: 24498196 PMCID: PMC3907549 DOI: 10.1371/journal.pone.0087790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Birnaviruses are unconventional members of the icosahedral double-stranded (dsRNA) RNA virus group. The main differential birnavirus trait is the lack of the inner icosahedral transcriptional core, a ubiquitous structure conserved in all other icosahedral dsRNA viruses, that shelters the genome from cellular dsRNA sensors and provide the enzymatic machinery to produce and extrude mature messenger RNAs. In contrast, birnaviral particles enclose ribonucleoprotein (RNP) complexes formed by the genome segments, the dsRNA-binding VP3 polypeptide and the virus-encoded RNA polymerase (RdRp). The presence of RNPs suggests that the birnavirus replication program might exhibit significant differences with respect to those of prototypal dsRNA viruses. However, experimental evidences supporting this hypothesis are as yet scarce. Of particular relevance for the understanding of birnavirus replication is to determine whether RNPs act as intracellular capsid-independent transcriptional units. Our study was focused to answer this question using the infectious bursal disease virus (IBDV), the best characterized birnavirus, as model virus. Here, we describe the intracellular assembly of functional IBDV RNPs in the absence of the virus-encoded VP2 capsid polypeptide. Recombinant RNPs are generated upon coexpression of the IBDV VP1 and RdRp polypeptides and transfection of purified virus dsRNA. Presented data show that recombinant RNPs direct the expression of the IBDV polypeptide repertoire and the production of infectious virus in culture cells. Results described in this report constitute the first direct experimental evidence showing that birnaviral RNPs are intracellularly active in the absence of the virus capsid. This finding is consistent with presented data indicating that RNP formation precedes virus assembly in IBDV-infected cells, and supports the recently proposed IBDV replication model entailing the release of RNPs during the initial stages of the infection. Indeed, results presented here also support the previously proposed evolutionary connection between birnaviruses and positive-strand single-stranded RNA viruses.
Collapse
|
30
|
Recombinant infectious bursal disease virus expressing Newcastle disease virus (NDV) neutralizing epitope confers partial protection against virulent NDV challenge in chickens. Antiviral Res 2014; 101:1-11. [DOI: 10.1016/j.antiviral.2013.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/09/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
|
31
|
Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One 2013; 8:e83210. [PMID: 24376665 PMCID: PMC3869785 DOI: 10.1371/journal.pone.0083210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0-10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90-100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40-60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast-derived IBD-VP2 can therefore induce a specific and protective immune response against IBDV without affecting the growth rate of chickens.
Collapse
|
32
|
Jackwood DJ. Multivalent virus-like-particle vaccine protects against classic and variant infectious bursal disease viruses. Avian Dis 2013; 57:41-50. [PMID: 23678728 DOI: 10.1637/10312-080212-reg.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nucleotide sequences that encode the pVP2 proteins from a variant infectious bursal disease virus (IBDV) strain designated USA08MD34p and a classic IBDV strain designated Mo195 were produced with the use of reverse-transcriptase-polymerase chain reaction (RT-PCR) and cloned into a pGEM-T Easy vector. A nucleotide sequence that encodes the VP3 protein was also produced from the USA08MD34p viral genome with the use of RT-PCR and cloned into a pGEM-T Easy vector. The VP3 and pVP2 clones were inserted into the pVL1393 baculovirus transfer vector and sequenced to confirm their orientation to the promoter and to ensure they contained uninterrupted open reading frames. Recombinant baculoviruses were constructed by transfection in Sf9 cells. Three recombinant baculoviruses were produced and contained the USA08MD34p-VP3, USA08MD34p-pVP2, or Mo195-pVP2 genomic sequences. Virus-like particles (VLPs) were observed with the use of transmission electron microscopy when the USA08MD34p-VP3 baculovirus was co-inoculated into Sf9 cells with either of the pVP2 constructs. VLPs were also observed when the USA08MD34p-pVP2 and Mo195-pVP2 were coexpressed with USA08MD34p-VP3. These multivalent VLPs contained both classic and variant pVP2 molecules. Stability tests demonstrated the VLPs were stable at 4 and 24 C for 8 wk. The USA08MD34p, Mo195, and multivalent VLPs were used to vaccinate chickens. They induced an IBDV-specific antibody response that was detected by enzyme-linked immunosorbent assay (ELISA), and virus-neutralizing antibodies were detected in vitro. Chickens vaccinated with the multivalent VLPs were protected from a virulent variant IBDV strain (V1) and a virulent classic IBDV strain (STC). The results indicate the multivalent VLPs maintained the antigenic integrity of the variant and classic viruses and have the potential to serve as a multivalent vaccine for use in breeder-flock vaccination programs.
