1
|
James CD, Otoa RO, Youssef AH, Fontan CT, Sannigrahi MK, Windle B, Basu D, Morgan IM. HPV16 genome structure analysis in oropharyngeal cancer PDXs identifies tumors with integrated and episomal genomes. Tumour Virus Res 2024; 18:200285. [PMID: 38936774 PMCID: PMC11261002 DOI: 10.1016/j.tvr.2024.200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
HPV + oropharyngeal squamous cell carcinoma (OPC) incidence recently surpassed cervical cancer and is the most common HPV-related cancer in the developed world. HPV16 is in ∼90 % of HPV + OPCs, with episomal genomes in the majority of cases. Most existing HPV16+ cancer cell lines derive from outside the oropharynx and harbor integrated HPV genomes. Thus, there is need for OPC preclinical models to evaluate standard and experimental therapeutics in the presence of episomal HPV16 oncogenic drivers. Here we characterize HPV genome structures in eight HPV16+ OPC patient-derived xenografts (PDXs), and evaluate their responses to standard chemotherapy. HPV genome state was investigated by combining Southern blot, T5 exonuclease assay, whole genome sequencing, and RNAseq data. This analysis revealed complexity and variation in integrated vs. episomal HPV forms across PDXs and demonstrated that four PDXs predominantly contain episomal HPV16. Episomal status did not ensure favorable in vivo responses to cisplatin therapy, despite the more favorable prognosis previously attributed to episomal HPV + tumors; this could be due to the small number present in the dataset. Our analysis establishes PDX models as test platforms for novel therapies designed to target maintenance of the episomal forms of HPV16 that commonly appear in OPC.
Collapse
Affiliation(s)
- Claire D James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA
| | - Raymonde O Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA
| | - Aya H Youssef
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA
| | - Christian T Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA
| | - Malay K Sannigrahi
- Dept. Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA
| | - Brad Windle
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA
| | - Devraj Basu
- Dept. Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA.
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA.
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
3
|
Zhao Q, Yang S, Hao S, Chen Z, Tang L, Wu Z, Wu J, Xu M, Ma Z, Zhou L, Xu J, Qin Q. Identification of transcriptionally-active human papillomavirus integrants through nanopore sequencing reveals viable targets for gene therapy against cervical cancer. J Med Virol 2024; 96:e29769. [PMID: 38932482 DOI: 10.1002/jmv.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Integration of the human papillomavirus (HPV) genome into the cellular genome is a key event that leads to constitutive expression of viral oncoprotein E6/E7 and drives the progression of cervical cancer. However, HPV integration patterns differ on a case-by-case basis among related malignancies. Next-generation sequencing technologies still face challenges for interrogating HPV integration sites. In this study, utilizing Nanopore long-read sequencing, we identified 452 and 108 potential integration sites from the cervical cancer cell lines (CaSki and HeLa) and five tissue samples, respectively. Based on long Nanopore chimeric reads, we were able to analyze the methylation status of the HPV long control region (LCR), which controls oncogene E6/E7 expression, and to identify transcriptionally-active integrants among the numerous integrants. As a proof of concept, we identified an active HPV integrant in between RUNX2 and CLIC5 on chromosome 6 in the CaSki cell line, which was supported by ATAC-seq, H3K27Ac ChIP-seq, and RNA-seq analysis. Knockout of the active HPV integrant, by the CRISPR/Cas9 system, dramatically crippled cell proliferation and induced cell senescence. In conclusion, identifying transcriptionally-active HPV integrants with Nanopore sequencing can provide viable targets for gene therapy against HPV-associated cancers.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Shijia Hao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zejia Chen
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lihua Tang
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhaoting Wu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jiaxin Wu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zebiao Ma
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- International Science and Technology Collaboration Center for Emerging Infectious Diseases, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Liang M, Pan W, You Y, Qin X, Su H, Zhan Z, Weng S, Guo C, He J. Hypermethylated genome of a fish vertebrate iridovirus ISKNV plays important roles in viral infection. Commun Biol 2024; 7:237. [PMID: 38413759 PMCID: PMC10899263 DOI: 10.1038/s42003-024-05919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.
Collapse
Affiliation(s)
- Mincong Liang
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlin You
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hualong Su
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
6
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
7
|
Zhang L, Tan W, Yang H, Zhang S, Dai Y. Detection of Host Cell Gene/HPV DNA Methylation Markers: A Promising Triage Approach for Cervical Cancer. Front Oncol 2022; 12:831949. [PMID: 35402283 PMCID: PMC8990922 DOI: 10.3389/fonc.2022.831949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer is the most prevalent gynecologic malignancy, especially in women of low- and middle-income countries (LMICs). With a better understanding of the etiology and pathogenesis of cervical cancer, it has been well accepted that this type of cancer can be prevented and treated via early screening. Due to its higher sensitivity than cytology to identify precursor lesions of cervical cancer, detection of high-risk human papillomavirus (HR-HPV) DNA has been implemented as the primary screening approach. However, a high referral rate for colposcopy after HR-HPV DNA detection due to its low specificity in HR-HPV screening often leads to overtreatment and thus increases the healthcare burden. Emerging evidence has demonstrated that detection of host cell gene and/or HPV DNA methylation represents a promising approach for the early triage of cervical cancer in HR-HPV-positive women owing to its convenience and comparable performance to cytology, particularly in LMICs with limited healthcare resources. While numerous potential markers involving DNA methylation of host cell genes and the HPV genome have been identified thus far, it is crucial to define which genes or panels involving host and/or HPV are feasible and appropriate for large-scale screening and triage. An ideal approach for screening and triage of CIN/ICC requires high sensitivity and adequate specificity and is suitable for self-sampling and inexpensive to allow population-based screening, particularly in LMICs. In this review, we summarize the markers of host cell gene/HR-HPV DNA methylation and discuss their triage performance and feasibility for high-grade precancerous cervical intraepithelial neoplasia or worse (CIN2+ and CIN3+) in HR-HPV-positive women.
Collapse
Affiliation(s)
- Lingyi Zhang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Chaiwongkot A, Phanuphak N, Pankam T, Bhattarakosol P. Human papillomavirus 16 L1 gene methylation as a potential biomarker for predicting anal intraepithelial neoplasia in men who have sex with men (MSM). PLoS One 2021; 16:e0256852. [PMID: 34469465 PMCID: PMC8409669 DOI: 10.1371/journal.pone.0256852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
The human papillomavirus (HPV) 16 early promoter and L1 gene methylation were quantitatively measured using pyrosequencing assay in anal cells collected from men who have sex with men (MSM) to determine potential biomarkers for HPV-related anal cancer. The methylation patterns of HPV16 genes, including the early promoter (CpG 31, 37, 43, 52, and 58) and L1 genes (CpG 5600, 5606, 5609, 5615, 7136, and 7145), were analyzed in 178 anal samples. The samples were diagnosed as normal, anal intraepithelial neoplasia (AIN) 1, AIN2, and AIN3. Low methylation levels of the early promoter (< 10%) and L1 genes (< 20%) were found in all detected normal anal cells. In comparison, medium to high methylation (≥ 20–60%) in the early promoter was found in 1.5% (1/67) and 5% (2/40) of AIN1 and AIN2-3 samples, respectively. Interestingly, slightly increased L1 gene methylation levels (≥ 20–60%), especially at the HPV16 5’L1 regions CpGs 5600 and 5609, were demonstrated in AIN2-3 specimen. Moreover, a negative correlation between high HPV16 L1 gene methylation at CpGs 5600, 5609, 5615, and 7145 and a percentual CD4 count was found in AIN3 HIV positive cases. When comparing the methylation status of AIN2-3 to that of normal/AIN1 lesions, the results indicated the potential of using HPV16 L1 gene methylation as a biomarker for HPV-related cancer screening.
Collapse
Affiliation(s)
- Arkom Chaiwongkot
- Faculty of Medicine, Applied Medical Virology Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | | | | | - Parvapan Bhattarakosol
- Faculty of Medicine, Applied Medical Virology Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 2021; 13:166. [PMID: 34452630 PMCID: PMC8394595 DOI: 10.1186/s13148-021-01154-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, an epigenetic modification, regulates gene transcription and maintains genome stability. DNA methyltransferase (DNMT) inhibitors can activate silenced genes at low doses and cause cytotoxicity at high doses. The ability of DNMT inhibitors to reverse epimutations is the basis of their use in novel strategies for cancer therapy. In this review, we examined the literature on DNA methyltransferase inhibitors. We summarized the mechanisms underlying combination therapy using DNMT inhibitors and clinical trials based on combining hypomethylation agents with other chemotherapeutic drugs. We also discussed the efficacy of such compounds as antitumor agents, the need to optimize treatment schedules and the regimens for maximal biologic effectiveness. Notably, the combination of DNMT inhibitors and chemotherapy and/or immune checkpoint inhibitors may provide helpful insights into the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011 Hunan China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011 Hunan China
| |
Collapse
|
10
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
11
|
DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells 2020; 9:cells9061359. [PMID: 32486347 PMCID: PMC7348958 DOI: 10.3390/cells9061359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.
