1
|
Xiao H, Chen W, Pang H, Zheng J, Wang L, Feng H, Song J, Cheng L, Liu H. Structure of the scaffolding protein and portal within the bacteriophage P22 procapsid provides insights into the self-assembly process. PLoS Biol 2025; 23:e3003104. [PMID: 40245015 PMCID: PMC12005531 DOI: 10.1371/journal.pbio.3003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025] Open
Abstract
In the assembly pathway of tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses, a procapsid with a dodecameric portal for DNA delivery at a unique vertex is initially formed. Appropriate procapsid assembly requires the transient presence of multiple copies of a scaffolding protein (SP), which is absent in the mature virion. However, how the SP contributes to dodecameric portal formation, facilitates portal and coat protein incorporation, and is subsequently released remains unclear because of a lack of structural information. Here, we present the structure of the SP-portal complex within the procapsid of bacteriophage P22 at 3-9 Å resolutions. The AlphaFold2-predicted SP model fits well with the density map of the complex. The SP forms trimers and tetramers that interact to yield a dome-like complex on the portal. Two SP domains mediate multimerization. Each trimer interacts with two neighboring portal subunits. The SP has a loop-hook-like structure that aids in coat protein recruitment during viral assembly. The loops of those SP subunits on the portal are positioned in clefts between adjacent portal subunits. Conformational changes in the portal during phage maturation may trigger the disassembly and release of the SP complex. Our findings provide insights into SP-assisted procapsid assembly in bacteriophage P22 and suggest that this strategy is also implemented by other dsDNA viruses, including herpesviruses.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Li Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Feng
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jingdong Song
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Stevens A, Kashyap S, Crofut E, Alverez-Cabrera AL, Jih J, Liu YT, Zhou ZH. Structure of a new capsid form and comparison with A-, B- and C-capsids clarify herpesvirus assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644230. [PMID: 40166288 PMCID: PMC11957103 DOI: 10.1101/2025.03.19.644230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Three capsid types have been recognized from the nuclei of herpesvirus-infected cells: empty A-capsids, scaffolding-containing B-capsids, and DNA-filled C-capsids. Despite progress in determining atomic structures of these capsids and extracellular virions in recent years, debate persists concerning the origins and temporal relationships among these capsids during capsid assembly and genome packaging. Here, we have imaged over 300,000 capsids of herpes simplex virus type 1 by cryogenic electron microscopy (cryoEM) and exhaustively classified them to characterize the structural heterogeneity of the DNA-translocating portal complex and their functional states. The resultant atomic structures reveal not only the expected A-, B-, and C-capsids, but also capsids with portal vertices similar to C-capsids but no resolvable genome in the capsid lumen, which we named D-capsids. The dodecameric dsDNA-translocating portal complex varies across these capsid types in their radial positions in icosahedral capsids and exhibits structural dynamics within each capsid type. In D-capsids, terminal DNA density exists in multiple conformations including one reminiscent to that in C-capsids, suggesting D-capsids are products of failed DNA retention. This interpretation is supported by varying amounts of DNA outside individual D-capsids and by correlation of capsid counts observed in situ of infected cell nuclei and those after purification. Additionally, an "anchoring" segment of the scaffold protein is resolved interacting with the portal baskets of A- and B-capsids but not D- and C-capsids. Taken together, our data indicate that A-capsids arise from failed DNA packaging and D-capsids from failed genome retention, clarifying the origins of empty capsids in herpesvirus assembly.
Collapse
Affiliation(s)
- Alexander Stevens
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Saarang Kashyap
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Ethan Crofut
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Ana Lucia Alverez-Cabrera
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Jonathan Jih
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Yang Q, Feng Y, Zhang Y, Wang M, Jia R, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Zhang S, Tian B, Ou X, Mao S, Huang J, Gao Q, Sun D, Wu Z, He Y, Zhang L, Yu Y, Cheng A. Characteristics of the a sequence of the duck Plague virus genome and specific cleavage of the viral genome based on the a sequence. Vet Res 2024; 55:2. [PMID: 38172999 PMCID: PMC10763189 DOI: 10.1186/s13567-023-01256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 01/05/2024] Open
Abstract
During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRT‒PCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRT‒PCR will greatly facilitate more in-depth research.
