1
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
2
|
Abstract
Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
3
|
Villordo SM, Alvarez DE, Gamarnik AV. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA (NEW YORK, N.Y.) 2010; 16:2325-2335. [PMID: 20980673 PMCID: PMC2995394 DOI: 10.1261/rna.2120410] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.
Collapse
|
4
|
Jiang Y, Cheng CP, Serviene E, Shapka N, Nagy PD. Repair of lost 5' terminal sequences in tombusviruses: Rapid recovery of promoter- and enhancer-like sequences in recombinant RNAs. Virology 2010; 404:96-105. [PMID: 20537671 DOI: 10.1016/j.virol.2010.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny. Using in vitro approaches, we demonstrate that the repaired TBSV RNAs are replication-competent. We propose three different mechanisms for genome repair: initiation of RNA synthesis from internal sequences and addition of nonviral nucleotides by the tombusvirus replicase; and via RNA recombination. The ability to repair cis-sequences makes the tombusvirus genome more flexible, which could be beneficial to increase the virus fitness and adaptation to new hosts.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
5
|
Yi G, Vaughan RC, Yarbrough I, Dharmaiah S, Kao CC. RNA binding by the brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J Mol Biol 2009; 391:314-26. [PMID: 19481091 PMCID: PMC2774812 DOI: 10.1016/j.jmb.2009.05.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/12/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
6
|
Hu B, Pillai-Nair N, Hemenway C. Long-distance RNA-RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis. RNA (NEW YORK, N.Y.) 2007; 13:267-80. [PMID: 17185361 PMCID: PMC1781375 DOI: 10.1261/rna.243607] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Potexvirus genomes contain conserved terminal elements that are complementary to multiple internal octanucleotide elements. Both local sequences and structures at the 5' terminus and long-distance interactions between this region and internal elements are important for accumulation of potato virus X (PVX) plus-strand RNA in vivo. In this study, the role of the conserved hexanucleotide motif within SL3 of the 3' NTR and internal conserved octanucleotide elements in minus-strand RNA synthesis was analyzed using both a template-dependent, PVX RNA-dependent RNA polymerase (RdRp) extract and a protoplast replication system. Template analyses in vitro indicated that 3' terminal templates of 850 nucleotides (nt), but not 200 nt, supported efficient, minus-strand RNA synthesis. Mutational analyses of the longer templates indicated that optimal transcription requires the hexanucleotide motif in SL3 within the 3' NTR and the complementary CP octanucleotide element 747 nt upstream. Additional experiments to disrupt interactions between one or more internal conserved elements and the 3' hexanucleotide element showed that long-distance interactions were necessary for minus-strand RNA synthesis both in vitro and in vivo. Additionally, multiple internal octanucleotide elements could serve as pairing partners with the hexanucleotide element in vivo. These cis-acting elements and interactions correlate in several ways to those previously observed for plus-strand RNA accumulation in vivo, suggesting that dynamic interactions between elements at both termini and the same subset of internal octanucleotide elements are required for both minus- and plus-strand RNA synthesis and potentially other aspects of PVX replication.
Collapse
Affiliation(s)
- Bin Hu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
7
|
Panavas T, Stork J, Nagy PD. Use of double-stranded RNA templates by the tombusvirus replicase in vitro: Implications for the mechanism of plus-strand initiation. Virology 2006; 352:110-20. [PMID: 16765402 DOI: 10.1016/j.virol.2006.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Plus-stranded RNA viruses replicate efficiently in infected hosts producing numerous copies of the viral RNA. One of the long-standing mysteries in RNA virus replication is the occurrence and possible role of the double-stranded (ds)RNA formed between minus- and plus-strands. Using the partially purified Cucumber necrosis virus (CNV) replicase from plants and the recombinant RNA-dependent RNA polymerase (RdRp) of Turnip crinkle virus (TCV), in this paper, we demonstrate that both CNV replicase and the related TCV RdRp can utilize dsRNA templates to produce viral plus-stranded RNA in vitro. Sequence and structure of the dsRNA around the plus-strand initiation site had a significant effect on initiation, suggesting that initiation on dsRNA templates is a rate-limiting step. In contrast, the CNV replicase could efficiently synthesize plus-strand RNA on partial dsRNAs that had the plus-strand initiation promoter "exposed", suggesting that the polymerase activity of CNV replicase is strong enough to unwind extended dsRNA regions in the template during RNA synthesis. Based on the in vitro data, we propose that dsRNA forms might have functional roles during tombus- and carmovirus replication and the AU-rich nature of the terminus could be important for opening the dsRNA structure around the plus-strand initiation promoter for tombus- and carmoviruses and possibly many other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tadas Panavas
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
8
|
Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 2006; 20:2238-49. [PMID: 16882970 PMCID: PMC1553207 DOI: 10.1101/gad.1444206] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms of RNA replication of plus-strand RNA viruses are still unclear. Here, we identified the first promoter element for RNA synthesis described in a flavivirus. Using dengue virus as a model, we found that the viral RdRp discriminates the viral RNA by specific recognition of a 5' element named SLA. We demonstrated that RNA-RNA interactions between 5' and 3' end sequences of the viral genome enhance dengue virus RNA synthesis only in the presence of an intact SLA. We propose a novel mechanism for minus-strand RNA synthesis in which the viral polymerase binds SLA at the 5' end of the genome and reaches the site of initiation at the 3' end via long-range RNA-RNA interactions. These findings provide an explanation for the strict requirement of dengue virus genome cyclization during viral replication.