Collapse
|
12
|
Rosendo-Chalma P, Antonio-Vejar V, Bigoni-Ordóñez GD, Patiño-Morales CC, Cano-García A, García-Carrancá A. CDH1 and SNAI1 are regulated by E7 from human papillomavirus types 16 and 18. Int J Oncol 2020; 57:301-313. [PMID: 32319591 DOI: 10.3892/ijo.2020.5039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
A common characteristic of cancer types associated with viruses is the dysregulated expression of the CDH1 gene, which encodes E‑cadherin, in general by activation of DNA methyltransferases (Dnmts). In cervical cancer, E7 protein from high risk human papillomaviruses (HPVs) has been demonstrated to interact with Dnmt1 and histone deacetylase type 1 (HDAC1). The present study proposed that E7 may regulate the expression of CDH1 through two pathways: i) Epigenetic, including DNA methylation; and ii) Epigenetic‑independent, including the induction of negative regulators of CDH1 expression, such as Snail family transcriptional repressor Snai1 and Snai2. To test this hypothesis, HPV16‑ and HPV18‑positive cell lines were used to determine the methylation pattern of the CDH1 promoter and its expression in association with its negative regulators. Different methylation frequencies were identified in the CDH1 promoter in HeLa (88.24%) compared with SiHa (17.65%) and Ca Ski (0%) cell lines. Significant differences in the expression of SNAI1 were observed between these cell lines, and an inverse association was identified between the expression levels of SNAI1 and CDH1. In addition, suppressing E7 not only increased the expression of CDH1, but notably decreased the expression of SNAI1 and modified the methylation pattern of the CDH1 promoter. These results suggested that the expression of CDH1 was dependent on the expression of SNAI1 and was inversely associated with the expression of E7. The present results indicated that E7 from HPV16/18 regulated the expression of CDH1 by the two following pathways in which Snai1 is involved: i) Hypermethylation of the CDH1 promoter region and increasing expression of SNAI1, as observed in HeLa; and ii) Hypomethylation of the CDH1 promoter region and expression of SNAI1, as observed in SiHa. Therefore, the suppression of CDH1 and expression of SNAI1 may be considered to be biomarkers of metastasis in uterine cervical cancer.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), Mexico City 10450, Mexico
| | - Verónica Antonio-Vejar
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Gabriele Davide Bigoni-Ordóñez
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Carlos César Patiño-Morales
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Amparo Cano-García
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC‑UAM), Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid 28029, Spain
| | - Alejandro García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| |
Collapse
|
13
|
Lu X, Zhou Y, Meng J, Jiang L, Gao J, Fan X, Chen Y, Cheng Y, Wang Y, Zhang B, Yan H, Yan F. Epigenetic age acceleration of cervical squamous cell carcinoma converged to human papillomavirus 16/18 expression, immunoactivation, and favourable prognosis. Clin Epigenetics 2020; 12:23. [PMID: 32041662 PMCID: PMC7011257 DOI: 10.1186/s13148-020-0822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ageing-associated molecular changes have been assumed to trigger malignant transformations and the epigenetic clock, and the DNA methylation age has been shown to be highly correlated with chronological age. However, the associations between the epigenetic clock and cervical squamous cell carcinoma (CSCC) prognosis, other molecular characteristics, and clinicopathological features have not been systematically investigated. To this end, we computed the DNA methylation (DNAm) age of 252 CSCC patients and 200 normal samples from TCGA and three external cohorts by using the Horvath clock model. We characterized the differences in human papillomavirus (HPV) 16/18 expression, pathway activity, genomic alteration, and chemosensitivity between two DNAm age subgroups. We then used Cox proportional hazards regression and restricted cubic spline (RCS) analysis to assess the prognostic value of epigenetic acceleration. RESULTS DNAm age was significantly associated with chronological age, but it was differentiated between tumour and normal tissue (P < 0.001). Two DNAm age groups, i.e. DNAmAge-ACC and DNAmAge-DEC, were identified; the former had high expression of the E6/E7 oncoproteins of HPV16/18 (P < 0.05), an immunoactive phenotype (all FDRs < 0.05 in enrichment analysis), CpG island hypermethylation (P < 0.001), and lower mutation load (P = 0.011), including for TP53 (P = 0.002). When adjusted for chronological age and tumour stage, every 10-year increase in DNAm age was associated with a 12% decrease in fatality (HR 0.88, 95% CI 0.78-0.99, P = 0.03); DNAmAge-ACC had a 41% lower mortality risk and 47% lower progression rate than DNAmAge-DEC and was more likely to benefit from chemotherapy. RCS revealed a positive non-linear association between DNAm age and both mortality and progression risk (both, P < 0.05). CONCLUSIONS DNAm age is an independent predictor of CSCC prognosis. Better prognosis, overexpression of HPV E6/E7 oncoproteins, and higher enrichment of immune signatures were observed in DNAmAge-ACC tumours.
Collapse
Affiliation(s)
- Xiaofan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyun Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jun Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaole Fan
- School of Medicine, Nantong University, Nantong, People's Republic of China
| | - Yanfeng Chen
- School of Medicine, Nantong University, Nantong, People's Republic of China
| | - Yu Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Bing Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Hangyu Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
14
|
Fertey J, Hagmann J, Ruscheweyh HJ, Munk C, Kjaer S, Huson D, Haedicke-Jarboui J, Stubenrauch F, Iftner T. Methylation of CpG 5962 in L1 of the human papillomavirus 16 genome as a potential predictive marker for viral persistence: A prospective large cohort study using cervical swab samples. Cancer Med 2019; 9:1058-1068. [PMID: 31856411 PMCID: PMC6997067 DOI: 10.1002/cam4.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated that the viral genome can be methylated by the host cell during progression from persistent infection to cervical cancer. The aim of this study was to investigate whether methylation at a specific site could predict the development of viral persistence and whether viral load shows a correlation with specific methylation patterns. HPV16‐positive samples from women aged 20–29 years (n = 99) with a follow‐up time of 13 years, were included from a Danish cohort comprising 11 088 women. Viral load was measured by real‐time PCR and methylation status was determined for 39 CpG sites in the upstream regulatory region (URR), E6/E7, and L1 region of HPV16 by next‐generation sequencing. Participants were divided into two groups according to whether they were persistently (≥ 24 months) or transiently HPV16 infected. The general methylation status was significantly different between women with a persistent and women with a transient infection outcome (P = .025). One site located in L1 (nt. 5962) was statistically significantly (P = .00048) different in the methylation status after correction using the Holm‐Sidak method (alpha = 0.05). Correlation analyses of samples from HPV16 persistently infected women suggest that methylation is higher although viral load is lower. This study indicates that methylation at position 5962 of the HPV16 genome within the L1 gene might be a predictive marker for the development of a persistent HPV16 infection.