Collapse
Affiliation(s)
- Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yaya Feng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yuanxin Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yanling Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| |
Collapse
|
4
|
Huet A, Oh B, Maurer J, Duda RL, Conway JF. A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex. SCIENCE ADVANCES 2023; 9:eadg8868. [PMID: 37327331 PMCID: PMC10275583 DOI: 10.1126/sciadv.adg8868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bonnie Oh
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh Maurer
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L. Duda
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Li Z, Pang J, Gao R, Wang Q, Zhang M, Yu X. Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus. Nat Commun 2023; 14:2025. [PMID: 37041152 PMCID: PMC10090080 DOI: 10.1038/s41467-023-37779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
The portal-scaffold complex is believed to nucleate the assembly of herpesvirus procapsids. During capsid maturation, two events occur: scaffold expulsion and DNA incorporation. The portal-scaffold interaction and the conformational changes that occur to the portal during the different stages of capsid formation have yet to be elucidated structurally. Here we present high-resolution structures of the A- and B-capsids and in-situ portals of human cytomegalovirus. We show that scaffolds bind to the hydrophobic cavities formed by the dimerization and Johnson-fold domains of the major capsid proteins. We further show that 12 loop-helix-loop fragments-presumably from the scaffold domain-insert into the hydrophobic pocket of the portal crown domain. The portal also undergoes significant changes both positionally and conformationally as it accompanies DNA packaging. These findings unravel the mechanism by which the portal interacts with the scaffold to nucleate capsid assembly and further our understanding of scaffold expulsion and DNA incorporation.
Collapse
Affiliation(s)
- Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingjing Pang
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rongchao Gao
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qingxia Wang
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Maoyan Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xuekui Yu
- Cryo-Electron Microscopy Research Center, Chinese Academy of Sciences, Shanghai, 201203, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
6
|
Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein-Protein Interactions Hint Central Role of BLRF2 in the Tegument Network. J Virol 2022; 96:e0051822. [PMID: 35862711 PMCID: PMC9327732 DOI: 10.1128/jvi.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.
Collapse
|
7
|
Intranuclear HSV-1 DNA ejection induces major mechanical transformations suggesting mechanoprotection of nucleus integrity. Proc Natl Acad Sci U S A 2022; 119:2114121119. [PMID: 35197285 PMCID: PMC8892323 DOI: 10.1073/pnas.2114121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Maintaining nuclear integrity is essential to cell survival when exposed to mechanical stress. Herpesviruses, like most DNA and some RNA viruses, put strain on the nuclear envelope as hundreds of viral DNA genomes replicate and viral capsids assemble. It remained unknown, however, how nuclear mechanics is affected at the initial stage of herpesvirus infection-immediately after viral genomes are ejected into the nuclear space-and how nucleus integrity is maintained despite an increased strain on the nuclear envelope. With an atomic force microscopy force volume mapping approach on cell-free reconstituted nuclei with docked herpes simplex type 1 (HSV-1) capsids, we explored the mechanical response of the nuclear lamina and the chromatin to intranuclear HSV-1 DNA ejection into an intact nucleus. We discovered that chromatin stiffness, measured as Young's modulus, is increased by ∼14 times, while nuclear lamina underwent softening. Those transformations could be associated with a mechanism of mechanoprotection of nucleus integrity facilitating HSV-1 viral genome replication. Indeed, stiffening of chromatin, which is tethered to the lamina meshwork, helps to maintain nuclear morphology. At the same time, increased lamina elasticity, reflected by nucleus softening, acts as a "shock absorber," dissipating the internal mechanical stress on the nuclear membrane (located on top of the lamina wall) and preventing its rupture.
Collapse
|
8
|
Reconstituted virus–nucleus system reveals mechanics of herpesvirus genome uncoating. QRB DISCOVERY 2021. [PMID: 37529281 PMCID: PMC10392623 DOI: 10.1017/qrd.2021.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
The viral replication cycle is controlled by information transduced through both molecular and mechanical interactions. Viral infection mechanics remains largely unexplored, however, due to the complexity of cellular mechanical responses over the course of infection as well as a limited ability to isolate and probe these responses. Here, we develop an experimental system consisting of herpes simplex virus type 1 (HSV-1) capsids bound to isolated and reconstituted cell nuclei, which allows direct probing of capsid–nucleus mechanics with atomic force microscopy (AFM). Major mechanical transformations occur in the host nucleus when pressurised viral DNA ejects from HSV-1 capsids docked at the nuclear pore complexes (NPCs) on the nuclear membrane. This leads to structural rearrangement of the host chromosome, affecting its compaction. This in turn regulates viral genome replication and transcription dynamics as well as the decision between a lytic or latent course of infection. AFM probing of our reconstituted capsid–nucleus system provides high-resolution topographical imaging of viral capsid docking at the NPCs as well as force volume mapping of the infected nucleus surface, reflecting mechanical transformations associated with chromatin compaction and stiffness of nuclear lamina (to which chromatin is tethered). This experimental system provides a novel platform for investigation of virus–host interaction mechanics during viral genome penetration into the nucleus.
Collapse
|
9
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
10
|
Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. mBio 2021; 12:mBio.03575-20. [PMID: 33727359 PMCID: PMC8092310 DOI: 10.1128/mbio.03575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.