Collapse
Affiliation(s)
- Daral J Jackwood
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
33
|
Li K, Gao L, Gao H, Qi X, Gao Y, Qin L, Wang Y, Wang X. Codon optimization and woodchuck hepatitis virus posttranscriptional regulatory element enhance the immune responses of DNA vaccines against infectious bursal disease virus in chickens. Virus Res 2013; 175:120-7. [PMID: 23631937 DOI: 10.1016/j.virusres.2013.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to evaluate the protective efficacy of DNA vaccines against infectious bursal disease virus (IBDV) in chickens and to determine whether codon optimization and the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) could improve the immunogenicity of the DNA vaccines. The VP2, VP243 and codon-optimized VP243 genes of IBDV were cloned into pCAGGS vector, and designated as pCAGVP2, pCAGVP243 and pCAGoptiVP243, respectively. Plasmids pCAGWVP243 and pCAGWoptiVP243 carrying the WPRE elements were also constructed as DNA vaccines. To evaluate vaccine efficacy, 2-week-old chickens were injected intramuscularly with the constructed plasmids twice at 2-week intervals and challenged with very virulent IBDV 2 weeks post-boost. Plasmid pCAGVP243 induced better immune responses than pCAGVP2. Chickens immunized with pCAGoptiVP243 and pCAGWVP243 had higher levels of antibody titers, lymphoproliferation responses and cytokine production compared with pCAGVP243. Furthermore, plasmid pCAGWoptiVP243 induced the highest levels of immune responses among the groups. After challenged, DNA vaccines pCAGVP2, pCAGVP243, pCAGoptiVP243, pCAGWVP243 and pCAGWoptiVP243 conferred protection for 33%, 60%, 80%, 87% and 100% of chickens, respectively, as evidenced by the absence of clinical signs, mortality, and bursal atrophy. These results indicate that codon optimization and WPRE could enhance the protective efficacy of DNA vaccines against IBDV and these two approaches could work together synergistically in a single DNA vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Birnaviridae Infections/mortality
- Birnaviridae Infections/pathology
- Birnaviridae Infections/prevention & control
- Cell Proliferation
- Chickens
- Cytokines/metabolism
- Gene Expression
- Hepatitis B Virus, Woodchuck/genetics
- Infectious bursal disease virus/genetics
- Infectious bursal disease virus/immunology
- Injections, Intramuscular
- Leukocytes, Mononuclear/immunology
- Protein Biosynthesis
- Regulatory Elements, Transcriptional
- Survival Analysis
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bahar MW, Sarin LP, Graham SC, Pang J, Bamford DH, Stuart DI, Grimes JM. Structure of a VP1-VP3 complex suggests how birnaviruses package the VP1 polymerase. J Virol 2013; 87:3229-36. [PMID: 23283942 PMCID: PMC3592137 DOI: 10.1128/jvi.02939-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/27/2012] [Indexed: 11/20/2022] Open
Abstract
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.