Collapse
Affiliation(s)
- Jasmin Fertey
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | | | - Christian Munk
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel Huson
- Centre for Bioinformatics, Tuebingen University, Tuebingen, Germany
| | - Juliane Haedicke-Jarboui
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Bowden SJ, Kalliala I, Veroniki AA, Arbyn M, Mitra A, Lathouras K, Mirabello L, Chadeau-Hyam M, Paraskevaidis E, Flanagan JM, Kyrgiou M. The use of human papillomavirus DNA methylation in cervical intraepithelial neoplasia: A systematic review and meta-analysis. EBioMedicine 2019; 50:246-259. [PMID: 31732479 PMCID: PMC6921230 DOI: 10.1016/j.ebiom.2019.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Methylation of viral DNA has been proposed as a novel biomarker for triage of human papillomavirus (HPV) positive women at screening. This systematic review and meta-analysis aims to assess how methylation levels change with disease severity and to determine diagnostic test accuracy (DTA) in detecting high-grade cervical intra-epithelial neoplasia (CIN). METHODS We performed searches in MEDLINE, EMBASE and CENTRAL from inception to October 2019. Studies were eligible if they explored HPV methylation levels in HPV positive women. Data were extracted in duplicate and requested from authors where necessary. Random-effects models and a bivariate mixed-effects binary regression model were applied to determine pooled effect estimates. FINDINGS 44 studies with 8819 high-risk HPV positive women were eligible. The pooled estimates for positive methylation rate in HPV16 L1 gene were higher for high-grade CIN (≥CIN2/high-grade squamous intra-epithelial lesion (HSIL) (95% confidence interval (95%CI:72·7% (47·8-92·2))) vs. low-grade CIN (≤CIN1/low-grade squamous intra-epithelial lesion (LSIL) (44·4% (95%CI:16·0-74·1))). Pooled difference in mean methylation level was significantly higher in ≥CIN2/HSIL vs. ≤CIN1/LSIL for HPV16 L1 (11·3% (95%CI:6·5-16·1)). Pooled odds ratio of HPV16 L1 methylation was 5·5 (95%CI:3·5-8·5) for ≥CIN2/HSIL vs. ≤CIN1/LSIL (p < 0·0001). HPV16 L1/L2 genes performed best in predicting CIN2 or worse (pooled sensitivity 77% (95%CI:63-87), specificity 64% (95%CI:55-71), area under the curve (0·73 (95%CI:0·69-0·77)). INTERPRETATION Higher HPV methylation is associated with increased disease severity, whilst HPV16 L1/L2 genes demonstrated high diagnostic accuracy to detect high-grade CIN in HPV16 positive women. Direct clinical use is limited by the need for a multi-genotype and standardised assays. Next-generation multiplex HPV sequencing assays are under development and allow potential for rapid, automated and low-cost methylation testing. FUNDING NIHR, Genesis Research Trust, Imperial Healthcare Charity, Wellcome Trust NIHR Imperial BRC, European Union's Horizon 2020.
Collapse
Affiliation(s)
- Sarah J Bowden
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Ilkka Kalliala
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Finland
| | - Areti A Veroniki
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Marc Arbyn
- Unit of Cancer Epidemiology, Scientific Institute of Public Health, Brussels, Belgium
| | - Anita Mitra
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Kostas Lathouras
- West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK
| | - Lisa Mirabello
- Department of Clinical Genetics, National Institute of Health (NIH), Bethesda, MD, USA
| | - Marc Chadeau-Hyam
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK
| | | | - James M Flanagan
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer, 3rd Floor IRDB, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN, London, UK; West London Gynaecology Cancer Centre, Hammersmith Hospital, Imperial Healthcare NHS Trust, UK.
| |
Collapse
|
16
|
Kottaridi C, Leventakou D, Pouliakis A, Pergialiotis V, Chrelias G, Patsouri E, Zacharatou A, Panopoulou E, Damaskou V, Sioulas V, Chrelias C, Kalantaridou S, Panayiotides IG. Searching HPV genome for methylation sites involved in molecular progression to cervical precancer. J Cancer 2019; 10:4588-4595. [PMID: 31528222 PMCID: PMC6746133 DOI: 10.7150/jca.30081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Human Papilloma Virus has been considered as the main cause for cervical cancer. In this study we investigated epigenetic changes and especially methylation of specific sites of HPV genome. The main goal was to correlate methylation status with histological grade as well as to determine its accuracy in predicting the disease severity by establishing optimum methylation cutoffs. Methods: In total, sections from 145 cases genotyped as HPV16 were obtained from formalin- fixed, paraffin-embedded tissue of cervical biopsies, conization or hysterectomy specimens. Highly accurate pyrosequencing of bisulfite converted DNA, was used to quantify the methylation percentages of UTR promoter, enhancer and 5' UTR, E6 CpGs 494, 502, 506 and E7 CpGs 765, 780, 790. The samples were separated in different groupings based on the histological outcome. Statistical analysis was performed by SAS 9.4 for Windows and methylation cutoffs were identified by MATLAB programming language. Results: The most important methylation sites were at the enhancer and especially UTR 7535 and 7553 sites. Specifically for CIN3+ (i.e. HSIL or SCC) discrimination, a balanced sensitivity vs. specificity (68.1%, 66.2% respectively) with positive predictive value (PPV) and negative predictive value (NPV) (66.2%, 68.2% respectively) was achieved for UTR 7535 methylation of 6.1% cutoff with overall accuracy 67.1%, while for UTR 7553 a sensitivity 60.9%, specificity 69.0%, PPV=65.6%, NPV=64.5% and overall accuracy=65.0% at threshold 10.1% was observed. Conclusion: Viral HPV16 genome was found methylated in NF-1 binding sites of UTR in cases with high grade disease. Methylation percentages of E6 and E7 CpG sites were elevated at the cancer group.
Collapse
Affiliation(s)
- Christine Kottaridi
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Danai Leventakou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Abraham Pouliakis
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Pergialiotis
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - George Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eugenia Patsouri
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Andriani Zacharatou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eleni Panopoulou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileia Damaskou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Sioulas
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Charalambos Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Sofia Kalantaridou
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Ioannis G Panayiotides
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| |
Collapse
|
17
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
18
|
Zhang X, Zhi Y, Li Y, Fan T, Li H, Du P, Cheng G, Li X. Study on the relationship between methylation status of HPV 16 E2 binding sites and cervical lesions. Clin Chim Acta 2019; 493:98-103. [DOI: 10.1016/j.cca.2019.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/15/2022]
|
19
|
Zafari E, Soleimanjahi H, Samiee S, Razavinikoo H, Farahmand Z. Comparison of methylation patterns of E6 gene promoter region in the low-risk and high-risk human papillomavirus. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:441-446. [PMID: 30873273 PMCID: PMC6414737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Cervical cancer is an important cause of death in women worldwide (1, 2). Cancer is a disease that may be caused by many factors that affect gene activity through genetic and epigenetic changes like DNA methylation. DNA promoter methylation contributes to the chromatin conformation that may be repressing transcription of the human papilloma virus type16 (HPV-16), which is prevalent in the etiology of cervical carcinoma. In the present study, we aimed to investigate DNA methylation target sites in promoter region of both high-risk and low risk HPVs. MATERIALS AND METHODS Methylation pattern of E6 promoter in low-risk HPV (type 11) and high-risk HPV (type 16 and 18) was examined by Bisulfite Sequencing PCR (BSP) method. RESULTS Based on the results, methylation status of high-risk and low-risk HPV-E6 promoter is different. It was revealed that CpG dinucleotides were unmethylated in type 16 and 18 target sequences, whereas in HPV-E6 type 11 all of CpG dinucleotides were methylated except one of them. CONCLUSION The result suggested that a significant correlation between methylation status and HPV-induced cervical carcinogenesis, and promoter of HPV-16 and 18 E6 has minimal methylation in comparison with low-risk HPV-11.
Collapse
Affiliation(s)
- Ehsan Zafari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Hoorieh Soleimanjahi, PhD, Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel/Fax: +98-21-82883561,
| | - Simak Samiee
- Food and Drug Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Hadi Razavinikoo
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Farahmand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Lillsunde Larsson G, Kaliff M, Sorbe B, Helenius G, Karlsson MG. HPV16 viral characteristics in primary, recurrent and metastatic vulvar carcinoma. PAPILLOMAVIRUS RESEARCH 2018; 6:63-69. [PMID: 30391517 PMCID: PMC6249404 DOI: 10.1016/j.pvr.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
Vulvar carcinoma is the fourth most common gynecological malignancy. Two separate carcinogenic pathways are suggested, where one is associated with the human papillomavirus (HPV) and HPV16 the most common genotype. The aim of this study was to evaluate HPV-markers in a set of primary tumors, metastases and recurrent lesions of vulvar squamous cell carcinomas (VSCC). Ten HPV16-positive VSCC with metastatic regional lymph nodes, distant lymphoid/hematogenous metastases or local recurrent lesions were investigated for HPV genotype, HPV16 variant, HPV16 viral load, HPV16 integration and HPV16 E2BS3 and 4 methylation. In all 10 analyzed case series, the same HPV genotype (HPV16), HPV16 variant and level of viral load were detected in all lesions within a patient case. Primary tumors with a high E2/E6 ratio were found to have fewer vulvar recurrences and/or metastases after diagnosis and treatment. Also, a significantly lower viral load was evident in regional lymph nodes compared to primary tumors. The data presented strengthens the evidence for a clonal HPV-induced pathway for vulvar carcinoma.