Collapse
|
11
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
12
|
Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. J Virol 2020; 94:JVI.01534-20. [PMID: 32967953 DOI: 10.1128/jvi.01534-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC. To define the roles and structures of the CVSC proteins in virus assembly and DNA packaging, we isolated a number of recombinant viruses expressing pUL25, pUL17, and pUL36 fused with green or red fluorescent proteins as well as viruses with specific deletions in the CVSC genes. Biochemical and structural studies of these mutants demonstrated that (i) four of the helices in the CVSC helix bundle can be attributed to two copies each of pUL36 and pUL25, (ii) pUL17 and pUL6 are required for capsid binding of the terminase complex in the nucleus, (iii) pUL17 is important for determining the site of the first cleavage reaction generating replicated genomes with termini derived from the long-arm component of the herpes simplex virus 1 (HSV-1) genome, (iv) pUL36 serves no direct role in cleavage/packaging, (v) cleavage and stable packaging of the viral genome involve an ordered interaction of the terminase complex and pUL25 with pUL17 at the portal vertex, and (vi) packaging of the viral genome results in a dramatic displacement of the portal.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, concatemeric viral DNA into preformed capsids. A key knowledge gap is how the capsid engages the replicated viral genome and the subsequent packaging of a unit-length HSV genome. Here, biochemical and structural studies focused on the unique portal vertex of wild-type HSV and packaging mutants provide insights into the mechanism of HSV genome packaging. The significance of our research is in identifying the portal proteins pUL6 and pUL17 as key viral factors for engaging the terminase complex with the capsid and the subsequent cleavage, packaging, and stable incorporation of the viral genome in the HSV-1 capsid.
Collapse
|
13
|
Zhang X, Liu Y, Wang M, Wang M, Jiang T, Sun J, Gao C, Jiang Y, Guo C, Shao H, Liang Y, McMinn A. Characterization and Genome Analysis of a Novel Marine Alteromonas Phage P24. Curr Microbiol 2020; 77:2813-2820. [PMID: 32588135 DOI: 10.1007/s00284-020-02077-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Although Alteromonas is ubiquitous in the marine environment, very little is known about Alteromonas phages, with only ten, thus far, being isolated and reported on. In this study, a novel double-stranded DNA phage, Alteromonas phage P24, which infects Alteromonas macleodii, was isolated from the coastal waters off Qingdao. Alteromonas phage P24 has a siphoviral morphology, with an icosahedral head, 61 ± 1 nm in diameter, and a tail length of 105 ± 1 nm. Alteromonas phage P24 contains lipids. It has an optimal temperature and pH for growth of 20℃ and 5-7, respectively. A one-step growth curve shows a latent period of 55 min, a rise period of 65 min, and an average burst size of approximately 147 virions per cell. Alteromonas phage P24 has the genome of 46,945 bp with 43.80% GC content and 74 open reading frames (ORFs) without tRNA. The results of the phylogenetic tree, based on the mcp and terL genes, show that Alteromonas phage P24 is closely related to Aeromonas phage phiARM81ld. Meanwhile, phylogenetic analysis based on the whole genome of P24 indicates that it forms a unique viral sub-cluster within Siphoviridae. This study contributes to the understanding of the genomic characteristics and the virus-host interactions of Alteromonas phages.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Jianhua Sun
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
16
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
17
|
Dünn-Kittenplon DD, Kalt I, Lellouche JPM, Sarid R. The KSHV portal protein ORF43 is essential for the production of infectious viral particles. Virology 2019; 529:205-215. [PMID: 30735904 DOI: 10.1016/j.virol.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 02/09/2023]
Abstract
Herpesvirus capsid assembly involves cleavage and packaging of the viral genome. The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 43 (orf43) encodes a putative portal protein. The portal complex functions as a gate through which DNA is packaged into the preformed procapsids, and is injected into the cell nucleus upon infection. The amino acid sequence of the portal proteins is conserved among herpesviruses. Here, we generated an antiserum to ORF43 and determined late expression kinetics of ORF43 along with its nuclear localization. We generated a recombinant KSHV mutant, which fails to express ORF43 (BAC16-ORF43-null). Assembled capsids were observed upon lytic induction of this virus; however, the released virions lacked viral DNA and thus could not establish infection. Ectopic expression of ORF43 rescued the ability to produce infectious particles. ORF43 antiserum and the recombinant ORF43-null virus can provide an experimental system for further studies of the portal functions and its interactions.