Collapse
|
9
|
Cheng CP, Panavas T, Luo G, Nagy PD. Heterologous RNA replication enhancer stimulates in vitro RNA synthesis and template-switching by the carmovirus, but not by the tombusvirus, RNA-dependent RNA polymerase: implication for modular evolution of RNA viruses. Virology 2005; 341:107-21. [PMID: 16083933 DOI: 10.1016/j.virol.2005.06.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 05/24/2005] [Accepted: 06/29/2005] [Indexed: 11/24/2022]
Abstract
The viral RNA plays multiple roles during replication of RNA viruses, serving as a template for complementary RNA synthesis and facilitating the assembly of the viral replicase complex. These roles are coordinated by cis-acting regulatory elements, such as promoters and replication enhancers (REN). To test if these RNA elements can be used by related viral RNA-dependent RNA polymerases (RdRp), we compared the potential stimulatory effects of homologous and heterologous REN elements on complementary RNA synthesis and template-switching by the tombus- (Cucumber necrosis virus, CNV), carmovirus (Turnip crinkle virus, TCV) and hepatitis C virus (HCV) RdRps in vitro. The CNV RdRp selectively utilized its cognate REN, while discriminating against the heterologous TCV REN. On the contrary, RNA synthesis by the TCV RdRp was stimulated by the TCV REN and the heterologous tombusvirus REN with comparable efficiency. The heterologous REN elements also promoted in vitro template-switching by the TCV and HCV RdRps. Based on these observations, we propose that REN elements could facilitate intervirus recombination and post-recombinational amplification of new recombinant viruses.
Collapse
Affiliation(s)
- Chi-Ping Cheng
- Department of Plant Pathology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
10
|
Panavas T, Nagy PD. Mechanism of stimulation of plus-strand synthesis by an RNA replication enhancer in a tombusvirus. J Virol 2005; 79:9777-85. [PMID: 16014939 PMCID: PMC1181556 DOI: 10.1128/jvi.79.15.9777-9785.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 04/09/2005] [Indexed: 01/18/2023] Open
Abstract
Replication of RNA viruses is regulated by cis-acting RNA elements, including promoters, replication silencers, and replication enhancers (REN). To dissect the function of an REN element involved in plus-strand RNA synthesis, we developed an in vitro trans-replication assay for tombusviruses, which are small plus-strand RNA viruses. In this assay, two RNA strands were tethered together via short complementary regions with the REN present in the nontemplate RNA, whereas the promoter was located in the template RNA. We found that the template activity of the tombusvirus replicase preparation was stimulated in trans by the REN, suggesting that the REN is a functional enhancer when located in the vicinity of the promoter. In addition, this study revealed that the REN has dual function during RNA synthesis. (i) It binds to the viral replicase. (ii) It interacts with the core plus-strand initiation promoter via a long-distance RNA-RNA interaction, which leads to stimulation of initiation of plus-strand RNA synthesis by the replicase in vitro. We also observed that this RNA-RNA interaction increased the in vivo accumulation and competitiveness of defective interfering RNA, a model template. We propose that REN is important for asymmetrical viral RNA replication that leads to more abundant plus-strand RNA progeny than the minus-strand intermediate, a hallmark of replication of plus-strand RNA viruses.