Collapse
Affiliation(s)
- Gabriella Lillsunde Larsson
- School of Health Sciences, Örebro University, SE-701 82 Örebro, Sweden; Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Malin Kaliff
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Bengt Sorbe
- Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Mats G Karlsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
21
|
Amaro-Filho SM, Pereira Chaves CB, Felix SP, Basto DL, de Almeida LM, Moreira MAM. HPV DNA methylation at the early promoter and E1/E2 integrity: A comparison between HPV16, HPV18 and HPV45 in cervical cancer. PAPILLOMAVIRUS RESEARCH 2018; 5:172-179. [PMID: 29649654 PMCID: PMC6046686 DOI: 10.1016/j.pvr.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
Objectives To compare and describe type-specific characteristics of HPV16, HPV18 and HPV45 in cervical cancer with respect to 3′LCR methylation and disruption of E1/E2. Methods The methylation level of 137 cervical cancer samples (70 with HPV16, 37 with HPV18, and 30 with HPV45) of Brazilian patients was analyzed by pyrosequencing. PCR amplifications were performed to characterize E1 and E2 disruption as an episomal surrogate. Results The 3′LCR of HPV16 showed a higher methylation at all CpG sites (7%, 9%, 11%, 10% and 10%) than homologous HPV18 regions (4%, 5%. 6%, 9% and 5%) and HPV45 regions (7%, 7% and 5%). Presence of intact E1/E2 was associated with higher HPV16 and HPV18 methylation levels at all CpG sites (p < 0.05). Disruption of E1/E2 was more frequently found in HPV45 (97%) and HPV18 (84%) than in HPV16 DNA (30%). HPV16 disruption was more frequently found in E1 (48%) unlike HPV18, where it was found in E2 (61%). Concomitant disruption of E1/E2 was most frequent in HPV45 (72%). Conclusions The findings showed a higher methylation associated with intact E1/E2 for HPV16 and HPV18. The closely phylogenetic related HPV18 and HPV45 share a similar methylation level and the frequency of viral genome disruption.
Collapse
Affiliation(s)
- Sérgio Menezes Amaro-Filho
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | | | - Shayany Pinto Felix
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Diogo Lisbôa Basto
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | | | | |
Collapse
|
22
|
Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett 2018; 15:11-22. [PMID: 29285184 PMCID: PMC5738689 DOI: 10.3892/ol.2017.7292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer.
Collapse
Affiliation(s)
- Prakriti Sen
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pooja Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niladri Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
23
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Epigenetic Alterations in Human Papillomavirus-Associated Cancers. Viruses 2017; 9:v9090248. [PMID: 28862667 PMCID: PMC5618014 DOI: 10.3390/v9090248] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis.
Collapse
|
25
|
Quantitative methylation analysis of human papillomavirus 16L1 gene reveals potential biomarker for cervical cancer progression. Diagn Microbiol Infect Dis 2017; 89:265-270. [PMID: 28985972 DOI: 10.1016/j.diagmicrobio.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 01/07/2023]
Abstract
Human papillomavirus 16 is the most prevalent type found in cervical cancer worldwide, accounting for >50% of all cases. Quantitative methylation analysis of human papillomavirus 16L1 gene within 5' (CpGs 5600, 5606, 5609, 5615) and 3' (7136 and 7145) regions to determine potential biomarker for cervical cancer progression was performed in exfoliated cervical cells collected from 101 Thai women of precancerous and cancerous lesions. Intermediate to high methylation levels (>20%) were detected in HPV16 5'L1 regions especially CpG 5600 of all cancerous (100%) and 50% of CIN3 samples, whereas normal/CIN1 samples (80%) showed methylation levels <20%. Our results indicate the potential use of HPV 16L1 gene methylation at specific site as a biomarker for prognostic cervical cancer screening, however, suitable cutoff should be further evaluated in a larger sample size.
Collapse
|
26
|
Morgan IM, DiNardo LJ, Windle B. Integration of Human Papillomavirus Genomes in Head and Neck Cancer: Is It Time to Consider a Paradigm Shift? Viruses 2017; 9:v9080208. [PMID: 28771189 PMCID: PMC5580465 DOI: 10.3390/v9080208] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPV) are detected in 70–80% of oropharyngeal cancers in the developed world, the incidence of which has reached epidemic proportions. The current paradigm regarding the status of the viral genome in these cancers is that there are three situations: one where the viral genome remains episomal, one where the viral genome integrates into the host genome and a third where there is a mixture of both integrated and episomal HPV genomes. Our recent work suggests that this third category has been mischaracterized as having integrated HPV genomes; evidence indicates that this category consists of virus–human hybrid episomes. Most of these hybrid episomes are consistent with being maintained by replication from HPV origin. We discuss our evidence to support this new paradigm, how such genomes can arise, and more importantly the implications for the clinical management of HPV positive head and neck cancers following accurate determination of the viral genome status.
Collapse
Affiliation(s)
- Iain M Morgan
- Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU) School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA 23298, USA.
- VCU Massey Cancer Center, Richmond, VA 23298, USA.
| | - Laurence J DiNardo
- VCU Massey Cancer Center, Richmond, VA 23298, USA.
- VCU Department of Otolaryngology, Richmond, VA 23298, USA.
| | - Brad Windle
- Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU) School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA 23298, USA.
- VCU Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
27
|
Kottaridi C, Kyrgiou M, Pouliakis A, Magkana M, Aga E, Spathis A, Mitra A, Makris G, Chrelias C, Mpakou V, Paraskevaidis E, Panayiotides JG, Karakitsos P. Quantitative Measurement of L1 Human Papillomavirus Type 16 Methylation for the Prediction of Preinvasive and Invasive Cervical Disease. J Infect Dis 2017; 215:764-771. [PMID: 28170039 DOI: 10.1093/infdis/jiw645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/28/2017] [Indexed: 11/15/2022] Open
Abstract
Background Methylation of the human papillomavirus (HPV) DNA has been proposed as a novel biomarker. Here, we correlated the mean methylation level of 12 CpG sites within the L1 gene, to the histological grade of cervical precancer and cancer. We assessed whether HPV L1 gene methylation can predict the presence of high-grade disease at histology in women testing positive for HPV16 genotype. Methods Pyrosequencing was used for DNA methylation quantification and 145 women were recruited. Results We found that the L1 HPV16 mean methylation (±SD) significantly increased with disease severity (cervical intraepithelial neoplasia [CIN] 3, 17.9% [±7.2] vs CIN2, 11.6% [±6.5], P < .001 or vs CIN1, 9.0% [±3.5], P < .001). Mean methylation was a good predictor of CIN3+ cases; the area under the curve was higher for sites 5611 in the prediction of CIN2+ and higher for position 7145 for CIN3+. The evaluation of different methylation thresholds for the prediction of CIN3+ showed that the optimal balance of sensitivity and specificity (75.7% and 77.5%, respectively) and positive and negative predictive values (74.7% and 78.5%, respectively) was achieved for a methylation of 14.0% with overall accuracy of 76.7%. Conclusions Elevated methylation level is associated with increased disease severity and has good ability to discriminate HPV16-positive women that have high-grade disease or worse.
Collapse
Affiliation(s)
- Christine Kottaridi
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Maria Kyrgiou
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK.,West London Gynaecological Cancer Center, Queen Charlotte's and Chelsea, Hammersmith Hospital, Imperial Healthcare NHS Trust, London, UK
| | - Abraham Pouliakis
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Maria Magkana
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Evangelia Aga
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Aris Spathis
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Anita Mitra
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK.,West London Gynaecological Cancer Center, Queen Charlotte's and Chelsea, Hammersmith Hospital, Imperial Healthcare NHS Trust, London, UK
| | - George Makris
- Third Department of Obstetrics and Gynecology, University of Athens Medical School, "ATTIKON" University Hospital, Athens
| | - Charalampos Chrelias
- Third Department of Obstetrics and Gynecology, University of Athens Medical School, "ATTIKON" University Hospital, Athens
| | - Vassiliki Mpakou
- Second Department of Internal Medicine and Research Institute, University of Athens Medical School, "ATTIKON" University Hospital, Athens
| | | | - John G Panayiotides
- Second Department of Pathology, University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| | - Petros Karakitsos
- Department of Cytopathology, National and Kapodistrian University of Athens Medical School, "ATTIKON" University Hospital, Athens, Greece
| |
Collapse
|
28
|
Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res 2017; 231:21-33. [PMID: 27890631 PMCID: PMC5325784 DOI: 10.1016/j.virusres.2016.11.023] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Current address: BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Dudová Z, Bartošík M, Fojta M. Magnetic bead-based electrochemical assay for determination of DNA methyltransferase activity. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Ozer B, Sezerman U. An integrative study on the impact of highly differentially methylated genes on expression and cancer etiology. PLoS One 2017; 12:e0171694. [PMID: 28178311 PMCID: PMC5298317 DOI: 10.1371/journal.pone.0171694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic phenomenon that plays a key role in the regulation of expression. Most of the studies on the topic of methylation's role in cancer mechanisms include analyses based on differential methylation, with the integration of expression information as supporting evidence. In the present study, we sought to identify methylation-driven patterns by also integrating protein-protein interaction information. We performed integrative analyses of DNA methylation, expression, SNP and copy number data on paired samples from six different cancer types. As a result, we found that genes that show a methylation change larger than 32.2% may influence cancer-related genes via fewer interaction steps and with much higher percentages compared with genes showing a methylation change less than 32.2%. Additionally, we investigated whether there were shared cancer mechanisms among different cancer types. Specifically, five cancer types shared a change in AGTR1 and IGF1 genes, which implies that there may be similar underlying disease mechanisms among these cancers. Additionally, when the focus was placed on distinctly altered genes within each cancer type, we identified various cancer-specific genes that are also supported in the literature and may play crucial roles as therapeutic targets. Overall, our novel graph-based approach for identifying methylation-driven patterns will improve our understanding of the effects of methylation on cancer progression and lead to improved knowledge of cancer etiology.
