1
|
Kalinichenko SV, Ramadan L, Kruglova NA, Balagurov KI, Lukashina MI, Mazurov DV, Shepelev MV. A New Chimeric Antibody against the HIV-1 Fusion Inhibitory Peptide MT-C34 with a High Affinity and Fc-Mediated Cellular Cytotoxicity. BIOLOGY 2024; 13:675. [PMID: 39336102 PMCID: PMC11428423 DOI: 10.3390/biology13090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Peptides from heptad repeat (HR1 and HR2) regions of gp41 are effective inhibitors of HIV-1 entry that block the fusion of viral and cellular membranes, but the generation of antibodies highly specific for these peptides is challenging. We have previously described a mouse hybridoma that recognizes MT-C34-related peptides derived from HR2. It was used for the selection of HIV-1-resistant CD4 lymphocytes engineered to express the MT-C34 peptide via a CRISPR/Cas9-mediated knock-in into the CXCR4 locus. In this study, we cloned variable domains of this antibody and generated a recombinant chimeric antibody (chAb) by combining it with the constant regions of the humanized antibody Trastuzumab. The new chAb displayed a high specificity and two-fold higher level of affinity than the parental mouse monoclonal antibody. In addition, chAb mediated up to 27-43% of the antibody-dependent cellular cytotoxicity towards cells expressing MT-C34 on their surface. The anti-MT-C34 chAb can be easily generated using plasmids available for the research community and can serve as a valuable tool for the detection, purification, and even subsequent elimination of HIV-1-resistant CD4 cells or CAR cells engineered to fight HIV-1 infection.
Collapse
Affiliation(s)
- Svetlana V Kalinichenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lama Ramadan
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalia A Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Konstantin I Balagurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina I Lukashina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Dmitriy V Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail V Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
2
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
3
|
Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. mBio 2022; 13:e0358921. [PMID: 35073736 PMCID: PMC8787484 DOI: 10.1128/mbio.03589-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that short peptides from the heptad repeat 2 (HR2) domain of gp41 expressed on the cell surface are more potent inhibitors of HIV-1 entry than soluble analogs. However, their therapeutic potential has only been examined using lentiviral vectors. Here, we aimed to develop CRISPR/Cas9-based fusion inhibitory peptide knock-in (KI) technology for the generation and selection of HIV-1-resistant T cells. First, we embedded a series of HIV-1 fusion inhibitory peptides in CD52, the shortest glycosylphosphatidylinositol (GPI)-anchored protein, which efficiently delivers epitope tags to the cell surface and maintains a sufficient level of KI. Among the seven peptides tested, MT-C34, HP-23L, and 2P23 exhibited significant activity against both cell-free and cell-to-cell HIV-1 infection. The shed variant of MT-C34 provided insufficient protection against HIV-1 due to its low concentration in the culture medium. Using Cas9 plasmids or ribonucleoprotein electroporation and peptide-specific antibodies, we sorted CEM/R5 cells with biallelic KI of MT-C34 and 2P23 peptides at the CXCR4 locus. In combination, these peptides provided a higher level of protection than individual KI. By extending homology arms and cloning donor DNA into a plasmid containing signals for nuclear localization, we achieved KI of MT-C34 into the CXCR4 locus and HIV-1 proviral DNA at levels of up to 35% in the T-cell line and up to 4 to 5% in primary CD4 lymphocytes. Compared to lentiviral delivery, KI resulted in the higher MT-C34 surface expression and stronger protection of lymphocytes from HIV-1. Thus, we demonstrate that KI is a viable strategy for peptide-based therapy of HIV infection. IMPORTANCE HIV is a human lentivirus that infects CD4-positive immune cells and, when left untreated, manifests in the fatal disease known as AIDS. Antiretroviral therapy (ART) does not lead to viral clearance, and HIV persists in the organism as a latent provirus. One way to control infection is to increase the population of HIV-resistant CD4 lymphocytes via entry molecule knockout or expression of different antiviral genes. Peptides from the heptad repeat (HR) domain of gp41 are potent inhibitors of HIV-1 fusion, especially when designed to express on the cell surface. Individual gp41 peptides encoded by therapeutic lentiviral vectors have been evaluated and some have entered clinical trials. However, a CRISPR/Cas9-based gp41 peptide delivery platform that operates through concomitant target gene modification has not yet been developed due to low knock-in (KI) rates in primary cells. Here, we systematically evaluated the antiviral activity of different HR2 peptides cloned into the shortest carrier molecule, CD52. The resulting small-size transgene constructs encoding selected peptides, in combination with improvements to enhance donor vector nuclear import, helped to overcome precise editing restrictions in CD4 lymphocytes. Using KI into CXCR4, we demonstrated different options for target gene modification, effectively protecting edited cells against HIV-1.
Collapse
|
4
|
Chen Y, Jin H, Tang X, Li L, Geng X, Zhu Y, Chong H, He Y. Cell membrane-anchored anti-HIV single-chain antibodies and bifunctional inhibitors targeting the gp41 fusion protein: new strategies for HIV gene therapy. Emerg Microbes Infect 2021; 11:30-49. [PMID: 34821542 PMCID: PMC8735881 DOI: 10.1080/22221751.2021.2011616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging studies indicate that infusion of HIV-resistant cells could be an effective strategy to achieve a sterilizing or functional cure. We recently reported that glycosylphosphatidylinositol (GPI)-anchored nanobody or a fusion inhibitory peptide can render modified cells resistant to HIV-1 infection. In this study, we comprehensively characterized a panel of newly isolated HIV-1-neutralizing antibodies as GPI-anchored inhibitors. Fusion genes encoding the single-chain variable fragment (scFv) of 3BNC117, N6, PGT126, PGT128, 10E8, or 35O22 were constructed with a self-inactivating lentiviral vector, and they were efficiently expressed in the lipid raft sites of target cell membrane without affecting the expression of HIV-1 receptors (CD4, CCR5 and CXCR4). Significantly, transduced cells exhibited various degrees of resistance to cell-free HIV-1 infection and cell-associated HIV-1 transmission, as well as viral Env-mediated cell–cell fusion, with the cells modified by GPI-10E8 showing the most potent and broad anti-HIV activity. In mechanism, GPI-10E8 also interfered with the processing of viral Env in transduced cells and attenuated the infectivity of progeny viruses. By genetically linking 10E8 with a fusion inhibitor peptide, we subsequently designed a group of eight bifunctional constructs as cell membrane-based inhibitors, designated CMI01∼CMI08, which rendered cells completely resistant to HIV-1, HIV-2, and simian immunodeficiency virus (SIV). In human CD4+ T cells, GPI-10E8 and its bifunctional derivatives blocked both CCR5- and CXCR4-tropic HIV-1 isolates efficiently, and the modified cells displayed robust survival selection under HIV-1 infection. Therefore, our studies provide new strategies for generating HIV-resistant cells, which can be used alone or with other gene therapy approaches.