Collapse
Affiliation(s)
- Tadas Panavas
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | | |
Collapse
|
11
|
Grdzelishvili VZ, Garcia-Ruiz H, Watanabe T, Ahlquist P. Mutual interference between genomic RNA replication and subgenomic mRNA transcription in brome mosaic virus. J Virol 2005; 79:1438-51. [PMID: 15650170 PMCID: PMC544081 DOI: 10.1128/jvi.79.3.1438-1451.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expressing 1a and 2a, which support the full RNA3 replication cycle. Blocking sgRNA transcription stimulated RNA3 replication by up to 350%, implying that sgRNA transcription inhibits RNA3 replication. Such inhibition was independent of the sgRNA-encoded coat protein and operated in cis. We further found that sgRNA transcription inhibited RNA3 replication at a step or steps after negative-strand RNA3 synthesis, implying competition with positive-strand RNA3 synthesis for negative-strand RNA3 templates, viral replication factors, or common host components. Consistent with this, sgRNA transcription was stimulated by up to 400% when mutations inhibiting positive-strand RNA3 synthesis were introduced into the RNA3 5'-untranslated region. Thus, BMV subgenomic and genomic RNA syntheses mutually interfered with each other, apparently by competition for one or more common factors. In plant protoplasts replicating all three BMV genomic RNAs, mutations blocking sgRNA transcription often had lesser effects on RNA3 accumulation, possibly because RNA3 also competed with RNA1 and RNA2 replication templates and because any increase in RNA3 replication at the expense of RNA1 and RNA2 would be self-limited by decreased 1a and 2a expression from RNA1 and RNA2.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706-1596, USA
| | | | | | | |
Collapse
|
12
|
Sun X, Zhang G, Simon AE. Short internal sequences involved in replication and virion accumulation in a subviral RNA of turnip crinkle virus. J Virol 2005; 79:512-24. [PMID: 15596844 PMCID: PMC538713 DOI: 10.1128/jvi.79.1.512-524.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
cis-acting sequences and structural elements in untranslated regions of viral genomes allow viral RNA-dependent RNA polymerases to correctly initiate and transcribe asymmetric levels of plus and minus strands during replication of plus-sense RNA viruses. Such elements include promoters, enhancers, and transcriptional repressors that may require interactions with distal RNA sequences for function. We previously determined that a non-sequence-specific hairpin (M1H) in the interior of a subviral RNA (satC) associated with Turnip crinkle virus is required for fitness and that its function might be to bridge flanking sequences (X. Sun and A. E. Simon, J. Virol. 77:7880-7889, 2003). To establish the importance of the flanking sequences in replication and satC-specific virion repression, segments on both sides of M1H were randomized and subjected to in vivo functional selection (in vivo SELEX). Analyses of winning (functional) sequences revealed three different conserved elements within the segments that could be specifically assigned roles in replication, virion repression, or both. One of these elements was also implicated in the molecular switch that releases the 3' end from its interaction with the repressor hairpin H5, which is possibly involved in controlling the level of minus-strand synthesis.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
13
|
Bhardwaj K, Guarino L, Kao CC. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 2004; 78:12218-24. [PMID: 15507608 PMCID: PMC525082 DOI: 10.1128/jvi.78.22.12218-12224.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonstructural protein 15 (Nsp15) of the severe acute respiratory syndrome coronavirus (SARS-CoV) produced in Escherichia coli has endoribonuclease activity that preferentially cleaved 5' of uridylates of RNAs. Blocking either the 5' or 3' terminus did not affect cleavage. Double- and single-stranded RNAs were both substrates for Nsp15 but with different kinetics for cleavage. Mn(2+) at 2 to 10 mM was needed for optimal endoribonuclease activity, but Mg(2+) and several other divalent metals were capable of supporting only a low level of activity. Concentrations of Mn(2+) needed for endoribonuclease activity induced significant conformation change(s) in the protein, as measured by changes in tryptophan fluorescence. A similar endoribonucleolytic activity was detected for the orthologous protein from another coronavirus, demonstrating that the endoribonuclease activity of Nsp15 may be common to coronaviruses. This work presents an initial biochemical characterization of a novel coronavirus endoribonuclease.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
14
|
Lee H, Shin H, Wimmer E, Paul AV. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol 2004; 78:10865-77. [PMID: 15452207 PMCID: PMC521798 DOI: 10.1128/jvi.78.20.10865-10877.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cis-replicating RNA elements in the 5' and 3' nontranslated regions (NTRs) of the hepatitis C virus (HCV) genome have been thoroughly studied before. However, no cis-replicating elements have been identified in the coding sequences of the HCV polyprotein until very recently. The existence of highly conserved and stable stem-loop structures in the RNA polymerase NS5B coding sequence, however, has been previously predicted (A. Tuplin, J. Wood, D. J. Evans, A. H. Patel, and P. Simmonds, RNA 8:824-841, 2002). We have selected for our studies a 249-nt-long RNA segment in the C-terminal NS5B coding region (NS5BCR), which is predicted to form four stable stem-loop structures (SL-IV to SL-VII). By deletion and mutational analyses of the RNA structures, we have determined that two of the stem-loops (SL-V and SL-VI) are essential for replication of the HCV subgenomic replicon in Huh-7 cells. Mutations in the loop and the top of the stem of these RNA elements abolished replicon RNA synthesis but had no effect on translation. In vitro gel shift and filter-binding assays revealed that purified NS5B specifically binds to SL-V. The NS5B-RNA complexes were specifically competed away by unlabeled homologous RNA, to a small extent by 3' NTR RNA, and only poorly by 5' NTR RNA. The other two stem-loops (SL-IV and SL-VII) of the NS5BCR domain were found to be important but not essential for colony formation by the subgenomic replicon. The precise function(s) of these cis-acting RNA elements is not known.