Collapse
Affiliation(s)
- Bugra Ozer
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- * E-mail:
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul, Turkey
| |
Collapse
|
31
|
Filho SMA, Bertoni N, Brant AC, Vidal JPCB, Felix SP, Cavalcanti SMB, Carestiato FN, Martins LFL, Almeida LMD, Moreira MAM. Methylation at 3'LCR of HPV16 can be affected by patient age and disruption of E1 or E2 genes. Virus Res 2017; 232:48-53. [PMID: 28143725 DOI: 10.1016/j.virusres.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
CpG methylation at early promoter of HPV16 DNA, in the 3' end of the Long Control Region (3'LCR), has been associated to the presence of episomal forms of viral genome and, consequently, intact E1 and E2 ORFs. The DNA methylation would block the access of E2 viral protein to the E2 binding sites at early-promoter. However, is still unclear if methylation at 3'LCR of HPV16 DNA can also vary depending of other tumor characteristics in addition to viral DNA physical state. In this study, we evaluate whether the methylation level at the five CpG located at 3'LCR of HPV16 is associated to patient age and E1 and/or E2 ORFs integrity. DNA pyrosequencing was used to measure the methylation level in 69 invasive cervical cancer samples obtained from biopsies of patients attended at Brazilian National Institute of Cancer (INCA). PCR amplifications were performed to assess disruption status of E1 and E2 genes of HPV16. The methylation average per sample ranged widely, from <1 to 88.00%. Presence of intact E1/E2 genes and patient age were positively associated with average methylation in both bivariate analyses (p=0.003 and p=0.006, respectively), and multivariate analysis (p=0.002 and p=0.021, respectively), adjusted for tumor type (squamous cell carcinomas or adenocarcinomas) and HPV16 lineage. These findings showed that presence of intact E1/E2 open reading frames was associated with high levels of DNA methylation, and older patients showed higher levels of methylation than younger ones independently of viral genome disruption.
Collapse
Affiliation(s)
| | - Neilane Bertoni
- Population Research Department - Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Ayslan Castro Brant
- Genetics Program - Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Genetics Department - Universidade Federal do Rio de Janeiro, Brazil
| | | | - Shayany Pinto Felix
- Genetics Program - Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | | - Fernanda N Carestiato
- Department of Microbiology and Parasitology, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Liz Maria de Almeida
- Population Research Department - Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | |
Collapse
|
32
|
Disparities in Cervical Cancer Incidence and Mortality: Can Epigenetics Contribute to Eliminating Disparities? Adv Cancer Res 2017; 133:129-156. [PMID: 28052819 DOI: 10.1016/bs.acr.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Screening for uterine cervical intraepithelial neoplasia (CIN) followed by aggressive treatment has reduced invasive cervical cancer (ICC) incidence and mortality. However, ICC cases and carcinoma in situ (CIS) continue to be diagnosed annually in the United States, with minorities bearing the brunt of this burden. Because ICC peak incidence and mortality are 10-15 years earlier than other solid cancers, the number of potential years of life lost to this cancer is substantial. Screening for early signs of CIN is still the mainstay of many cervical cancer control programs. However, the accuracy of existing screening tests remains suboptimal. Changes in epigenetic patterns that occur as a result of human papillomavirus infection contribute to CIN progression to cancer, and can be harnessed to improve existing screening tests. However, this requires a concerted effort to identify the epigenomic landscape that is reliably altered by HPV infection specific to ICC, distinct from transient changes.
Collapse
|
33
|
Anderson EL, Banister CE, Kassler S, Messersmith A, Pirisi L, Creek KE, Wyatt MD. Human Papillomavirus Type 16 L2 DNA Methylation in Exfoliated Cervical Cells From College-Age Women. J Low Genit Tract Dis 2016; 20:332-7. [PMID: 27518844 PMCID: PMC5037005 DOI: 10.1097/lgt.0000000000000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The Carolina Women's Care Study (CWCS) at the University of South Carolina followed 467 young women with the goal of identifying biomarkers of human papillomavirus (HPV) persistence. In this study, we analyzed the methylation of HPV16 DNA. METHODS The aims of this study were to determine the methylation status of the HPV16 L2 gene in DNA isolated from exfoliated cervical cells collected longitudinally as part of the CWCS and to determine the prevalence of polymorphisms (single nucleotide polymorphisms [SNPs]) in folate metabolizing enzymes and DNA repair enzymes known to affect DNA methylation in blood-derived genomic DNA from CWCS participants. For methylation studies, DNA samples were bisulfite converted and amplified with the EpiTect Whole Bisulfitome kit. Polymerase chain reaction was performed for amplicons containing 5 CpG sites in L2. Pyrosequencing was carried out using EpigenDx and analyzed with PyroMark Software. Taqman genotyping assays were performed to determine selected SNP alleles in the CWCS cohort. RESULTS AND CONCLUSIONS Methylation data were obtained for 82 samples from 27 participants. Of these, 22 participants were positive for HPV16 for 3 or more visits (≥12 months). Methylation in L2 was detectable, but methylation levels varied and were not associated with HPV16 persistence. No linearity of methylation levels over time was observed in participants for whom longitudinal data could be analyzed. Analysis of 9 selected SNPs did not reveal an association with persistence. We conclude that at early stages of infection methylation of HPV16 L2 DNA in Pap test samples is not a predictive biomarker of HPV persistence.
Collapse
Affiliation(s)
- Erin L. Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
| | - Carolyn E. Banister
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
| | - Susannah Kassler
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
| | - Amy Messersmith
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
- Department of Pharmaceutical Sciences, College of Pharmacy, Presbyterian College
| | - Lucia Pirisi
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina
| | - Kim E. Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
| | - Michael D. Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina
| |
Collapse
|
34
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
35
|
Association of MBL2 exon1 polymorphisms with high-risk human papillomavirus infection and cervical cancers: a meta-analysis. Arch Gynecol Obstet 2016; 294:1109-1116. [PMID: 27619685 DOI: 10.1007/s00404-016-4201-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE High-risk human papillomavirus (HR-HPV) infection is the main known cause of cervical cancer. Mannose-binding lectin (MBL) is a recognition molecule that mediates phagocytosis and activates complement. METHODS We performed a meta-analysis to investigate the association of MBL-2 functional polymorphisms with HPV infection and cervical cancer (CC). RESULTS The meta-analyses indicated an association between the MBL2 exon 1 polymorphisms and susceptibility to HPV infection in the recessive model (OO vs. AA + AO, p = 0.042, 95 % CI 1.02-3.15), and O/O vs. A/A mode (P = 0.023, 95 % CI 1.10-3.40) in Caucasian. Meanwhile, there was a significant association between MBL2 exon 1 polymorphisms and cervical cancer risk in AO vs. AA model (p = 0.035, 95 % CI 1.03-2.26), and Allelic model (O vs. A, p = 0.022, 95 % CI 1.05-1.96) as compared to HR-HPV-infected patients with CC vs. healthy controls in Caucasian. In addition, no an association was observed between MBL2 -550 H/L and -221 X/Y polymorphisms and HPV infection among Caucasians, but we found an association between the MBL2 -550 H/L polymorphism and susceptibility to HR-HPV infection in recessive model (HH vs. LL + LH, p = 0.003, 95 % CI 1.18-2.23), HH vs. LL model (p = 0.021, 95 % CI 1.07-2.19), and allelic model(H vs. L, p = 0.042, 95 % CI 1.01-1.40) in Asians. CONCLUSIONS Collectively, we suggest that the MBL2 gene exon1 polymorphisms are associated with increased risk of high-risk HPV infection and cervical cancer development among Caucasians. Additionally, no significant association was found between the MBL2 -550 H/L or -221 X/Y polymorphisms and HPV infection in Caucasians, but there may be potential links in Asians.