Collapse
Affiliation(s)
- Yue Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoran Tang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
5
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Khalid K, Padda J, Wijeratne Fernando R, Mehta KA, Almanie AH, Al Hennawi H, Padda S, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in HIV Infection. Cureus 2021; 13:e17507. [PMID: 34595076 PMCID: PMC8468364 DOI: 10.7759/cureus.17507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major global public health issue. Despite this, the only treatment available in mainstay is antiretroviral therapy. This treatment is not curative, it needs to be used lifelong, and there are many issues with compliance and side effects. In recent years, stem cell therapy has shown promising results in HIV management, and it can have a major impact on the future of HIV treatment and prevention. The idea behind anti-HIV hematopoietic stem/progenitor cell (HSPC)-directed gene therapy is to genetically engineer patient-derived (autologous) HSPC to acquire an inherent resistance to HIV infection. Multiple stem-cell-based gene therapy strategies have been suggested that may infer HIV resistance including anti-HIV gene reagents and gene combinatorial strategies giving rise to anti-HIV gene-modified HSPCs. Such stem cells can hamper HIV progression in the body by interrupting key stages of HIV proliferation: viral entry, viral integration, HIV gene expression, etc.Hematopoietic stem cells (HSCs) may also protect leukocytes from being infected. Additionally, genetically engineered HSCs have the ability to continuously produce protected immune cells by prolonged self-renewal that can attack the HIV virus. Therefore, a successful treatment strategy has the potential to control the infection at a steady state and eradicate HIV from patients. This will allow for a potential future benefit with stem cell therapy in HIV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, AdventHealth & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
7
|
Zhou Y, Maldini CR, Jadlowsky J, Riley JL. Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. J Infect Dis 2021; 223:38-45. [PMID: 33586770 DOI: 10.1093/infdis/jiaa223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected individuals successfully controlling viral replication via antiretroviral therapy often have a compromised HIV-specific T-cell immune response due to the lack of CD4 T-cell help, viral escape, T-cell exhaustion, and reduction in numbers due to the withdrawal of cognate antigen. A successful HIV cure strategy will likely involve a durable and potent police force that can effectively recognize and eliminate remaining virus that may emerge decades after an individual undergoes an HIV cure regimen. T cells are ideally suited to serve in this role, but given the state of the HIV-specific T-cell response, it is unclear how to best restore HIV-specific T-cell activity prior initiation of a HIV cure strategy. Here, we review several strategies of generating HIV-specific T cells ex vivo that are currently being tested in the clinic and discuss how infused T cells can be part of an HIV cure strategy.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Jadlowsky
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Schwarze LI, Sonntag T, Wild S, Schmitz S, Uhde A, Fehse B. Automated production of CCR5-negative CD4 +-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Ther 2021; 28:572-587. [PMID: 33867524 PMCID: PMC8455337 DOI: 10.1038/s41434-021-00259-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Ex-vivo gene editing in T lymphocytes paves the way for novel concepts of immunotherapy. One of those strategies is directed at the protection of CD4+-T helper cells from HIV infection in HIV-positive individuals. To this end, we have developed and optimised a CCR5-targeting TALE nuclease, CCR5-Uco-hetTALEN, mediating high-efficiency knockout of C-C motif chemokine receptor 5 (CCR5), the HIV co-receptor essential during initial infection. Clinical translation of the knockout approach requires up-scaling of the manufacturing process to clinically relevant cell numbers in accordance with good manufacturing practice (GMP). Here we present a GMP-compatible mRNA electroporation protocol for the automated production of CCR5-edited CD4+-T cells in the closed CliniMACS Prodigy system. The automated process reliably produced high amounts of CCR5-edited CD4+-T cells (>1.5 × 109 cells with >60% CCR5 editing) within 12 days. Of note, about 40% of total large-scale produced cells showed a biallelic CCR5 editing, and between 25 and 42% of produced cells had a central memory T-cell phenotype. In conclusion, transfection of primary T cells with CCR5-Uco-hetTALEN mRNA is readily scalable for GMP-compatible production and hence suitable for application in HIV gene therapy.
Collapse
Affiliation(s)
- Lea Isabell Schwarze
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Tanja Sonntag
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wild
- grid.59409.310000 0004 0552 5033Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Sabrina Schmitz
- grid.59409.310000 0004 0552 5033Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Almut Uhde
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site, Hamburg, Germany
| |
Collapse
|
10
|
Cornu TI, Mussolino C, Müller MC, Wehr C, Kern WV, Cathomen T. HIV Gene Therapy: An Update. Hum Gene Ther 2021; 32:52-65. [PMID: 33349126 DOI: 10.1089/hum.2020.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Progress in antiretroviral therapy has considerably reduced mortality and notably improved the quality of life of individuals infected with HIV since the pandemic began some 40 years ago. However, drug resistance, treatment-associated toxicity, adherence to medication, and the need for lifelong therapy have remained major challenges. While the development of an HIV vaccine has remained elusive, considerable progress in developing innovative cell and gene therapies to treat HIV infection has been made. This includes immune cell therapies, such as chimeric antigen receptor T cells to target HIV infected cells, as well as gene therapies and genome editing strategies to render the patient's immune system resistant to HIV. Nonetheless, all of these attempts to achieve a functional cure in HIV patients have failed thus far. This review introduces the clinical as well as the technical challenges of treating HIV infection, and summarizes the most promising cell and gene therapy concepts that have aspired to bring about functional cure for people living with HIV. It further discusses socioeconomic aspects as well as future directions for developing cell and gene therapies with a potential to be an effective one-time treatment with minimal toxicity.