Collapse
Affiliation(s)
- Mohammad W. Bahar
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - L. Peter Sarin
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Stephen C. Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jances Pang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| |
Collapse
|
35
|
Mosley YYC, Wu CC, Lin TL. Infectious bursal disease virus rescued efficiently with 3′ authentic RNA sequence induces humoral immunity without bursal atrophy. Vaccine 2013. [DOI: 10.1016/j.vaccine.2012.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Abstract
Viruses are elegant macromolecular assemblies and constitute a paradigm of the economy of genomic resources; they must use simple general principles and a very limited number of viral components to complete their life cycles successfully. Viruses need only one or a few different capsid structural subunits to build an infectious particle, which is made possible because of two reasons: extensive use of symmetry and built-in conformational flexibility. Although viruses from the numerous virus families come in many shapes and sizes, two major types of symmetric assemblies are found: icosahedral and helical particles. The enormous diversity of virus structures might be derived from one or a limited number of basic schemes that has become more complex by consecutive incorporation of structural elements. The intrinsic structural polymorphism of the viral proteins and other observations indicate that capsids are dynamic structures. Study of virus structures is required to understand structure-function relationships in viruses, including those related to morphogenesis and antigenicity. These structural foundations can be extended to other macromolecular complexes that control many fundamental processes in biology.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain,
| | | |
Collapse
|
37
|
Irigoyen N, Castón JR, Rodríguez JF. Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly. J Biol Chem 2012; 287:24473-82. [PMID: 22619177 DOI: 10.1074/jbc.m112.356113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
38
|
Le Nouën C, Toquin D, Müller H, Raue R, Kean KM, Langlois P, Cherbonnel M, Eterradossi N. Different domains of the RNA polymerase of infectious bursal disease virus contribute to virulence. PLoS One 2012; 7:e28064. [PMID: 22253687 PMCID: PMC3258228 DOI: 10.1371/journal.pone.0028064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses.
Collapse
Affiliation(s)
- Cyril Le Nouën
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Didier Toquin
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Raue
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Patrick Langlois
- Virus Genetics and Biosecurity Unit, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Martine Cherbonnel
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
- * E-mail:
| |
Collapse
|
39
|
Taghavian O, Mandal MK, Steinmetz NF, Rasche S, Spiegel H, Fischer R, Schillberg S. A potential nanobiotechnology platform based on infectious bursal disease subviral particles. RSC Adv 2012. [PMID: 28638593 DOI: 10.1039/c2ra00857b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe a novel nanobiotechnology platform based on subviral particles derived from infectious bursal disease virus (IBD-SVPs). The major virus coat protein VP2 assembles into spherical, 23 nm SVPs when expressed as a heterologous protein in the yeast Pichia pastoris. We recovered up to 38 mg of IBD-SVPs at > 95% purity from 1 L of recombinant yeast culture. The purified particles were able to tolerate organic solvents up to 20% concentration (ethanol or dimethylsulfoxide), they resisted temperatures up to 65 °C and remained stable over a wide pH range (2.5-9.0). We achieved bioconjugation to the amine groups of lysine residues and to the carboxyl groups of aspartic and glutamic acid residues, allowing the functionalization of IBD-SVPs with biotin. The accessibility of surface amine groups was measured using Alexa Fluor 488 N-hydroxysuccinimide (NHS) ester, an amine-selective fluorescent dye, revealing that approximately 60 dye molecules were attached to the surface of each particle. IBD-SVPs can therefore be exploited as a robust and versatile nanoscaffold to display diverse functional ligands.