Collapse
|
36
|
Molano M, Tabrizi SN, Garland SM, Roberts JM, Machalek DA, Phillips S, Chandler D, Hillman RJ, Grulich AE, Jin F, Poynten IM, Templeton DJ, Cornall AM, SPANC Study Team. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker. PLoS One 2016; 11:e0160673. [PMID: 27529629 PMCID: PMC4987059 DOI: 10.1371/journal.pone.0160673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022] Open
Abstract
Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.
Collapse
Affiliation(s)
- Monica Molano
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Sepehr N. Tabrizi
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne and Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Suzanne M. Garland
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne and Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | | | - Dorothy A. Machalek
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Samuel Phillips
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | | | - Richard J. Hillman
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, New South Wales, Australia
- Sydney Medical School, Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew E. Grulich
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Fengyi Jin
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - I. Mary Poynten
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - David J. Templeton
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- RPA Sexual Health, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Alyssa M. Cornall
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
37
|
Alteration of Human Papillomavirus Type 16 Genetic and Epigenetic Profiles in Cervical Cancer Patients Is Indicative of Poor Disease Prognosis: A Cohort Analysis. Int J Gynecol Cancer 2016; 26:750-7. [DOI: 10.1097/igc.0000000000000679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ObjectiveAim of this study was to assess the changes in genetic and epigenetic profiles of human papillomavirus type 16 (HPV16), if any, in primary cervical cancer (CaCx) and corresponding plasma before and after therapy for possible prognostic evaluation.MethodsThe genetic (integration status) and epigenetic (methylation of enhancer, early promoter, and late promoter sequences) profiles of HPV16 were analyzed in pretherapy CaCx (n = 46), corresponding plasma, posttherapy cervical swabs (n = 39), and corresponding plasma from a single patient cohort. Quantitative viral load was also measured in these HPV16-positive primary CaCx and posttherapy cervical swabs.ResultsPresence of HPV16 in the patients’ plasma before/after therapy was significantly (P= 0.03) associated with higher viral load in the primary tumor site. Human papillomavirus type 16 integration and hypomethylation of the early (14 of 29,Z= 4.47,P< 0.01) and late promoters (20 of 29,Z= 3.74,P< 0.01) were more prevalent in the plasma than the corresponding pretherapy CaCx samples. However, the dissimilarity in integration status (5 of 24) was less evident between posttherapy cervical swabs and corresponding plasma, although hypomethylation of the early promoter and hypermethylation of the late promoter (8 of 24,Z= 2.6,P< 0.01) was seen in posttherapy plasma samples. Whereas in the posttherapy swabs, integrated (22 of 29) or mixed (7 of 29) form of HPV16 prevailed with hypomethylation of the enhancer (6 of 29,Z= 2.0,P< 0.05) and late promoter (18 of 29,Z= 4.4,P< 0.01) compared with the corresponding primary tumors. The patients having high HPV16 copy number in pretherapy and posttherapy cervical lesions and hypomethylation of early promoter/late promoter in the corresponding plasma showed increased disease recurrence with distant metastases.ConclusionsThe genetic-epigenetic profile of HPV16 in pretherapy/posttherapy CaCx samples showed significant association with disease prognosis.
Collapse
|
38
|
Bhat S, Kabekkodu SP, Noronha A, Satyamoorthy K. Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie 2016; 121:298-311. [PMID: 26743075 DOI: 10.1016/j.biochi.2015.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide. About 528,000 women are diagnosed with cervical cancer contributing to around 266,000 deaths, across the globe every year. Out of these, the burden of 226,000 (85%) deaths occurs in the developing countries, who are less resource intensive to manage the disease. This is despite the fact that cervical cancer is amenable for early detection due to its long and relatively well-known natural history prior to its culmination as invasive disease. Infection with high risk human papillomavirus (hrHPVs) is essential but not sufficient to cause cervical cancer. Although it was thought that genetic mutations alone was sufficient to cause cervical cancer, the current epidemiological and molecular studies have shown that HPV infection along with genetic and epigenetic changes are frequently associated and essential for initiation, development and progression of the disease. Moreover, aberrant DNA methylation in host and HPV genome can be utilized not only as biomarkers for early detection, disease progression, diagnosis and prognosis of cervical cancer but also to design effective therapeutic strategies. In this review, we focus on recent studies on DNA methylation changes in cervical cancer and their potential role as biomarkers for early diagnosis, prognosis and targeted therapy.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Ashish Noronha
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India.
| |
Collapse
|
39
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Upadhyay M, Vivekanandan P. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures. PLoS One 2015; 10:e0142368. [PMID: 26544572 PMCID: PMC4636234 DOI: 10.1371/journal.pone.0142368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. Methods We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. Results All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. Conclusions The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our results highlight the existence of divergent evolutionary pressures leading to CpG dinucleotide depletion among small ds-DNA viruses infecting vertebrate hosts.
Collapse
Affiliation(s)
- Mohita Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
- * E-mail:
| |
Collapse
|
41
|
Zhang C, Deng Z, Pan X, Uehara T, Suzuki M, Xie M. Effects of Methylation Status of CpG Sites within the HPV16 Long Control Region on HPV16-Positive Head and Neck Cancer Cells. PLoS One 2015; 10:e0141245. [PMID: 26509736 PMCID: PMC4625038 DOI: 10.1371/journal.pone.0141245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Objective To map comprehensively the methylation status of the CpG sites within the HPV16 long control region (LCR) in HPV-positive cancer cells, and to explore further the effects of methylation status of HPV16 LCR on cell bioactivity and E6 and E7 expression. In addition, to analyze the methylation status of the LCR in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods and Materials Methylation patterns of HPV16 LCR in UM-SCC47, CaSki, and SiHa cells and HPV16-positiive OPSCC specimens were detected by bisulfite-sequencing PCR and TA cloning. For cells treated with 5-aza-2′-deoxycytidine and E6 and E7 knockdown, MTS and trypan blue staining, annexin-V and 7-AAD staining, and prodidium iodide were used to evaluate cell growth and cell proliferation, cell apoptosis, and cell cycle arrest, respectively. E6 and E7 mRNA and protein expression were analyzed by quantitative real-time PCR and immunocytochemistry, respectively. Results Hypermethylation status of the LCR in UM-SCC47 (79.8%) and CaSki cells (90.0%) and unmethylation status of the LCR in SiHa cells (0%) were observed. Upon demethylation, the cells with different methylation levels responded differently during growth, apoptosis, and cell cycle arrest, as well as in terms of their E6 and E7 expression. In HPV16-positive OPSCC patients, the methylation rates were 9.5% in the entire LCR region, 13.9% in the 5′-LCR, 6.0% in the E6 enhancer, and 9.5% in the p97 promoter, and hypermethylation of p97 promoter was found in a subset of cases (20.0%, 2/10). Conclusions Our study revealed two different methylation levels of the LCR in HPV16-positive cancer cells and OPSCC patients, which may represent different carcinogenesis mechanisms of HPV-positive cancers cells. Demethylating the meCpGs in HPV16 LCR might be a potential target for a subgroup of HPV16-positive patients with head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated hospital of Zunyi Medical University, Zunyi, China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
| | - Xiaoli Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, The First People’s Hospital of Guangzhou, Guangzhou, China
| | - Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
- * E-mail: (MX); (MS)
| | - Minqiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (MX); (MS)
| |
Collapse
|
42
|
Letsolo BT, Faust H, Ekblad L, Wennerberg J, Forslund O. Establishment and characterization of a human papillomavirus type 16-positive tonsillar carcinoma xenograft in BALB/c nude mice. Head Neck 2015; 38:417-25. [PMID: 25352201 DOI: 10.1002/hed.23918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Among head and neck cancers, human papillomavirus type 16 (HPV16) is associated with tonsillar carcinomas. Despite this, no HPV16-positive tonsillar cancer cell line has been established in nude mice. METHODS Fresh tonsillar carcinoma biopsies were obtained from 23 patients and implanted subcutaneously into nude mice (BALB/c, nu/nu). RESULTS After 7 months, one xenograft was established. The primary tumor harbored 2.7 copies (95% confidence interval = 2.4-2.9) of HPV16/cell and displayed 99.9% (7904/7906) nucleotide identity to HPV16 (EU118173.1). The xenograft showed increased methylation in two E2-binding sites of the HPV16 genome. Both episomal and integrated HPV16 were detected in the original tumor and in 14 xenografts from the second passage. From this passage, a viral load of 6.4 copies/cell (range = 4.6-9.6) and 3.7 (range = 1.0-5.5) E7-mRNA transcripts/HPV16-genome were detected. CONCLUSION This xenograft represents the first established HPV16-positive tonsillar tumor in nude mice and could provide an experimental system of HPV16-positive tonsillar cancers.