Collapse
Affiliation(s)
- Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias C Müller
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Infectious Diseases, Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Infection Medicine, Medical Care Center, MVZ Clotten, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Freiburg, Germany
| | - Winfried V Kern
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Infectious Diseases, Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Therapeutic Efficacy and Resistance Selection of a Lipopeptide Fusion Inhibitor in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.00384-20. [PMID: 32404526 DOI: 10.1128/jvi.00384-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance.IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.
Collapse
|
12
|
Maldini CR, Gayout K, Leibman RS, Dopkin DL, Mills JP, Shan X, Glover JA, Riley JL. HIV-Resistant and HIV-Specific CAR-Modified CD4 + T Cells Mitigate HIV Disease Progression and Confer CD4 + T Cell Help In Vivo. Mol Ther 2020; 28:1585-1599. [PMID: 32454027 PMCID: PMC7335752 DOI: 10.1016/j.ymthe.2020.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
HIV infection preferentially depletes HIV-specific CD4+ T cells, thereby impairing antiviral immunity. In this study, we explored the therapeutic utility of adoptively transferred CD4+ T cells expressing an HIV-specific chimeric antigen receptor (CAR4) to restore CD4+ T cell function to the global HIV-specific immune response. We demonstrated that CAR4 T cells directly suppressed in vitro HIV replication and eliminated virus-infected cells. Notably, CAR4 T cells containing intracellular domains (ICDs) derived from the CD28 receptor family (ICOS and CD28) exhibited superior effector functions compared to the tumor necrosis factor receptor (TNFR) family ICDs (CD27, OX40, and 4-1BB). However, despite demonstrating limited in vitro efficacy, only HIV-resistant CAR4 T cells expressing the 4-1BBζ ICD exhibited profound expansion, concomitant with reduced rebound viremia after antiretroviral therapy (ART) cessation and protection of CD4+ T cells (CAR-) from HIV-induced depletion in humanized mice. Moreover, CAR4 T cells enhanced the in vivo persistence and efficacy of HIV-specific CAR-modified CD8+ T cells expressing the CD28ζ ICD, which alone exhibited poor survival. Collectively, these studies demonstrate that HIV-resistant CAR4 T cells can directly control HIV replication and augment the virus-specific CD8+ T cell response, highlighting the therapeutic potential of engineered CD4+ T cells to engender a functional HIV cure.
Collapse
Affiliation(s)
- Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Gayout
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel S Leibman
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derrick L Dopkin
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua P Mills
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaochuan Shan
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua A Glover
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
14
|
A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J Virol 2019; 93:JVI.01177-19. [PMID: 31462566 DOI: 10.1128/jvi.01177-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Emerging studies demonstrate that the antiviral activity of viral fusion inhibitor peptides can be dramatically improved when being chemically or genetically anchored to the cell membrane, where viral entry occurs. We previously reported that the short-peptide fusion inhibitor 2P23 and its lipid derivative possess highly potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). To develop a sterilizing or functional-cure strategy, here we genetically linked 2P23 and two control peptides (HIV-1 fusion inhibitor C34 and hepatitis B virus [HBV] entry inhibitor 4B10) with a glycosylphosphatidylinositol (GPI) attachment signal. As expected, GPI-anchored inhibitors were efficiently expressed on the plasma membrane of transduced TZM-bl cells and primarily directed to the lipid raft site without interfering with the expression of CD4, CCR5, and CXCR4. GPI-anchored 2P23 (GPI-2P23) completely protected TZM-bl cells from infections of divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide (T20)-resistant mutants. GPI-2P23 also rendered the cells resistant to viral envelope-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission. Moreover, GPI-2P23-modified human CD4+ T cells (CEMss-CCR5) fully blocked both R5- and X4-tropic HIV-1 isolates and displayed a robust survival advantage over unmodified cells during HIV-1 infection. In contrast, it was found that GPI-anchored C34 was much less effective in inhibiting HIV-2, SIV, and T20-resistant HIV-1 mutants. Therefore, our studies have demonstrated that genetically anchoring a short-peptide fusion inhibitor to the target cell membrane is a viable strategy for gene therapy of both HIV-1 and HIV-2 infections.IMPORTANCE Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-cure or functional-cure strategies. Here, we report that genetically anchoring the short-peptide fusion inhibitor 2P23 to the cell membrane can fully prevent infections from divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide-resistant mutants. Membrane-bound 2P23 also effectively blocks HIV-1 Env-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission, renders CD4+ T cells nonpermissive to infection, and confers a robust survival advantage over unmodified cells. Thus, our studies verify a powerful strategy to generate resistant cells for gene therapy of both the HIV-1 and HIV-2 infections.