Collapse
Affiliation(s)
- Daniela Dana Dünn-Kittenplon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Jean-Paul Moshe Lellouche
- Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
18
|
Yasui R, Yoshida C, Yamaguchi T, Inoue N. Characterization of an anti-varicella-zoster virus compound that targets the portal protein encoded by ORF54. Microbiol Immunol 2018; 61:398-402. [PMID: 28833387 DOI: 10.1111/1348-0421.12507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/05/2017] [Accepted: 08/12/2017] [Indexed: 12/01/2022]
Abstract
An anti-varicella-zoster virus compound, a 5-chlorobenzo[b]thiophen derivative (45B5), was characterized. Its 50% effective concentration against the cell-free vaccine Oka strain and 50% cytotoxic concentration in human fibroblasts were 16.9 µM and more than 100 µM, respectively. Treatment with 45B5 decreased viral DNA synthesis and IE62 expression weakly but significantly. All 45B5-resistant viral clones isolated were found to have at least one mutation in ORF54 that encodes the portal protein. There were no effects on interaction between the portal and scaffold proteins. Thus, 45B5 may inhibit nuclear delivery of viral DNA.
Collapse
Affiliation(s)
- Ruka Yasui
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu-Shi, Gifu 501-1196, Japan
| | - Chinatsu Yoshida
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu-Shi, Gifu 501-1196, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu-Shi, Gifu 501-1196, Japan
| |
Collapse
|
19
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|
20
|
Mushegian A, Karin EL, Pupko T. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales". Virology 2018; 513:114-128. [PMID: 29065352 PMCID: PMC7172337 DOI: 10.1016/j.virol.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA.
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
21
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
22
|
Motwani T, Lokareddy RK, Dunbar CA, Cortines JR, Jarrold MF, Cingolani G, Teschke CM. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. SCIENCE ADVANCES 2017; 3:e1700423. [PMID: 28782023 PMCID: PMC5529062 DOI: 10.1126/sciadv.1700423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.
Collapse
Affiliation(s)
- Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Juliana R. Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
23
|
ϕX174 Procapsid Assembly: Effects of an Inhibitory External Scaffolding Protein and Resistant Coat Proteins In Vitro. J Virol 2017; 91:JVI.01878-16. [PMID: 27795440 DOI: 10.1128/jvi.01878-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.
Collapse
|
24
|
Herpesvirus Capsid Assembly and DNA Packaging. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:119-142. [PMID: 28528442 DOI: 10.1007/978-3-319-53168-7_6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies 1 of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25, and pUL36, binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell.
Collapse
|
25
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
26
|
Szczubiałka K, Pyrć K, Nowakowska M. In search for effective and definitive treatment of herpes simplex virus type 1 (HSV-1) infections. RSC Adv 2016. [DOI: 10.1039/c5ra22896d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) is a nuclear replicating enveloped virus.
Collapse
Affiliation(s)
| | - Krzysztof Pyrć
- Faculty of Biochemistry, Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Kraków
- Poland
| | | |
Collapse
|
27
|
Abstract
The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assembly also relies on an external scaffolding protein, the triplex, an α2β heterotrimer that coordinates neighboring capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regulate its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid protein (MCP) subunits. The model exploits the triplexes’ departure from 3-fold symmetry to explain the highly skewed MCP hexamers, the triplex orientations at each 3-fold site, and the T=16 architecture. These observations also yielded new insights into maturation. This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, macromolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procapsid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by cryo-electron microscopy suggests a hierarchical pathway in which multisubunit “protomers” are the building blocks of the procapsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral intervention.
Collapse
|
28
|
Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS One 2015; 10:e0131676. [PMID: 26147978 PMCID: PMC4493119 DOI: 10.1371/journal.pone.0131676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by non-sense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion.