Collapse
Affiliation(s)
- Omid Taghavian
- Fraunhofer IME, Forckenbeckstraβe 6, 52074, Aachen, Germany
| | - Manoj K Mandal
- Fraunhofer IME, Forckenbeckstraβe 6, 52074, Aachen, Germany
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Stefan Rasche
- Fraunhofer IME, Forckenbeckstraβe 6, 52074, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer IME, Forckenbeckstraβe 6, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer IME, Forckenbeckstraβe 6, 52074, Aachen, Germany.,Institut für Molekulare Biotechnologie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | | |
Collapse
|
40
|
Chen YY, Hsieh MK, Tung CY, Wu CC, Lin TL. Infectious bursal disease DNA vaccination conferring protection by delayed appearance and rapid clearance of invading viruses. Arch Virol 2011; 156:2241-50. [DOI: 10.1007/s00705-011-1127-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/17/2011] [Indexed: 11/29/2022]
|
41
|
Abstract
The delivery of foreign epitopes by a replicating nonpathogenic avian infectious bursal disease virus (IBDV) was explored. The aim of the study was to identify regions in the IBDV genome that are amenable to the introduction of a sequence encoding a foreign peptide. By using a cDNA-based reverse genetics system, insertions or substitutions of sequences encoding epitope tags (FLAG, c-Myc, or hepatitis C virus epitopes) were engineered in the open reading frames of a nonstructural protein (VP5) and the capsid protein (VP2). Attempts were also made to generate recombinant IBDV that displayed foreign epitopes in the exposed loops (P(BC) and P(HI)) of the VP2 trimer. We successfully recovered recombinant IBDVs expressing c-Myc and two different virus-neutralizing epitopes of human hepatitis C virus (HCV) envelope glycoprotein E in the VP5 region. Western blot analyses with anti-c-Myc and anti-HCV antibodies provided positive identification of both the c-Myc and HCV epitopes that were fused to the N terminus of VP5. Genetic analysis showed that the recombinants carrying the c-Myc/HCV epitopes maintained the foreign gene sequences and were stable after several passages in Vero and 293T cells. This is the first report describing efficient expression of foreign peptides from a replication-competent IBDV and demonstrates the potential of this virus as a vector.
Collapse
|
42
|
Proteolytic products of the porcine reproductive and respiratory syndrome virus nsp2 replicase protein. J Virol 2010; 84:10102-12. [PMID: 20668084 DOI: 10.1128/jvi.01208-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV) was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G(1196)|G(1197) dipeptide in transfected CHO cells. Here the proteolytic cleavage of PRRSV nsp2 was further investigated in virally infected MARC-145 cells by using two recombinant PRRSVs expressing epitope-tagged nsp2. The data revealed that PRRSV nsp2 exists as different isoforms, termed nsp2a, nsp2b, nsp2c, nsp2d, nsp2e, and nsp2f, during PRRSV infection. Moreover, on the basis of deletion mutagenesis and antibody probing, these nsp2 species appeared to share the same N terminus but to differ in their C termini. The largest protein, nsp2a, corresponded to the nsp2 product identified in transfected CHO cells. nsp2b and nsp2c were processed within or near the transmembrane (TM) region, presumably at or near the conserved sites G(981)|G(982) and G(828)|G(829)|G(830), respectively. The C termini for nsp2d, -e, and -f were mapped within the nsp2 middle hypervariable region, but no conserved cleavage sites could be definitively predicted. The larger nsp2 species emerged almost simultaneously in the early stage of PRRSV infection. Pulse-chase analysis revealed that all six nsp2 species were relatively stable and had low turnover rates. Deletion mutagenesis revealed that the smaller nsp2 species (e.g., nsp2d, nsp2e, and nsp2f) were not essential for viral replication in cell culture. Lastly, we identified a cellular chaperone, named heat shock 70-kDa protein 5 (HSPA5), that was strongly associated with nsp2, which may have important implications for PRRSV replication. Overall, these findings indicate that PRRSV nsp2 is increasingly emerging as a multifunctional protein and may have a profound impact on PRRSV replication and viral pathogenesis.