Collapse
Affiliation(s)
- Haekyung Lee
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
15
|
Wierzchoslawski R, Dzianott A, Bujarski J. Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J Virol 2004; 78:8552-64. [PMID: 15280464 PMCID: PMC479100 DOI: 10.1128/jvi.78.16.8552-8564.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we and others mapped an increased homologous recombination activity within the subgenomic promoter (sgp) region in brome mosaic virus (BMV) RNA3. In order to correlate sgp-mediated recombination and transcription, in the present work we used BMV RNA3 constructs that carried altered sgp repeats. We observed that the removal or extension of the poly(U) tract reduced or increased recombination, respectively. Deletion of the sgp core hairpin or its replacement by a different stem-loop structure inhibited recombination activity. Nucleotide substitutions at the +1 or +2 transcription initiation position reduced recombination. The sgp core alone supported only basal recombination activity. The sites of crossovers mapped to the poly(U) region and to the core hairpin. The observed effects on recombination did not parallel those observed for transcription. To explain how both activities operate within the sgp sequence, we propose a dual mechanism whereby recombination is primed at the poly(U) tract by the predetached nascent plus strand, whereas transcription is initiated de novo at the sgp core.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, Montgomery Hall, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
16
|
Zhang G, Zhang J, Simon AE. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J Virol 2004; 78:7619-33. [PMID: 15220437 PMCID: PMC434078 DOI: 10.1128/jvi.78.14.7619-7633.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3'-terminal bases. Deletion of satC 3'-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3' end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3'-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3' terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3' end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3'-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD 20742, USA
| | | | | |
Collapse
|
17
|
Sivakumaran K, Choi SK, Hema M, Kao CC. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 2004; 78:6091-101. [PMID: 15163702 PMCID: PMC416551 DOI: 10.1128/jvi.78.12.6091-6101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based solely on in vitro results, two contrasting models have been proposed for the recognition of the brome mosaic virus (BMV) subgenomic core promoter by the replicase. The first posits that the replicase recognizes at least four key nucleotides in the core promoter, followed by an induced fit, wherein some of the nucleotides base pair prior to the initiation of RNA synthesis (S. Adkins and C. C. Kao, Virology 252:1-8, 1998). The second model posits that a short RNA hairpin in the core promoter serves as a landing pad for the replicase and that at least some of the key nucleotides help form a stable hairpin (P. C. J. Haasnoot, F. Brederode, R. C. L. Olsthoorn, and J. Bol, RNA 6:708-716, 2000; P. C. J. Haasnoot, R. C. L. Olsthoorn, and J. Bol, RNA 8:110-122, 2002). We used transfected barley protoplasts to examine the recognition of the subgenomic core promoter by the BMV replicase. Key nucleotides required for subgenomic initiation in vitro were found to be important for RNA4 levels in protoplasts. In addition, additional residues not required in vitro and the formation of an RNA hairpin within the core promoter were correlated with wild-type RNA4 levels in cells. Using a template competition assay, the core promoter of ca. 20 nucleotides was found to be sufficient for replicase binding. Mutations of the key residues in the core promoter reduced replicase binding, but deletions that disrupt the predicted base pairing in the proposed stem retained binding at wild-type levels. Together, these results indicate that key nucleotides in the BMV subgenomic core promoter direct replicase recognition but that the formation of a stem-loop is required at a step after binding. Additional functional characterization of the subgenomic core promoter was performed. A portion of the promoter for BMV minus-strand RNA synthesis could substitute for the subgenomic core promoter in transfected cells. The comparable sequence from Cowpea Chlorotic Mottle Virus (CCMV) could also substitute for the BMV subgenomic core promoter. However, nucleotides in the CCMV core required for RNA synthesis are not identical to those in BMV, suggesting that the subgenomic core promoter can induce the BMV replicase in interactions needed for subgenomic RNA transcription in vivo.