Collapse
|
29
|
Gable J, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev 2014; 114:11382-412. [PMID: 25275644 PMCID: PMC4254030 DOI: 10.1021/cr500255e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan
E. Gable
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
- Graduate
Group in Biophysics, University of California,
San Francisco, 600 16th
Street, San Francisco, California 94158-2280, United States
| | - Timothy M. Acker
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| | - Charles S. Craik
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| |
Collapse
|
30
|
New Herpes Simplex Virus Replication Targets. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Yang K, Wills E, Baines JD. A herpes simplex virus scaffold peptide that binds the portal vertex inhibits early steps in viral replication. J Virol 2013; 87:6876-87. [PMID: 23576509 PMCID: PMC3676109 DOI: 10.1128/jvi.00421-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Previous experiments identified a 12-amino-acid (aa) peptide that was sufficient to interact with the herpes simplex virus 1 (HSV-1) portal protein and was necessary to incorporate the portal into capsids. In the present study, cells were treated at various times postinfection with peptides consisting of a portion of the Drosophila antennapedia protein, previously shown to enter cells efficiently, fused to either wild-type HSV-1 scaffold peptide (YPYYPGEARGAP) or a control peptide that contained changes at positions 4 and 5. These 4-tyrosine and 5-proline residues are highly conserved in herpesvirus scaffold proteins and were previously shown to be critical for the portal interaction. Treatment early in infection with subtoxic levels of wild-type peptide reduced viral infectivity by over 1,000-fold, while the mutant peptide had little effect on viral yields. In cells infected for 3 h in the presence of wild-type peptide, capsids were observed to transit to the nuclear rim normally, as viewed by fluorescence microscopy. However, observation by electron microscopy in thin sections revealed an aberrant and significant increase of DNA-containing capsids compared to infected cells treated with the mutant peptide. Early treatment with peptide also prevented formation of viral DNA replication compartments. These data suggest that the antiviral peptide stabilizes capsids early in infection, causing retention of DNA within them, and that this activity correlates with peptide binding to the portal protein. The data are consistent with the hypothesis that the portal vertex is the conduit through which DNA is ejected to initiate infection.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
32
|
Loret S, El Bilali N, Lippé R. Analysis of herpes simplex virus type I nuclear particles by flow cytometry. Cytometry A 2012; 81:950-9. [PMID: 22930570 DOI: 10.1002/cyto.a.22107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/04/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022]
Abstract
Flow cytometry has been instrumental to characterize cell populations and examine their inner molecules and processes. In most instances, whole cells are analyzed, and hence, particle size is not an issue. Viruses are 2-3 orders of magnitude smaller than cells so flow cytometry has typically been used to study viral markers within whole infected cells. However, the ability to separate and purify viral particles representing different maturation stages within a viral life cycle would be a useful tool to analyze them in details and characterize the host proteins they associate with. Herpes simplex virus Type 1 is a 250 nm enveloped DNA virus that replicates in the nucleus where it assembles new viral particles called capsids. These capsids eventually travel to the cell surface and are modified along the way, producing several intermediate particles. In the nucleus, three types of stable nonenveloped 125 nm nuclear capsids exist that differ in protein composition and genome content. This includes so-called nuclear C-capsids that are the precursors of mature extracellular virions. We report that we can apply flow cytometry to sort these nuclear C-capsid intermediates by labeling the viral genome with Syto 13, a fluorescent marker that binds to nucleic acids. This is the first time flow cytometry has been used not only to detect but also to purify an intracellular viral maturation intermediate. This opens new research avenues in virology to study capsid assembly, maturation and egress, analyze mutant phenotypes, and define host factors associated with specific viral intermediates.
Collapse
Affiliation(s)
- Sandra Loret
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
33
|
Abstract
In all herpesviruses, the capsid is icosahedral in shape, composed of 162 capsomers, and assembled in the infected cell nucleus. Once a closed capsid has formed, it is packaged with the virus DNA and transported to the cytoplasm where further morphogenetic events take place. Herpesvirus capsid populations are highly uniform in shape, and this property has made them attractive for structural analysis particularly by cryo electron microscopy followed by three-dimensional image reconstruction. Here we describe what is known about herpesvirus capsid structure and assembly with emphasis on herpes simplex virus and on the contribution of structural studies. The overall analysis has demonstrated that herpesvirus capsids are formed by a pathway resembling that established for dsDNA bacteriophage such as P22 and HK97. For example herpes capsid assembly is found to: (1) involve a scaffolding protein not present in the mature virus; (2) proceed through a fragile, spherical procapsid intermediate; and (3) result in incorporation of a portal complex at a unique capsid vertex.
Collapse
Affiliation(s)
- Jay C Brown
- Department of Microbiology, University of Virginia Health System, Charlottesville, 22908, USA.
| | | |
Collapse
|
34
|
Packaging accessory protein P7 and polymerase P2 have mutually occluding binding sites inside the bacteriophage 6 procapsid. J Virol 2012; 86:11616-24. [PMID: 22896624 DOI: 10.1128/jvi.01347-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteriophage 6 is a double-stranded RNA (dsRNA) virus whose genome is packaged sequentially as three single-stranded RNA (ssRNA) segments into an icosahedral procapsid which serves as a compartment for genome replication and transcription. The procapsid shell consists of 60 copies each of P1(A) and P1(B), two nonequivalent conformers of the P1 protein. Hexamers of the packaging ATPase P4 are mounted over the 5-fold vertices, and monomers of the RNA-dependent RNA polymerase (P2) attach to the inner surface, near the 3-fold axes. A fourth protein, P7, is needed for packaging and also promotes assembly. We used cryo-electron microscopy to localize P7 by difference mapping of procapsids with different protein compositions. We found that P7 resides on the interior surface of the P1 shell and appears to be monomeric. Its binding sites are arranged around the 3-fold axes, straddling the interface between two P1(A) subunits. Thus, P7 may promote assembly by stabilizing an initiation complex. Only about 20% of the 60 P7 binding sites were occupied in our preparations. P7 density overlaps P2 density similarly mapped, implying mutual occlusion. The known structure of the 12 homolog fits snugly into the P7 density. Both termini-which have been implicated in RNA binding-are oriented toward the adjacent 5-fold vertex, the entry pathway of ssRNA segments. Thus, P7 may promote packaging either by interacting directly with incoming RNA or by modulating the structure of the translocation pore.