Collapse
|
15
|
Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM, Dervillez X. FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol 2019; 13:2531-2553. [PMID: 31365168 PMCID: PMC6887587 DOI: 10.1002/1878-0261.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b‐binding protein C‐terminal‐α‐/β‐chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent‐positive regulator of the AP, the human factor H‐related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VHH targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab‐recognising epitopes [VHH(T) or VHH(P)], respectively, were used as HER2 anchoring moieties. Optimised high‐FHR4 valence heteromultimeric immunoconjugates [FHR4/VHH(T) or FHR4/VHH(P)] were selected by sequential cell cloning and a selective multistep His‐Trap purification. Optimised FHR4‐heteromultimeric immunoconjugates successfully overcame FH‐mediated complement inhibition threshold, causing increased C3b deposition on SK‐OV‐3, BT474 and SK‐BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement‐dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane‐anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement‐dependent cell‐mediated cytotoxicity. We showed that the degree of FHR4‐multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH‐mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady‐state towards activation on tumour cell surface.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Cécile Masquelier
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marie Fullana
- Société d'Accélération des Transferts de Technologies du Nord, Direction Territoriale Reims, Reims, France
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Life Sciences Research Unit (LSRU), Signal Transduction Laboratory, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
16
|
Gorai B, Das S, Maiti PK. Prediction and validation of HIV-1 gp41 ecto-transmembrane domain post-fusion trimeric structure using molecular modeling. J Biomol Struct Dyn 2019; 38:2592-2603. [DOI: 10.1080/07391102.2019.1635916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biswajit Gorai
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Satyabrata Das
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabal K. Maiti
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
18
|
Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity. J Virol 2019; 93:JVI.02312-18. [PMID: 30867304 DOI: 10.1128/jvi.02312-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs.IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.
Collapse
|
19
|
Ledger S, Howe A, Turville S, Aggarwal A, Savkovic B, Ong A, Wolstein O, Boyd M, Millington M, Gorry PR, Murray JM, Symonds G. Analysis and dissociation of anti-HIV effects of shRNA to CCR5 and the fusion inhibitor C46. J Gene Med 2019; 20:e3006. [PMID: 29552747 DOI: 10.1002/jgm.3006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The gene therapeutic Cal-1 comprises the anti-HIV agents: (i) sh5, a short hairpin RNA to CCR5 that down-regulates CCR5 expression and (ii) maC46 (C46), a peptide that inhibits viral fusion with the cell membrane. These constructs were assessed for inhibition of viral replication and selective cell expansion in a number of settings. METHODS HIV replication, selective outgrowth and cell surface viral binding were analysed with a single cycle infection assay of six pseudotyped HIV strains and a static and longitudinal passaging of MOLT4/CCR5 cells with HIV. Pronase digestion of surface virus and fluorescence microscopy assessed interactions between HIV virions and transduced cells. RESULTS Cal-1 reduced CCR5 expression in peripheral blood mononuclear cells to CCR5Δ32 heterozygote levels. Even low level transduction resulted in significant preferential expansion in MOLT4/CCR5 gene-containing cells over a 3-week HIV challenge regardless of viral suppression [12.5% to 47.0% (C46), 46.7% (sh5), 62.2% (Dual), respectively]. The sh5 and Dual constructs at > 95% transduction also significantly suppressed virus to day 12 in the passage assay and all constructs, at varying percentage transduction inhibited virus in static culture. No escape mutations were present through 9 weeks of challenge. The Dual construct significantly suppressed infection by a panel of CCR5-using viruses, with its efficacy being independently determined from the single constructs. Dual and sh5 inhibited virion internalisation, as determined via pronase digestion of surface bound virus, by 70% compared to 13% for C46. CONCLUSIONS The use of two anti-HIV genes allows optimal preferential survival and inhibition of HIV replication, with the impact on viral load being dependent on the percentage of gene marked cells.
Collapse
Affiliation(s)
- Scott Ledger
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Annett Howe
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
| | | | | | - Borislav Savkovic
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
| | - Andrew Ong
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
| | | | - Maureen Boyd
- St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW, Australia.,Calimmune Australia, Sydney, NSW, Australia
| | - Michelle Millington
- St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW, Australia.,Calimmune Australia, Sydney, NSW, Australia
| | - Paul R Gorry
- School of Applied Sciences and Program in Metabolism, Exercise and Disease, Health Initiatives Research Institute, RMIT University, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - John M Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
| | - Geoff Symonds
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW, Australia.,Calimmune Australia, Sydney, NSW, Australia
| |
Collapse
|
20
|
Design of Novel HIV-1/2 Fusion Inhibitors with High Therapeutic Efficacy in Rhesus Monkey Models. J Virol 2018; 92:JVI.00775-18. [PMID: 29899103 DOI: 10.1128/jvi.00775-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
T-20 (enfuvirtide) is the only approved viral fusion inhibitor that is used for the treatment of human immunodeficiency virus type 1 (HIV-1) infection; however, it has relatively low antiviral activity and easily induces drug resistance. We recently reported a T-20-based lipopeptide fusion inhibitor (LP-40) showing improved anti-HIV activity (X. Ding et al., J Virol 91:e00831-17, 2017, https://doi.org/10.1128/JVI.00831-17). In this study, we designed LP-50 and LP-51 by refining the structure and function of LP-40. The two new lipopeptides showed dramatically enhanced secondary structure and binding stability and were exceptionally potent inhibitors of HIV-1, HIV-2, simian immunodeficiency virus (SIV), and chimeric simian-human immunodeficiency virus (SHIV), with mean 50% inhibitory concentrations (IC50s) in the very low picomolar range. They also exhibited dramatically increased potencies in inhibiting a panel of T-20- and LP-40-resistant mutant viruses. In line with their in vitro data, LP-50 and LP-51 exhibited extremely potent and long-lasting ex vivo anti-HIV activities in rhesus monkeys: serum dilution peaks that inhibited 50% of virus infection were >15,200-fold higher than those for T-20 and LP-40. Low-dose, short-term monotherapy of LP-51 could sharply reduce viral loads to undetectable levels in acutely and chronically SHIV infected monkey models. To our knowledge, LP-50 and LP-51 are the most potent and broad HIV-1/2 and SIV fusion inhibitors, which can be developed for clinical use and can serve as tools for exploration of the mechanisms of viral entry and inhibition.IMPORTANCE T-20 remains the only membrane fusion inhibitor available for the treatment of viral infection, but its relatively low anti-HIV activity and genetic barrier for drug resistance have significantly limited its clinical application. Here we report two new lipopeptide-based fusion inhibitors (LP-50 and LP-51) showing extremely potent inhibitory activities against diverse HIV-1, HIV-2, SIV, and T-20-resistant variants. Promisingly, both inhibitors exhibited potent and long-lasting ex vivo anti-HIV activity and could efficiently suppress viral loads to undetectable levels in SHIV-infected monkey models. We believe that LP-50 and LP-51 are the most potent and broad-spectrum fusion inhibitors known to date and thus have high potential for clinical development.