Collapse
|
43
|
Crystal structure of an Aquabirnavirus particle: insights into antigenic diversity and virulence determinism. J Virol 2009; 84:1792-9. [PMID: 20007275 DOI: 10.1128/jvi.01536-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious pancreatic necrosis virus (IPNV), a pathogen of salmon and trout, imposes a severe toll on the aquaculture and sea farming industries. IPNV belongs to the Aquabirnavirus genus in the Birnaviridae family of bisegmented double-stranded RNA viruses. The virions are nonenveloped with a T=13l icosahedral capsid made by the coat protein VP2, the three-dimensional (3D) organization of which is known in detail for the family prototype, the infectious bursal disease virus (IBDV) of poultry. A salient feature of the birnavirus architecture is the presence of 260 trimeric spikes formed by VP2, projecting radially from the capsid. The spikes carry the principal antigenic sites as well as virulence and cell adaptation determinants. We report here the 3.4-A resolution crystal structure of a subviral particle (SVP) of IPNV, containing 20 VP2 trimers organized with icosahedral symmetry. We show that, as expected, the SVPs have a very similar organization to the IBDV counterparts, with VP2 exhibiting the same overall 3D fold. However, the spikes are significantly different, displaying a more compact organization with tighter packing about the molecular 3-fold axis. Amino acids controlling virulence and cell culture adaptation cluster differently at the top of the spike, i.e., in a central bowl in IBDV and at the periphery in IPNV. In contrast, the spike base features an exposed groove, conserved across birnavirus genera, which contains an integrin-binding motif. Thus, in addition to revealing the viral antigenic determinants, the structure suggests that birnaviruses interact with different receptors for attachment and for cell internalization during entry.
Collapse
|
44
|
Euprosterna elaeasa virus genome sequence and evolution of the Tetraviridae family: emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology 2009; 397:145-54. [PMID: 19954807 DOI: 10.1016/j.virol.2009.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/08/2009] [Accepted: 10/28/2009] [Indexed: 11/21/2022]
Abstract
The Tetraviridae is a family of non-enveloped positive-stranded RNA insect viruses that is defined by the T=4 symmetry of virions. We report the complete Euprosterna elaeasa virus (EeV) genome sequence of 5698 nt with no poly(A) tail and two overlapping open reading frames, encoding the replicase and capsid precursor, with approximately 67% amino acid identity to Thosea asigna virus (TaV). The N-terminally positioned 17 kDa protein is released from the capsid precursor by a NPGP motif. EeV has 40 nm non-enveloped isometric particles composed of 58 and 7 kDa proteins. The 3'-end of TaV/EeV is predicted to form a conserved pseudoknot. Replicases of TaV and EeV include a newly delineated VPg signal mediating the protein priming of RNA synthesis in dsRNA Birnaviridae. Results of rooted phylogenetic analysis of replicase and capsid proteins are presented to implicate recombination between monopartite tetraviruses, involving autonomization of a sgRNA, in the emergence of bipartite tetraviruses. They are also used to revise the Tetraviridae taxonomy.
Collapse
|
45
|
Saugar I, Irigoyen N, Luque D, Carrascosa JL, Rodríguez JF, Castón JR. Electrostatic interactions between capsid and scaffolding proteins mediate the structural polymorphism of a double-stranded RNA virus. J Biol Chem 2009; 285:3643-3650. [PMID: 19933276 DOI: 10.1074/jbc.m109.075994] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Capsid proteins that adopt distinct conformations constitute a paradigm of the structural polymorphism of macromolecular assemblies. We show the molecular basis of the flexibility mechanism of VP2, the capsid protein of the double-stranded RNA virus infectious bursal disease virus. The initial assembly, a procapsid-like structure, is built by the protein precursor pVP2 and requires VP3, the other infectious bursal disease virus major structural protein, which acts as a scaffold. The pVP2 C-terminal region, which is proteolyzed during virus maturation, contains an amphipathic alpha-helix that acts as a molecular switch. In the absence of VP3, efficient virus-like particle assembly occurs when the structural unit is a VP2-based chimeric protein with an N-terminal-fused His(6) tag. The His tag has a positively charged N terminus and a negatively charged C terminus, both important for virion-like structure assembly. The charge distributions of the VP3 C terminus and His tag are similar. We tested whether the His tag emulates the role of VP3 and found that the presence of a VP3 C-terminal peptide in VP2-based chimeric proteins resulted in the assembly of virus-like particles. We analyzed the electrostatic interactions between these two charged morphogenetic peptides, in which a single residue was mutated to impede the predicted interaction, followed by a compensatory double mutation to rescue electrostatic interactions. The effects of these mutations were monitored by following the virus-like and/or virus-related assemblies. Our results suggest that the basic face of the pVP2 amphipathic alpha-helix interacts with the acidic region of the VP3 C terminus and that this interaction is essential for VP2 acquisition of competent conformations for capsid assembly.