Collapse
Affiliation(s)
- Boitelo T Letsolo
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University and Skåne Regional and University Laboratories, Malmö, Sweden.,School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Helena Faust
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University and Skåne Regional and University Laboratories, Malmö, Sweden
| | - Lars Ekblad
- Division of Oncology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Wennerberg
- Division of Otorhinolaryngology/Head and Neck Surgery, Clinical Sciences, Lund University and University Hospital of Scania, Lund, Sweden
| | - Ola Forslund
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University and Skåne Regional and University Laboratories, Malmö, Sweden
| |
Collapse
|
43
|
Simanaviciene V, Popendikyte V, Gudleviciene Z, Zvirbliene A. Different DNA methylation pattern of HPV16, HPV18 and HPV51 genomes in asymptomatic HPV infection as compared to cervical neoplasia. Virology 2015; 484:227-233. [PMID: 26119875 DOI: 10.1016/j.virol.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 12/29/2022]
Abstract
Epigenetic alterations of human papillomavirus (HPV) genome play an important role in virus life cycle and carcinogenic progression. The aim of the current study was to investigate the correlation between the grade of cervical pathology and DNA methylation status within the L1 gene and the long control region (LCR) of HPV16, HPV18 and HPV51. HPV genomes were analyzed using bisulfite DNA modification procedure with the subsequent amplification of target DNA regions and sequencing. A collection of 202 cervical specimens was analyzed: 157 HPV16-positive specimens, 21 HPV18-positive specimens and 24 HPV51-positive specimens. This study revealed that methylation of CpG was significantly more prevalent in L1 gene as compared to LCR region of all three studied HPV types and the degree of DNA methylation level correlated with the severity of cervical neoplasia. An increased DNA methylation level of HPV16 promoter region in case of cervical cancer was determined.
Collapse
Affiliation(s)
- Vaida Simanaviciene
- Institute of Biotechnology, Vilnius University, Graiciuno Str.8, LT-02241 Vilnius, Lithuania.
| | - Violeta Popendikyte
- Thermo Fischer Scientific Baltic, Graiciuno Str.8, LT-02241 Vilnius, Lithuania
| | - Zivile Gudleviciene
- National Cancer Institute, Santariskiu Str.1, LT-08660 Vilnius, Lithuania; Faculty of Medicine, Vilnius University, M.K. Ciurlionio Str.21, LT-03101 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Vilnius University, Graiciuno Str.8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
44
|
Milutin Gašperov N, Sabol I, Planinić P, Grubišić G, Fistonić I, Ćorušić A, Grce M. Methylated Host Cell Gene Promoters and Human Papillomavirus Type 16 and 18 Predicting Cervical Lesions and Cancer. PLoS One 2015; 10:e0129452. [PMID: 26057381 PMCID: PMC4461273 DOI: 10.1371/journal.pone.0129452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Change in the host and/or human papillomavirus (HPV) DNA methylation profile is probably one of the main factors responsible for the malignant progression of cervical lesions to cancer. To investigate those changes we studied 173 cervical samples with different grades of cervical lesion, from normal to cervical cancer. The methylation status of nine cellular gene promoters, CCNA1, CDH1, C13ORF18, DAPK1, HIC1, RARβ2, hTERT1, hTERT2 and TWIST1, was investigated by Methylation Specific Polymerase Chain Reaction (MSP). The methylation of HPV18 L1-gene was also investigated by MSP, while the methylated cytosines within four regions, L1, 5’LCR, enhancer, and promoter of the HPV16 genome covering 19 CpG sites were evaluated by bisulfite sequencing. Statistically significant methylation biomarkers distinguishing between cervical precursor lesions from normal cervix were primarily C13ORF18 and secondly CCNA1, and those distinguishing cervical cancer from normal or cervical precursor lesions were CCNA1, C13ORF18, hTERT1, hTERT2 and TWIST1. In addition, the methylation analysis of individual CpG sites of the HPV16 genome in different sample groups, notably the 7455 and 7694 sites, proved to be more important than the overall methylation frequency. The majority of HPV18 positive samples contained both methylated and unmethylated L1 gene, and samples with L1-gene methylated forms alone had better prognosis when correlated with the host cell gene promoters’ methylation profiles. In conclusion, both cellular and viral methylation biomarkers should be used for monitoring cervical lesion progression to prevent invasive cervical cancer.
Collapse
Affiliation(s)
| | - Ivan Sabol
- Rudjer Boskovic Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Pavao Planinić
- Department of Gynecologic Oncology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Goran Grubišić
- Obstetrics and Gynaecology Clinic, Clinical Hospital “Sestre milosrdnice,” Zagreb, Croatia
| | | | - Ante Ćorušić
- Department of Gynecologic Oncology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Magdalena Grce
- Rudjer Boskovic Institute, Division of Molecular Medicine, Zagreb, Croatia
- * E-mail:
| |
Collapse
|
45
|
McCormick TM, Canedo NHS, Furtado YL, Silveira FA, de Lima RJ, Rosman ADF, Almeida Filho GL, Carvalho MDGDC. Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study. Diagn Pathol 2015; 10:59. [PMID: 26032781 PMCID: PMC4450846 DOI: 10.1186/s13000-015-0283-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) inactivates the retinoblastoma 1 (RB1) gene by promoter methylation and reduces cellular E-cadherin expression by overexpression of DNA methyltransferase 1 (DNMT1). The Epstein-Barr virus (EBV) is an oncogenic virus that may be related to cervical carcinogenesis. In gastric cancer, it has been demonstrated that E-cadherin gene (CDH1) hypermethylation is associated with DNMT1 overexpression by EBV infection. Our aim was to analyze the gene promoter methylation frequency of RB1 and CDH1 and verify the association between that methylation frequency and HPV and EBV infection in cervical lesions. METHODS Sixty-five samples were obtained from cervical specimens: 15 normal cervices, 17 low-grade squamous intraepithelial lesions (LSIL), 15 high-grade squamous intraepithelial lesions (HSIL), and 18 cervical cancers. HPV and EBV DNA testing was performed by PCR, and the methylation status was verified by MSP. RESULTS HPV frequency was associated with cervical cancer cases (p = 0.005) but not EBV frequency (p = 0.732). Viral co-infection showed a statistically significant correlation with cancer (p = 0.027). No viral infection was detected in 33.3% (5/15) of controls. RB1 methylated status was associated with cancer (p = 0.009) and HPV infection (p = 0.042). CDH1 methylation was not associated with cancer (p = 0.181). Controls and LSIL samples did not show simultaneous methylation, while both genes were methylated in 27.8% (5/18) of cancer samples. In the presence of EBV, CDH1 methylation was present in 27.8% (5/18) of cancer samples. Only cancer cases presented RB1 promoter methylation in the presence of HPV and EBV (33.3%). CONCLUSIONS The methylation status of both genes increased with disease progression. With EBV, RB1 methylation was a tumor-associated event because only the cancer group presented methylated RB1 with HPV infection. HPV infection was shown to be significantly correlated with cancer conditions. The global methylation frequency was higher when HPV was present, showing its epigenetic role in cervical carcinogenesis. Nevertheless, EBV seems to be a cofactor and needs to be further investigated. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1159157579149317 .