Collapse
|
21
|
Zhu Y, Zhang X, Ding X, Chong H, Cui S, He J, Wang X, He Y. Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. J Biol Chem 2018; 293:5323-5334. [PMID: 29425101 DOI: 10.1074/jbc.ra118.001729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Enfuvirtide (T20) is the only viral fusion inhibitor approved for clinical use, but it has relatively weak anti-HIV activity and easily induces drug resistance. In succession to T20, T1249 has been designed as a 39-mer peptide composed of amino acid sequences derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV); however, its development has been suspended due to formulation difficulties. We recently developed a T20-based lipopeptide (LP-40) showing greatly improved pharmaceutical properties. Here, we generated a T1249-based lipopeptide, termed LP-46, by replacing its C-terminal tryptophan-rich sequence with fatty acid. As compared with T20, T1249, and LP-40, the truncated LP-46 (31-mer) had dramatically increased activities in inhibiting a large panel of HIV-1 subtypes, with IC50 values approaching low picomolar concentrations. Also, LP-46 was an exceptionally potent inhibitor against HIV-2, SIV, and T20-resistant variants, and it displayed obvious synergistic effects with LP-40. Furthermore, we showed that LP-46 had increased helical stability and binding affinity with the target site. The crystal structure of LP-46 in complex with a target surrogate revealed its critical binding motifs underlying the mechanism of action. Interestingly, it was found that the introduced pocket-binding domain in LP-46 did not interact with the gp41 pocket as expected; instead, it adopted a mode similar to that of LP-40. Therefore, our studies have provided an exceptionally potent and broad fusion inhibitor for developing new anti-HIV drugs, which can also serve as a tool to exploit the mechanisms of viral fusion and inhibition.
Collapse
Affiliation(s)
- Yuanmei Zhu
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiujuan Zhang
- the College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China, and
| | - Xiaohui Ding
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinsheng He
- the College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China, and
| | - Xinquan Wang
- the Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxian He
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China, .,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
22
|
Riley JL, Montaner LJ. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. J Infect Dis 2017; 215:S160-S171. [PMID: 28520969 PMCID: PMC5853458 DOI: 10.1093/infdis/jix002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure.
Collapse
Affiliation(s)
- James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, and
| | - Luis J Montaner
- HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Halls ML, Cooper DMF. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Pharmacol Ther 2017; 172:171-180. [PMID: 28132906 DOI: 10.1016/j.pharmthera.2017.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
24
|
Symonds G, Bartlett JS, Kiem HP, Tsie M, Breton L. Cell-Delivered Entry Inhibitors for HIV-1: CCR5 Downregulation and Blocking Virus/Membrane Fusion in Defending the Host Cell Population. AIDS Patient Care STDS 2016; 30:545-550. [PMID: 27905841 DOI: 10.1089/apc.2016.0245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 infection requires the presence of the CD4 receptor on the target cell surface and a coreceptor, predominantly CC-chemokine receptor 5 (CCR5). It has been shown that individuals who are homozygous for a defective CCR5 gene are protected from HIV-1 infection. A novel self-inactivating lentiviral vector LVsh5/C46 (Cal-1) has been engineered to block HIV-1 infection with two viral entry inhibitors, conferring resistance to HIV-1 infection from both CCR5 and CXCR4 tropic strains. Cal-1 encodes a short hairpin RNA (sh5) to downregulate CCR5 and C46, an HIV-1 fusion inhibitor. Gene therapy by Cal-1 is aimed at transducing CD4+ T cells and CD34+ hematopoietic stem/progenitor cells in an autologous transplant setting. Pre-clinical safety and efficacy studies in vitro and in vivo (humanized mouse model and nonhuman primates) have shown that Cal-1 is safe with no indication of any toxicity risk and acts to decrease viral load and increase CD4 counts. Two clinical trials are underway using Cal-1: a phase I/II study to assess safety and feasibility in an adult HIV-1-positive population not on antiretroviral therapy (ART); and a second Fred Hutchinson Investigator Initiated phase I study to assess safety and feasibility in adults with HIV-1-associated non-Hodgkin or Hodgkin lymphoma.
Collapse
|
25
|
Leslie GJ, Wang J, Richardson MW, Haggarty BS, Hua KL, Duong J, Secreto AJ, Jordon APO, Romano J, Kumar KE, DeClercq JJ, Gregory PD, June CH, Root MJ, Riley JL, Holmes MC, Hoxie JA. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathog 2016; 12:e1005983. [PMID: 27855210 PMCID: PMC5113989 DOI: 10.1371/journal.ppat.1005983] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022] Open
Abstract
HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans.