Collapse
Affiliation(s)
- Irene Saugar
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Nerea Irigoyen
- Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José L Carrascosa
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José F Rodríguez
- Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José R Castón
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
46
|
Irigoyen N, Garriga D, Navarro A, Verdaguer N, Rodríguez JF, Castón JR. Autoproteolytic activity derived from the infectious bursal disease virus capsid protein. J Biol Chem 2009; 284:8064-72. [PMID: 19144647 PMCID: PMC2658100 DOI: 10.1074/jbc.m808942200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/19/2008] [Indexed: 11/06/2022] Open
Abstract
Viral capsids are envisioned as vehicles to deliver the viral genome to the host cell. They are nonetheless dynamic protective shells, as they participate in numerous processes of the virus cycle such as assembly, genome packaging, binding to receptors, and uncoating among others. In so doing, they undergo large scale conformational changes. Capsid proteins with essential enzymatic activities are being described more frequently. Here we show that the precursor (pVP2) of the capsid protein VP2 of the infectious bursal disease virus (IBDV), an avian double-stranded RNA virus, has autoproteolytic activity. The pVP2 C-terminal region is first processed by the viral protease VP4. VP2 Asp-431, lying in a flexible loop preceding the C-terminal most alpha-helix, is responsible for the endopeptidase activity that cleaves the Ala-441-Phe-442 bond to generate the mature VP2 polypeptide. The D431N substitution abrogates the endopeptidase activity without introducing a significant conformational change, as deduced from the three-dimensional structure of the mutant protein at 3.1 A resolution. Combinations of VP2 polypeptides containing mutations affecting either the cleavage or the catalytic site revealed that pVP2 proteolytic processing is the result of a monomolecular cis-cleavage reaction. The D431N mutation does not affect the assembly of the VP2 trimers that constitute the capsid building block. Although VP2 D431N trimers are capable of assembling both pentamers and hexamers, expression of a polyprotein gene harboring the D431N mutation does not result in the assembly of IBDV virus-like particles. Reverse genetics analyses demonstrate that pVP2 self-processing is essential for the assembly of an infectious IBDV progeny.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Sun H, Shen P, Zhang X, Xia X. Effective inhibition of infectious bursal disease virus replication by recombinant avian adeno-associated virus-delivered microRNAs. J Gen Virol 2009; 90:1417-1422. [PMID: 19264609 DOI: 10.1099/vir.0.010520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a novel antiviral strategy against a variety of virus infections. Infectious bursal disease virus (IBDV) causes an economically important disease in young chickens. This study demonstrated efficient inhibition of IBDV replication by recombinant avian adeno-associated virus (rAAAV)-delivered anti-VP1 and anti-VP2 microRNAs (miRNAs). In the viral vector-transduced cells, sequence-specific miRNA expression was detected by poly(A)-tailed RT-PCR. Reporter assays using a pVP2-EGFP vector showed significant and long-lasting inhibition of VP2-EGFP expression in cells transduced with anti-VP2 miRNA-expressing rAAAV-RFPmiVP2E, but not with the control miRNA-expressing rAAAV-RFPmiVP2con or anti-VP1 miRNA-expressing rAAAV-RFPmiVP1. Semi-quantitative RT-PCR and/or virus titration assays showed a significant inhibitory effect on homologous IBDV replication in cells transduced with rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E. For two heterologous IBDV isolates, transduction with rAAAV-RFPmiVP1 led to slightly weaker but similar inhibitory effects, whereas transduction with rAAAV-RFPmiVP2E resulted in significantly weaker and different inhibitory effects. These results suggest that rAAAV could act as an efficient vector for miRNA delivery into avian cells and that VP1 is the more suitable target for interfering with IBDV replication using RNAi technology.