Collapse
|
35
|
Yang K, Wills EG, Baines JD. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex. Virology 2012; 429:63-73. [PMID: 22543049 DOI: 10.1016/j.virol.2012.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/11/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU(L)26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU(L)26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU(L)26 is required for this conformational change.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
36
|
The UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid vertices. J Virol 2012; 86:4058-64. [PMID: 22345483 DOI: 10.1128/jvi.00012-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (∼100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.
Collapse
|
37
|
Baines JD. Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends Microbiol 2011; 19:606-13. [DOI: 10.1016/j.tim.2011.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
|
38
|
Cherwa JE, Organtini LJ, Ashley RE, Hafenstein SL, Fane BA. In VITRO ASSEMBLY of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates. J Mol Biol 2011; 412:387-96. [PMID: 21840317 DOI: 10.1016/j.jmb.2011.07.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 11/28/2022]
Abstract
Bacteriophage øX174 morphogenesis requires two scaffolding proteins: an internal species, similar to those employed in other viral systems, and an external species, which is more typically associated with satellite viruses. The current model of øX174 assembly is based on structural and in vivo data. During morphogenesis, 240 copies of the external scaffolding protein mediate the association of 12 pentameric particles into procapsids. The hypothesized pentameric intermediate, the 12S⁎ particle, contains 16 proteins: 5 copies each of the coat, spike and internal scaffolding proteins and 1 copy of the DNA pilot protein. Assembly naïve 12S⁎ particles and external scaffolding oligomers, most likely tetramers, formed procapsid-like particles in vitro, suggesting that the 12S⁎ particle is a bona fide assembly intermediate and validating the current model of procapsid morphogenesis. The in vitro system required a crowding agent, was influenced by the ratio of the reactants and was most likely driven by hydrophobic forces. While the system reported here shared some characteristics with other in vitro internal scaffolding protein-mediated systems, it displayed unique features. These features most likely reflect external scaffolding protein-mediated morphogenesis and the øX174 procapsid structure, in which external scaffolding-scaffolding protein interactions, as opposed to coat-coat protein interactions between pentamers, constitute the primary lattice-forming contacts.
Collapse
Affiliation(s)
- James E Cherwa
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
39
|
Disulfide bond formation contributes to herpes simplex virus capsid stability and retention of pentons. J Virol 2011; 85:8625-34. [PMID: 21697480 DOI: 10.1128/jvi.00214-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.
Collapse
|
40
|
Disulfide bond formation in the herpes simplex virus 1 UL6 protein is required for portal ring formation and genome encapsidation. J Virol 2011; 85:8616-24. [PMID: 21593161 DOI: 10.1128/jvi.00123-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K. Nellissery, R. Szczepaniak, C. Lamberti, and S. K. Weller, J. Virol. 81:8868-8877, 2007). We now demonstrate that intersubunit disulfide bonds exist between monomeric subunits and contribute to portal ring formation and/or stability. Intersubunit disulfide bonds were detected in purified portal rings by SDS-PAGE under nonreducing conditions. Furthermore, the treatment of purified portal rings with dithiothreitol (DTT) resulted in the disruption of the rings, suggesting that disulfide bonds confer stability to this complex structure. The UL6 protein contains nine cysteines that were individually mutated to alanine. Two of these mutants, C166A and C254A, failed to complement a UL6 null mutant in a transient complementation assay. Furthermore, viral mutants bearing the C166A and C254A mutations failed to produce infectious progeny and were unable to cleave or package viral DNA. In cells infected with C166A or C254A, B capsids were produced which contained UL6 at reduced levels compared to those seen in wild-type capsids. In addition, C166A and C254A mutant proteins expressed in insect cells infected with recombinant baculovirus failed to form ring structures. Cysteines at positions 166 and 254 thus appear to be required for intersubunit disulfide bond formation. Taken together, these results indicate that disulfide bond formation is required for portal ring formation and/or stability and for the production of procapsids that are capable of encapsidation.