Collapse
Affiliation(s)
- George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Beth S. Haggarty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin L. Hua
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Jennifer Duong
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Anthony J. Secreto
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrea P. O. Jordon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Josephine Romano
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kritika E. Kumar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | - Carl H. June
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
26
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
27
|
Hansen EC, Ransom M, Hesselberth JR, Hosmane NN, Capoferri AA, Bruner KM, Pollack RA, Zhang H, Drummond MB, Siliciano JM, Siliciano R, Stivers JT. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. eLife 2016; 5. [PMID: 27644592 PMCID: PMC5030084 DOI: 10.7554/elife.18447] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI:http://dx.doi.org/10.7554/eLife.18447.001 Human immunodeficiency virus type 1 (HIV-1) infects and kills immune cells known as CD4+ T cells, leading to the disease AIDS. Current drug treatments enable HIV-1 infected patients to live relatively long and healthy lives. However, no cure for HIV-1 exists because the virus lives indefinitely in a resting state within the genetic material – or genome – of the infected cell, where it is not susceptible to drug treatments. Most HIV-1 research focuses on T cells, but another type of immune cell – the macrophage – may also harbor resting HIV-1 in its genome. Compared to other cells, macrophages are unusual because they produce large amounts of a molecule called deoxyuridine triphosphate (dUTP). Most cells, including T cells, keep dUTP levels very low because it closely resembles molecules that are used to make DNA and so it can be accidentally incorporated into the cell’s DNA. When this happens, the cell removes the dUTP from the DNA using enzymes in a process called uracil base excision repair (UBER). To hide inside the cell’s genome, HIV-1 needs to produce a DNA copy of its own genome, but it was not known what happens when HIV-1 tries to do this within a macrophage that contains high levels of dUTP and UBER enzymes. Here, Hansen et al. reveal that about 90% of macrophages have exceptionally high levels of dUTP and are poorly infected by HIV-1. The high levels of dUTP result in the virus incorporating dUTP into its DNA, which is then attacked and fragmented by UBER enzymes. However, about one in a hundred viral DNA molecules do manage to successfully integrate into the genome of the macrophage. This viral DNA later gives rise to new virus particles through an error-prone process that, by introducing new mutations into the virus genome, may help HIV-1 to evolve and persist. Further experiments examined cells that give rise to macrophages from infected patients who had been on anti-HIV drug therapy for several years. Hansen et al. found that there was lots of dUTP in the DNA sequences of HIV-1 viruses found in these “precursor” cells. These precursor cells only live for several days before being eliminated, so the presence of viruses containing dUTP suggests these cells were infected recently. A future challenge will be to identify new anti-HIV drugs that specifically target macrophages and to understand the role of error-prone production of new viral genomes. DOI:http://dx.doi.org/10.7554/eLife.18447.002
Collapse
Affiliation(s)
- Erik C Hansen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Nina N Hosmane
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Adam A Capoferri
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - Katherine M Bruner
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ross A Pollack
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hao Zhang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Michael Bradley Drummond
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Janet M Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Robert Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
28
|
Romano Ibarra GS, Paul B, Sather BD, Younan PM, Sommer K, Kowalski JP, Hale M, Stoddard B, Jarjour J, Astrakhan A, Kiem HP, Rawlings DJ. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e352. [PMID: 27741222 PMCID: PMC5023401 DOI: 10.1038/mtna.2016.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/26/2016] [Indexed: 11/09/2022]
Abstract
A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection.
Collapse
Affiliation(s)
- Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Biswajit Paul
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Blythe D Sather
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Patrick M Younan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| | - John P Kowalski
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Barry Stoddard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Louis JM, Baber JL, Ghirlando R, Aniana A, Bax A, Roche J. Insights into the Conformation of the Membrane Proximal Regions Critical to the Trimerization of the HIV-1 gp41 Ectodomain Bound to Dodecyl Phosphocholine Micelles. PLoS One 2016; 11:e0160597. [PMID: 27513582 PMCID: PMC4981318 DOI: 10.1371/journal.pone.0160597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
The transitioning of the ectodomain of gp41 from a pre-hairpin to a six-helix bundle conformation is a crucial aspect of virus-cell fusion. To gain insight into the intermediary steps of the fusion process we have studied the pH and dodecyl phosphocholine (DPC) micelle dependent trimer association of gp41 by systematic deletion analysis of an optimized construct termed 17-172 (residues 528 to 683 of Env) that spans the fusion peptide proximal region (FPPR) to the membrane proximal external region (MPER) of gp41, by sedimentation velocity and double electron-electron resonance (DEER) EPR spectroscopy. Trimerization at pH 7 requires the presence of both the FPPR and MPER regions. However, at pH 4, the protein completely dissociates to monomers. DEER measurements reveal a partial fraying of the C-terminal MPER residues in the 17-172 trimer while the other regions, including the FPPR, remain compact. In accordance, truncating nine C-terminal MPER residues (675-683) in the 17-172 construct does not shift the trimer-monomer equilibrium significantly. Thus, in the context of the gp41 ectodomain spanning residues 17-172, trimerization is clearly dependent on FPPR and MPER regions even when the terminal residues of MPER unravel. The antibody Z13e1, which spans both the 2F5 and 4E10 epitopes in MPER, binds to 17-172 with a Kd of 1 ± 0.12 μM. Accordingly, individual antibodies 2F5 and 4E10 also recognize the 17-172 trimer/DPC complex. We propose that binding of the C-terminal residues of MPER to the surface of the DPC micelles models a correct positioning of the trimeric transmembrane domain anchored in the viral membrane.
Collapse
Affiliation(s)
- John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JL)); (JR)
| | - James L. Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JL)); (JR)
| |
Collapse
|
30
|
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103:187-201. [PMID: 27151309 PMCID: PMC4935568 DOI: 10.1016/j.addr.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.
Collapse
Affiliation(s)
- Olivier Pernet
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Swati Seth Yadav
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Dong Sung An
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; Hematology-Oncology, The Department of Medicine, David Geffen School of Medicine at UCLA, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, Singh S, Song Y, Gwiazda K, Sahni J, Jarjour J, Astrakhan A, Wagner TA, Scharenberg AM, Rawlings DJ. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 2016; 7:307ra156. [PMID: 26424571 DOI: 10.1126/scitranslmed.aac5530] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.