Collapse
Affiliation(s)
- Yongjuan Wang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Pengpeng Shen
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Xinyu Zhang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| | - Xiaoli Xia
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, PR China
| |
Collapse
|
48
|
Delgui L, Oña A, Gutiérrez S, Luque D, Navarro A, Castón JR, Rodríguez JF. The capsid protein of infectious bursal disease virus contains a functional alpha 4 beta 1 integrin ligand motif. Virology 2009; 386:360-72. [PMID: 19243806 DOI: 10.1016/j.virol.2008.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/31/2023]
Abstract
Infectious bursal disease virus (IBDV), a member of the dsRNA Birnaviridae family, is an important immunosuppressive avian pathogen. We have identified a strictly conserved amino acid triplet matching the consensus sequence used by fibronectin to bind the alpha 4 beta 1 integrin within the protruding domain of the IBDV capsid polypeptide. We show that a single point mutation on this triplet abolishes the cell-binding activity of IBDV-derived subviral particles (SVP), and abrogates the recovering of infectious IBDV by reverse genetics without affecting the overall SVP architecture. Additionally, we demonstrate that the presence of the alpha 4 beta 1 heterodimer is a critical determinant for the susceptibility of murine BALB/c 3T3 cells to IBDV binding and infectivity. Our data suggests that the IBDV might also use the alpha 4 beta 1 integrin as a specific binding receptor in avian cells.
Collapse
Affiliation(s)
- Laura Delgui
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Calle Darwin no. 3,28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Sun H, Shen P, Zhang X, Xia X, Xia B. Effective inhibition of replication of infectious bursal disease virus by miRNAs delivered by vectors and targeting the VP2 gene. J Virol Methods 2009; 165:127-32. [PMID: 19189848 DOI: 10.1016/j.jviromet.2008.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
RNA interference (RNAi) is a potent mechanism against a variety of viral infections. Infectious bursal disease virus (IBDV) causes an important disease economically in chickens, which is difficult to control. As part of the development of viral vector-mediated RNAi strategy against the disease, five anti-VP2 small interference RNAs were selected for construction of microRNA (miRNA) expression vectors tailored for avian cells. Transfection of DF-1 cells with the five vectors resulted in significant inhibition of VP2-EGFP reporter gene expression. More effective miVP2A and miVP2E were selected for further study using single or double miRNA expression vectors. After demonstration of specific miRNA expression, the gene silencing effects were determined in the vector-transfected and IBDV-infected cells. Reverse transcriptase PCR and virus titration showed inhibition rates from 76 to 82% on VP2 expression and significant decreases in virus titer by individual and co-expressed miVP2A and miVP2E. The inhibitory effects lasted for at least 120 h after infection with IBDV. These data suggest that the miRNAs targeting the VP2 can inhibit efficiently replication of IBDV.
Collapse
Affiliation(s)
- Yongjuan Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, China
| | | | | | | | | | | |
Collapse
|
50
|
Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. Proc Natl Acad Sci U S A 2009; 106:2148-52. [PMID: 19164552 DOI: 10.1073/pnas.0808498106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses are a paradigm of the economy of genome resources, reflected in their multiplication strategy and for their own structure. Although there is enormous structural diversity, the viral genome is always enclosed within a proteinaceous coat, and most virus species are haploid; the only exception to this rule are the highly pleomorphic enveloped viruses. We performed an in-depth characterization of infectious bursal disease virus (IBDV), a non-enveloped icosahedral dsRNA virus with a bisegmented genome. Up to 6 natural populations can be purified, which share a similar protein composition but show higher sedimentation coefficients as particle density increases. Stoichiometry analysis of their genome indicated that these biophysical differences correlate with the copy number of dsRNA segments inside the viral capsid. This is a demonstration of a functional polyploid icosahedral dsRNA virus. We show that IBDV particles with greater genome copy number have higher infectivity rates. Our results show an unprecedented replicative strategy for dsRNA viruses and suggest that birnaviruses are living viral entities encompassing numerous functional and structural characteristics of positive and negative ssRNA viruses.
Collapse
|