Collapse
|
41
|
Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression. J Virol 2011; 85:4271-83. [PMID: 21345968 DOI: 10.1128/jvi.02067-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incoming capsids of herpes simplex virus type 1 (HSV-1) enter the cytosol by fusion of the viral envelopes with host cell membranes and use microtubules and microtubule motors for transport to the nucleus. Upon docking to the nuclear pores, capsids release their genomes into the nucleoplasm. Progeny genomes are replicated in the nucleoplasm and subsequently packaged into newly assembled capsids. The minor capsid protein pUL25 of alphaherpesviruses is required for capsid stabilization after genome packaging and for nuclear targeting of incoming genomes. Here, we show that HSV-1 pUL25 bound to mature capsids within the nucleus and remained capsid associated during assembly and nuclear targeting. Furthermore, we tested potential interactions between parental pUL25 bound to incoming HSV-1 capsids and host factors by competing for such interactions with an experimental excess of cytosolic pUL25. Overexpression of pUL25, GFPUL25, or UL25GFP prior to infection reduced gene expression of HSV-1. Electron microscopy and in situ hybridization studies revealed that an excess of GFPUL25 or UL25GFP prevented efficient nuclear import and/or transcription of parental HSV-1 genomes, but not nuclear targeting of capsids or the uncoating of the incoming genomes at the nuclear pore. Thus, the uncoating of HSV-1 genomes could be uncoupled from their nuclear import and gene expression. Most likely, surplus pUL25 competed with important interactions between the parental capsids, and possibly between authentic capsid-associated pUL25, and cytosolic or nuclear host factors required for functional interaction of the incoming genomes with the nuclear machinery.
Collapse
|
42
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
44
|
Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 2010; 6:e1000991. [PMID: 20628567 PMCID: PMC2900298 DOI: 10.1371/journal.ppat.1000991] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/07/2010] [Indexed: 01/26/2023] Open
Abstract
Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly. Many viruses, particularly neurotropic alphaherpesviruses such as herpes simplex virus (HSV), require an intact microtubule network for efficient replication and pathogenesis. In living cells, host and viral cargo show rapid reversals in transport direction, suggesting that they can recruit motors of opposing directionality simultaneously. To elucidate the molecular mechanisms for specific motor-cargo recognition, it is necessary to characterize the surface of such cargos. We established a cell-free system that reconstitutes the binding of native, mammalian microtubule motors to intact tegumented HSV capsids. Our data suggest that the inbound motor dynein and the outbound motor kinesin-1 bind directly and independently of other host factors to the inner tegument that coats the capsids during cytosolic transport. Identifying viral receptors for the hosts' transport machinery will provide us on the one hand with new potential targets for antiviral therapy. On the other hand, such viral protein domains could be added to viral vectors or even to artificial nano carriers designed to deliver therapeutic genes or molecules to the nucleus or other subcellular destinations.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Daniela Kieneke
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - André Wolfstein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Michael
- Institute of Molecular Biology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Axel Karger
- Institute of Molecular Biology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
45
|
Conway JF, Cockrell SK, Copeland AM, Newcomb WW, Brown JC, Homa FL. Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. J Mol Biol 2010; 397:575-86. [PMID: 20109467 DOI: 10.1016/j.jmb.2010.01.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 11/26/2022]
Abstract
The herpes simplex virus type 1 UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component (CCSC). Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid-binding domain of UL25 located on the surface of the mature DNA-containing capsid.
Collapse
Affiliation(s)
- James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Electron microscopy, considered by some to be an old technique, is still on the forefront of both clinical viral diagnoses and viral ultrastructure and pathogenesis studies. In the diagnostic setting, it is particularly valuable in the surveillance of emerging diseases and potential bioterrorism viruses. In the research arena, modalities such as immunoelectron microscopy, cryo-electron microscopy, and electron tomography have demonstrated how viral structural components fit together, attach to cells, assimilate during replication, and associate with the cellular machinery during replication and egression. These studies provide information for treatment and vaccine strategies.
Collapse
Affiliation(s)
- Cynthia S Goldsmith
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
47
|
Amino acids 143 to 150 of the herpes simplex virus type 1 scaffold protein are required for the formation of portal-containing capsids. J Virol 2008; 82:6778-81. [PMID: 18417585 DOI: 10.1128/jvi.00473-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) portal is composed of a dodecamer of UL6 protein molecules whose incorporation into the capsid is mediated by interaction with the HSV-1 UL26.5 scaffold protein. Previous results with an in vitro capsid assembly assay demonstrated that nine amino acids (amino acids 143 to 151) of the UL26.5 protein are required for its interaction with UL6 and for incorporation of the portal complex into capsids. In the present study an HSV-1 mutant, bvFH411, was isolated and contained a deletion that removed the codons for UL26.5 amino acids 143 to 150. The mutant virus failed to produce infectious virus in noncomplementing cells, and only B capsids that contained only minor amounts of portal protein were made. These data corroborate our previous in vitro studies and demonstrate that amino acids 143 to 150 of UL26.5 are required for the formation of portal-containing HSV-1 capsids.