Collapse
Affiliation(s)
- Blythe D Sather
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gabrielle Curinga
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yumei Song
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kamila Gwiazda
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jaya Sahni
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | | | - Thor A Wagner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA. Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA. Department of Immunology, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
32
|
Abstract
BACKGROUND T20 (enfuvirtide) is the first approved HIV entry inhibitor and currently the only viral fusion inhibitor, but its low efficacy and genetic barrier to resistance significantly limit its application, calling for a next-generation drug. DESIGN On the basis of the M-T hook structure, we recently developed a short-peptide named HP23, which mainly targets the deep pocket site of gp41 and possesses highly potent antiviral activity. To improve the pharmaceutical properties of a peptide-based inhibitor, we modified HP23 by different classes of lipids including fatty acid, cholesterol, and sphingolipids. To avoid the potential problem of oxidation, the methionine residue in the M-T hook sequence of HP23 was replaced with leucine. METHODS Peptides were synthesized and their anti-HIV activity and biophysical properties were determined. RESULTS A group of lipopeptides were generated with greatly improved anti-HIV activity. Promisingly, a fatty acid-conjugated lipopeptide named LP-11 showed potent and broad inhibitory activity against diverse primary HIV-1 isolates and clinically drug-resistant mutants, and it had dramatically increased ex-vivo antiviral activity and extended half-life. Also, LP-11 displayed highly enhanced α-helicity and thermal stability, and it was physically stable under high temperature and humidity. CONCLUSION LP-11 has high potentials for clinical development and it can serve as an ideal tool for exploring the mechanisms of HIV-1 fusion and inhibition.
Collapse
|
33
|
Abstract
Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies.
Collapse
|
34
|
Qureshi A, Tandon H, Kumar M. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50). Biopolymers 2015; 104:753-63. [PMID: 26213387 PMCID: PMC7161829 DOI: 10.1002/bip.22703] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/16/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Himani Tandon
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| |
Collapse
|
35
|
Hütter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M, Symonds G. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape. Viruses 2015. [PMID: 26225991 PMCID: PMC4576177 DOI: 10.3390/v7082816] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.
Collapse
Affiliation(s)
- Gero Hütter
- Cellex GmbH, Fiedlerstr. 36, 01307 Dresden, Germany.
| | - Josef Bodor
- Department of Cell Therapy, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| | - Scott Ledger
- Faculty of Medicine, University of New South Wales, Sydney 2052 NSW, Australia.
| | | | | | | | | |
Collapse
|
36
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Egerer L, Kiem HP, von Laer D. C peptides as entry inhibitors for gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:191-209. [PMID: 25757622 DOI: 10.1007/978-1-4939-2432-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.
Collapse
Affiliation(s)
- Lisa Egerer
- Division of Virology, Department of Hygiene, Microbiology and Social Medicine, Medical University of Innsbruck, Peter Mayr-Str. 4b, Innsbruck, 6020, Austria,
| | | | | |
Collapse
|
38
|
Petit N, Dorgham K, Levacher B, Burlion A, Gorochov G, Marodon G. Targeting Both Viral and Host Determinants of Human Immunodeficiency Virus Entry, Using a New Lentiviral Vector Coexpressing the T20 Fusion Inhibitor and a Selective CCL5 Intrakine. Hum Gene Ther Methods 2014; 25:232-40. [DOI: 10.1089/hgtb.2014.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nicolas Petit
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI), F-75013, Paris, France
- INSERM, U1135 (CIMI), Paris F-75013, France
- CNRS, ERL 8255 (CIMI), Paris F-75013, France
| | - Karim Dorgham
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI), F-75013, Paris, France
- INSERM, U1135 (CIMI), Paris F-75013, France
- CNRS, ERL 8255 (CIMI), Paris F-75013, France
| | | | - Aude Burlion
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI), F-75013, Paris, France
- INSERM, U1135 (CIMI), Paris F-75013, France
- CNRS, ERL 8255 (CIMI), Paris F-75013, France
| | - Guy Gorochov
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI), F-75013, Paris, France
- INSERM, U1135 (CIMI), Paris F-75013, France
- Service Immunologie, Hôpital Pitié-Salpétrière, AP-HP, Paris F-75013, France
| | - Gilles Marodon
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI), F-75013, Paris, France
- INSERM, U1135 (CIMI), Paris F-75013, France
- CNRS, ERL 8255 (CIMI), Paris F-75013, France
| |
Collapse
|
39
|
Abstract
Virus-cell fusion is the primary means by which the human immunodeficiency virus-1 (HIV) delivers its genetic material into the human T-cell host. Fusion is mediated in large part by the viral glycoprotein 41 (gp41) which advances through four distinct conformational states: (i) native, (ii) pre-hairpin intermediate, (iii) fusion active (fusogenic), and (iv) post-fusion. The pre-hairpin intermediate is a particularly attractive step for therapeutic intervention given that gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) domains are transiently exposed prior to the formation of a six-helix bundle required for fusion. Most peptide-based inhibitors, including the FDA-approved drug T20, target the intermediate and there are significant efforts to develop small molecule alternatives. Here, we review current approaches to studying interactions of inhibitors with gp41 with an emphasis on atomic-level computer modeling methods including molecular dynamics, free energy analysis, and docking. Atomistic modeling yields a unique level of structural and energetic detail, complementary to experimental approaches, which will be important for the design of improved next generation anti-HIV drugs.
Collapse
|
40
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
41
|
Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A 2014; 111:3425-30. [PMID: 24550514 DOI: 10.1073/pnas.1401397111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
Collapse
|
42
|
Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:11. [PMID: 26015947 PMCID: PMC4365823 DOI: 10.1038/mtm.2013.11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4(+) T lymphocytes, and CD34(+) hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.