Collapse
Affiliation(s)
- Thaís M McCormick
- Laboratory of Molecular Pathology, Pathological Anatomy Service and Pathology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - Nathalie H S Canedo
- Laboratory of Neuropathology, Pathological Anatomy Service and Pathology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - Yara L Furtado
- Gynecology Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - Filomena A Silveira
- Gynecology Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - Roberto J de Lima
- Gynecology Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - Andréa D F Rosman
- Gynecology Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | | | - Maria da Glória da C Carvalho
- Laboratory of Molecular Pathology, Pathological Anatomy Service and Pathology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
- Serviço de Anatomia Patológica, Subsolo - sala 09 (Citopatologia), Hospital Universitário Clementino Fraga Filho, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-913, Brazil.
| |
Collapse
|
46
|
Anayannis NVJ, Schlecht NF, Belbin TJ. Epigenetic Mechanisms of Human Papillomavirus-Associated Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1373-8. [PMID: 25978766 DOI: 10.5858/arpa.2014-0554-ra] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Growing evidence suggests that as many as half of all oropharyngeal squamous cell carcinomas (OPSCCs) harbor human papillomavirus (HPV) infections. Despite being more advanced at diagnosis, HPV-positive OPSCCs are associated with a better response to therapy and longer patient survival than HPV-negative OPSCCs. Human papillomavirus-positive OPSCC has also been shown to have distinct host gene expression profiles compared with HPV-negative OPSCC. Recently, this distinction has been shown to include the epigenome. It is well supported that cancers are epigenetically deregulated. This review highlights epigenetic differences between HPV-positive and HPV-negative OPSCCs. The epigenetic mechanisms highlighted include methylation changes to host and viral DNA, and host chromatin modification. We also review the current evidence regarding host DNA methylation changes associated with smoking, and deregulation of microRNA expression in HPV-positive OPSCC. OBJECTIVE To provide an overview of epigenetic mechanisms reported in HPV-positive OPSCC, with analogies to cervical cancer, and discussion of the challenges involved in studying epigenetic changes in HPV-associated OPSCC in combination with changes associated with smoking. DATA SOURCES Sources were a literature review of peer-reviewed articles in PubMed on HPV and either OPSCC or head and neck squamous cell carcinoma, and related epigenetic mechanisms. CONCLUSIONS Epigenetic changes are reported to be a contributing factor to maintaining a malignant phenotype in HPV-positive OPSCC. The epigenetic mechanisms highlighted in this review can be studied for potential as biomarkers or as drug targets. Furthermore, continued research on the deregulation of epigenetic mechanisms in HPV-positive OPSCC (compared with HPV-negative OPSCC) may contribute to our understanding of the clinical and biologic differences between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
| | | | - Thomas J Belbin
- From the Departments of Pathology (Ms Anayannis and Dr Belbin), Epidemiology & Population Health (Dr Schlecht), and Medicine (Oncology) (Dr Schlecht), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
47
|
Bryant D, Hibbitts S, Almonte M, Tristram A, Fiander A, Powell N. Human papillomavirus type 16 L1/L2 DNA methylation shows weak association with cervical disease grade in young women. J Clin Virol 2015; 66:66-71. [PMID: 25866341 DOI: 10.1016/j.jcv.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Persistent infection with human papillomavirus (HPV) type 16 causes the majority of cervical cancers. Genital HPV infection is very common, but neoplastic progression is uncommon. There is an urgent need for biomarkers associated with cervical neoplasia, to enable triage of women who test positive for HPV. OBJECTIVES To assess the ability of quantitative measurement of HPV16 DNA methylation to separate samples of different cytological and histological grades from young women, among whom rates of HPV infection are high. STUDY DESIGN DNA methylation was quantified by pyrosequencing of bisulphite converted DNA from liquid based cytology samples from 234 women (mean age 20.6 years) who tested positive for HPV16 and showed varying degrees of neoplasia. Methylation was assessed at CpGs in the HPV E2 and L1/L2 regions. RESULTS The performance of methylation-based classifiers was assessed by ROC curve analyses. The best combination of CpGs (5600 and 5609) achieved AUCs of 0.656 (95% CI=0.520-0.792) for separation of cytologically normal and severely dyskaryotic samples, and 0.639 (95% CI=0.547-0.731) for separation of samples with or without high-grade neoplasia (CIN2+/-). CONCLUSIONS The data are consistent with HPV L1/L2 methylation being a marker of the duration of infection in a specific host. Assessment of HPV DNA methylation is hence a promising biomarker to triage HPV-positive cytology samples, but may have limited utility in young women. Future studies assessing the likely utility of HPV DNA methylation as a potential triage biomarker must take account of women's age.
Collapse
Affiliation(s)
- Dean Bryant
- School of Medicine, Heath Park, Cardiff University, CF64 3RL, UK.
| | | | - Maribel Almonte
- Prevention and Implementation Group, IARC, Lyon CEDEX 08, France.
| | - Amanda Tristram
- School of Medicine, Heath Park, Cardiff University, CF64 3RL, UK.
| | - Alison Fiander
- School of Medicine, Heath Park, Cardiff University, CF64 3RL, UK.
| | - Ned Powell
- School of Medicine, Heath Park, Cardiff University, CF64 3RL, UK.
| |
Collapse
|
48
|
Mirabello L, Frimer M, Harari A, McAndrew T, Smith B, Chen Z, Wentzensen N, Wacholder S, Castle PE, Raine-Bennett T, Schiffman M, Burk RD. HPV16 methyl-haplotypes determined by a novel next-generation sequencing method are associated with cervical precancer. Int J Cancer 2015; 136:E146-53. [PMID: 25081507 PMCID: PMC4262737 DOI: 10.1002/ijc.29119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/03/2014] [Indexed: 01/02/2023]
Abstract
We have developed and evaluated a next-generation bisulfite sequencing (NGS) assay to distinguish HPV16 cervical precancer (CIN2-3; N=59) from HPV16-positive transient infections (N=40). Cervical DNA was isolated and treated with bisulfite and HPV16 methylation was quantified by (i) amplification with barcoded primers and massively parallel single molecule sequencing and (ii) site-specific pyrosequencing. Assays were evaluated for agreement using intraclass correlation coefficients (ICC). Odds ratios (OR) for high methylation vs. low methylation were calculated. Single site pyrosequencing and NGS data were correlated (ICC=0.61) and both indicated hypermethylation was associated with precancer (ORs of 2-37). Concordant NGS and pyrosequencing results yieled ORs that were stronger when compared with using either assay separately. Within the L1 region, the ORs for CIN2-3 were 14.3 and 22.4 using pyrosequencing and NGS assays, respectively; when both methods agreed the OR was 153. NGS assays provide methylation haplotypes, termed methyl-haplotypes from single molecule reads: cases had increased methyl-haplotypes with ≥1 methylated CpG site(s) per fragment compared with controls, particularly in L1 (p=3.0×10(-8)). The maximum discrimination of cases from controls for a L1 methyl-haplotype had an AUC of 0.89 corresponding to a sensitivity of 92.5% and a specificity of 73.1%. The strengthening of the OR when the two assays were concordant suggests the true association of CpG methylation with precancer is stronger than with either assay. As cervical cancer prevention moves to DNA testing methods, DNA based biomarkers, such as HPV methylation could serve as a reflex strategy to identify women at high risk for cervix cancer.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Marina Frimer
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, at Albert Einstein College of Medicine, Bronx, NY
| | - Ariana Harari
- Department of Epidemiology and Population Health, at Albert Einstein College of Medicine, Bronx, NY
| | - Thomas McAndrew
- Department of Epidemiology and Population Health, at Albert Einstein College of Medicine, Bronx, NY
| | - Benjamin Smith
- Department of Epidemiology and Population Health, at Albert Einstein College of Medicine, Bronx, NY
| | - Zigui Chen
- Department of Epidemiology and Population Health, at Albert Einstein College of Medicine, Bronx, NY
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Sholom Wacholder
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Tina Raine-Bennett
- Women’s Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland CA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Robert D. Burk
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, at Albert Einstein College of Medicine, Bronx, NY
- Department of Epidemiology and Population Health, at Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
49
|
Shim J, Kim Y, Humphreys GI, Nardulli AM, Kosari F, Vasmatzis G, Taylor WR, Ahlquist DA, Myong S, Bashir R. Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS NANO 2015; 9:290-300. [PMID: 25569824 DOI: 10.1021/nn5045596] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine. Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially can be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis. We present a nanopore-based direct methylation detection assay that circumvents bisulfite conversion and polymerase chain reaction amplification. Building on our prior work, we used methyl-binding proteins (MBPs), which selectively label the methylated DNA. The nanopore-based assay selectively detects methylated DNA/MBP complexes through a 19 nm nanopore with significantly deeper and prolonged nanopore ionic current blocking, while unmethylated DNA molecules were not detectable due to their smaller diameter. Discrimination of hypermethylated and unmethylated DNA on 90, 60, and 30 bp DNA fragments was demonstrated using sub-10 nm nanopores. Hypermethylated DNA fragments fully bound with MBPs are differentiated from unmethylated DNA at 2.1- to 6.5-fold current blockades and 4.5- to 23.3-fold transport durations. Furthermore, these nanopore assays can detect the CpG dyad in DNA fragments and could someday profile the position of methylated CpG sites on DNA fragments.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Bioengineering, ‡Micro and Nanotechnology Laboratory, and §Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J Pathol 2015; 235:527-38. [PMID: 25604863 DOI: 10.1002/path.4496] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ian J Groves
- University of Cambridge, Department of Pathology, UK
| | | |
Collapse
|