Collapse
|
48
|
Nuclear localization sequences in cytomegalovirus capsid assembly proteins (UL80 proteins) are required for virus production: inactivating NLS1, NLS2, or both affects replication to strikingly different extents. J Virol 2008; 82:5381-9. [PMID: 18353959 DOI: 10.1128/jvi.02697-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffolding proteins of spherical prokaryotic and eukaryotic viruses have critical roles in capsid assembly. The primary scaffolding components of cytomegalovirus, called the assembly protein precursor (pAP, pUL80.5) and the maturational protease precursor (pPR, pUL80a), contain two nuclear localization sequences (NLS1 and NLS2), at least one of which is required in coexpression experiments to translocate the major capsid protein (MCP, pUL85) into the nucleus. In the work reported here, we have mutated NLS1 and NLS2, individually or together, in human cytomegalovirus (HCMV, strain AD169) bacmid-derived viruses to test their effects on virus replication. Consistent with results from earlier transfection/coexpression experiments, both single-mutant bacmids gave rise to infectious virus but the double mutant did not. In comparisons with the wild-type virus, both mutants showed slower cell-to-cell spread; decreased yields of infectious virus (3-fold lower for NLS1(-) and 140-fold lower for NLS2(-)); reduced efficiency of pAP, pPR, and MCP nuclear translocation (sixfold lower for NLS1(-) and eightfold lower for NLS2(-)); increased amounts of a 120-kDa MCP fragment; and reduced numbers of intranuclear capsids. All effects were more severe for the NLS2(-) mutant than the NLS1(-) mutant, and a distinguishing feature of cells infected with the NLS2(-) mutant was the accumulation of large, UL80 protein-containing structures within the nucleus. We conclude that these NLS assist in the nuclear translocation of MCP during HCMV replication and that NLS2, which is unique to the betaherpesvirus UL80 homologs, may have additional involvements during replication.
Collapse
|
49
|
Domain within herpes simplex virus 1 scaffold proteins required for interaction with portal protein in infected cells and incorporation of the portal vertex into capsids. J Virol 2008; 82:5021-30. [PMID: 18337579 DOI: 10.1128/jvi.00150-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The portal vertex of herpesvirus capsids serves as the conduit through which DNA is inserted during the assembly process. In herpes simplex virus (HSV), the portal is composed of 12 copies of the U(L)6 gene product, pU(L)6. Previous results identified a domain in the major capsid scaffold protein, ICP35, required for interaction with pU(L)6 and its incorporation into capsids formed in vitro (G. P. Singer et al., J. Virol. 74:6838-6848, 2005). In the current studies, pU(L)6 and scaffold proteins were found to coimmunoprecipitate from lysates of both HSV-infected cells and mammalian cells expressing scaffold proteins and pU(L)6. The coimmunoprecipitation of pU(L)6 and scaffold proteins was precluded upon deletion of codons 143 to 151 within U(L)26.5, encoding ICP35. While wild-type scaffold proteins colocalized with pU(L)6 when transiently coexpressed as viewed by indirect immunofluorescence, deletion of U(L)26.5 codons 143 to 151 precluded this colocalization. A recombinant herpes simplex virus, vJB11, was generated that lacked U(L)26.5 codons 143 to 151. A virus derived from this mutant but bearing a restored U(L)26.5 was also generated. vJB11 was unable to cleave or package viral DNA, whereas the restored virus packaged DNA normally. vJB11 produced ample numbers of B capsids in infected cells, but these lacked normal levels of pU(L)6. The deletion in U(L)26.5 also rendered pU(L)6 resistant to detergent extraction from vJB11-infected cells. These data indicate that, as was observed in vitro, amino acids 143 to 151 of ICP35 are critical for (i) interaction between scaffold proteins and pU(L)6 and (ii) incorporation of the HSV portal into capsids.
Collapse
|
50
|
Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P. Oligomerization of the SPP1 scaffolding protein. J Mol Biol 2008; 378:551-64. [PMID: 18377930 DOI: 10.1016/j.jmb.2008.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His(6)) and purified. The protein is an alpha-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His(6) is structurally a dimer of dimers. Incubation at temperatures above 37 degrees C correlated with a reduction of its alpha-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 degrees C. Refolding of gp11-His(6) thermally denatured at 65 degrees C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (approximately 90%) and a smaller fraction of 2.4 S dimers (approximately 10%). This population of gp11-His(6) was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His(6) showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His(6).
Collapse
Affiliation(s)
- Siew Lay Poh
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Bât. 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|