Collapse
|
43
|
|
44
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 2012; 164:125-37. [PMID: 22709588 PMCID: PMC3481020 DOI: 10.1016/j.jconrel.2012.05.052] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/19/2012] [Accepted: 05/26/2012] [Indexed: 01/11/2023]
Abstract
Targeting of therapeutic agents to molecular markers expressed on the surface of cells requiring clinical intervention holds promise to improve specificity of delivery, enhancing therapeutic effects while decreasing potential damage to healthy tissues. Drug targeting to cellular receptors involved in endocytic transport facilitates intracellular delivery, a requirement for a number of therapeutic goals. However, after several decades of experimental design, there is still considerable controversy on the practical outcome of drug targeting strategies. The plethora of factors contributing to the relative efficacy of targeting makes the success of these approaches hardly predictable. Lack of fully specific targets, along with selection of targets with spatial and temporal expression well aligned to interventional requirements, pose difficulties to this process. Selection of adequate sub-molecular target epitopes determines accessibility for anchoring of drug conjugates and bulkier drug carriers, as well as proper signaling for uptake within the cell. Targeting design must adapt to physiological variables of blood flow, disease status, and tissue architecture by accommodating physicochemical parameters such as carrier composition, functionalization, geometry, and avidity. In many cases, opposite features need to meet a balance, e.g., sustained circulation versus efficient targeting, penetration through tissues versus uptake within cells, internalization within endocytic compartment to avoid efflux pumps versus accessibility to molecular targets within the cytosol, etc. Detailed characterization of these complex physiological factors and design parameters, along with a deep understanding of the mechanisms governing the interaction of targeted drugs and carriers with the biological environment, are necessary steps toward achieving efficient drug targeting systems.
Collapse
Affiliation(s)
- Silvia Muro
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA.
| |
Collapse
|
46
|
Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harb Perspect Med 2012; 2:2/10/a007179. [PMID: 23028130 DOI: 10.1101/cshperspect.a007179] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Highly active antiretroviral therapy dramatically improves survival in HIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated by cumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escape mutants. Cell and gene therapies offer the promise of preventing progressive HIV infection by interfering with HIV replication in the absence of chronic antiviral therapy. Individuals homozygous for a deletion in the CCR5 gene (CCR5Δ32) are largely resistant to infection from R5-topic HIV-1 strains, which are most commonly transmitted. A recent report that an HIV-infected patient with relapsed acute myelogenous leukemia was effectively cured from HIV infection after transplantation of hematopoietic stem/progenitor cells (HSC) from a CCR5Δ32 homozygous donor has generated renewed interest in developing treatment strategies that target viral reservoirs and generate HIV resistance in a patient's own cells. Although the development of cell-based and gene transfer therapies has been slow, progress in a number of areas is evident. Advances in the fields of gene-targeting strategies, T-cell-based approaches, and HSCs have been encouraging, and a series of ongoing and planned trials to establish proof of concept for strategies that could lead to successful cell and gene therapies for HIV are under way. The eventual goal of these studies is to eliminate latent viral reservoirs and the need for lifelong antiretroviral therapy.
Collapse
Affiliation(s)
- James A Hoxie
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
47
|
Egerer L, Volk A, Kahle J, Kimpel J, Brauer F, Hermann FG, von Laer D. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther 2011; 19:1236-44. [PMID: 21364540 DOI: 10.1038/mt.2011.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene therapeutic strategies for human immunodeficiency virus type 1 (HIV-1) infection could potentially overcome the limitations of standard antiretroviral drug therapy (ART). However, in none of the clinical gene therapy trials published to date, therapeutic levels of genetic protection have been achieved in the target cell population for HIV-1. To improve systemic antiviral efficacy, C peptides, which are efficient inhibitors of HIV-1 entry, were engineered for high-level secretion by genetically modified cells. The size restrictions for efficient peptide export through the secretory pathway were overcome by expressing the C peptides as concatemers, which were processed into monomers by furin protease cleavage. These secreted antiviral entry inhibitory (SAVE) peptides mediated a substantial protective bystander effect on neighboring nonmodified cells, thus suppressing virus replication even if only a small fraction of cells was genetically modified. Accordingly, these SAVE peptides may provide a strong benefit to AIDS patients in future, and, if applied by direct in vivo gene delivery, could present an effective alternative to antiretroviral drug regimen.
Collapse
Affiliation(s)
- Lisa Egerer
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
48
|
Melikyan GB. Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein. CURRENT TOPICS IN MEMBRANES 2011; 68:81-106. [PMID: 21771496 DOI: 10.1016/b978-0-12-385891-7.00004-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory B Melikyan
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| |
Collapse
|
49
|
Stocking C, Grez M, Fehse B, von Laer D, Itoh K, Prassolov V, Nowock J, Kühlcke K, Just U, Schröder T, Klump H, Schiedlmeier B, Grassman E, Meyer J, Li Z, Schambach A, Modlich U, Kustikova O, Galla M, Bode J, Zander A, Baum C. Cell and virus genetics at the roots of gene therapy, retrovirology, and hematopoietic stem cell biology: Wolfram Ostertag (1937-2010). Hum Gene Ther 2010; 21:1501-3. [PMID: 21091034 DOI: 10.1089/hum.2010.1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Frecha C, Lévy C, Cosset FL, Verhoeyen E. Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Mol Ther 2010; 18:1748-57. [PMID: 20736930 PMCID: PMC2951569 DOI: 10.1038/mt.2010.178] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022] Open
Abstract
Efficient gene transfer into quiescent T and B lymphocytes for gene therapy or immunotherapy purposes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as immunodeficiencies, and the development of novel therapeutic strategies for cancers and acquired diseases. Lentiviral vectors (LVs) can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T and B cells. In T cells, completion of reverse transcription (RT), nuclear import, and subsequent integration of the vesicular stomatitis virus G protein pseudotyped LV (VSVG-LV) genome does not occur efficiently unless they are activated via the T-cell receptor (TCR) or by survival-cytokines inducing them to enter into the G(1b) phase of the cell cycle. Lentiviral transduction of B cells is another matter because even B-cell receptor-stimulation inducing proliferation is not sufficient to allow efficient VSVG-LV transduction. Recently, a new LV carrying the glycoproteins of measles virus (MV) at its surface was able to overcome vector restrictions in both quiescent T and B cells. Importantly, naive as well as memory T and B cells were efficiently transduced while no apparent activation, cell-cycle entry, or phenotypic switch were detected, which opens the door to a multitude of gene therapy and immunotherapy applications as reported here.
Collapse
|