Collapse
Affiliation(s)
- K Sivakumaran
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
18
|
van Dijk AA, Makeyev EV, Bamford DH. Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 2004; 85:1077-1093. [PMID: 15105525 DOI: 10.1099/vir.0.19731-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review summarizes the combined insights from recent structural and functional studies of viral RNA-dependent RNA polymerases (RdRPs) with the primary focus on the mechanisms of initiation of RNA synthesis. Replication of RNA viruses has traditionally been approached using a combination of biochemical and genetic methods. Recently, high-resolution structures of six viral RdRPs have been determined. For three RdRPs, enzyme complexes with metal ions, single-stranded RNA and/or nucleoside triphosphates have also been solved. These advances have expanded our understanding of the molecular mechanisms of viral RNA synthesis and facilitated further RdRP studies by informed site-directed mutagenesis. What transpires is that the basic polymerase right hand shape provides the correct geometrical arrangement of substrate molecules and metal ions at the active site for the nucleotidyl transfer catalysis, while distinct structural elements have evolved in the different systems to ensure efficient initiation of RNA synthesis. These elements feed the template, NTPs and ions into the catalytic cavity, correctly position the template 3′ terminus, transfer the products out of the catalytic site and orchestrate the transition from initiation to elongation.
Collapse
Affiliation(s)
- Alberdina A van Dijk
- Institute of Biotechnology and Faculty of Biosciences, PO Box 56, Viikinkaari 5, FIN-00014 University of Helsinki, Finland
| | - Eugene V Makeyev
- Institute of Biotechnology and Faculty of Biosciences, PO Box 56, Viikinkaari 5, FIN-00014 University of Helsinki, Finland
| | - Dennis H Bamford
- Institute of Biotechnology and Faculty of Biosciences, PO Box 56, Viikinkaari 5, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
19
|
Pogany J, Fabian MR, White KA, Nagy PD. A replication silencer element in a plus-strand RNA virus. EMBO J 2003; 22:5602-11. [PMID: 14532132 PMCID: PMC213777 DOI: 10.1093/emboj/cdg523] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 08/18/2003] [Accepted: 08/19/2003] [Indexed: 01/18/2023] Open
Abstract
Replication represents a key step in the infectious cycles of RNA viruses. Here we describe a regulatory RNA element, termed replication silencer, that can down-regulate complementary RNA synthesis of a positive-strand RNA virus via an RNA-RNA interaction. This interaction occurs between the 5-nucleotide-long, internally positioned replication silencer and the extreme 3'-terminus of the viral RNA comprising part of the minimal minus-strand initiation promoter. Analysis of RNA synthesis in vitro, using model defective interfering (DI) RNA templates of tomato bushy stunt virus and a partially purified, RNA-dependent RNA polymerase preparation from tombusvirus-infected plants, revealed that this interaction inhibits minus-strand synthesis 7-fold. This functional interaction was supported further by: (i) RNA structure probing; (ii) phylogenetic analysis; (iii) inhibition of activity by short complementary DNAs; and (iv) compensatory mutational analysis. The silencer was found to be essential for accumulation of DI RNAs in protoplasts, indicating that it serves an important regulatory role(s) in vivo. Because similar silencer-promoter interactions are also predicted in other virus genera, this type of RNA-based regulatory mechanism may represent a widely utilized strategy for modulating replication.
Collapse
Affiliation(s)
- Judit Pogany
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
20
|
Sun X, Simon AE. Fitness of a turnip crinkle virus satellite RNA correlates with a sequence-nonspecific hairpin and flanking sequences that enhance replication and repress the accumulation of virions. J Virol 2003; 77:7880-9. [PMID: 12829828 PMCID: PMC161943 DOI: 10.1128/jvi.77.14.7880-7889.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
satC, a satellite RNA associated with Turnip crinkle virus (TCV), enhances the ability of the virus to colonize plants by interfering with stable virion accumulation (F. Zhang and A. E. Simon, unpublished data). Previous results suggested that the motif1-hairpin (M1H), a replication enhancer on minus strands, forms a plus-strand hairpin flanked by CA-rich sequence that may be involved in enhancing systemic infection (G. Zhang and A. E. Simon, J. Mol. Biol. 326:35-48, 2003). In this study, sequence and structural requirements of the M1H were further assayed by replacing the 28-base M1H with 10 random bases and then subjecting the pool of satellite RNA to functional selection in plants. Unlike previous results with 28-base replacement sequences (G. Zhang and A. E. Simon, J. Mol. Biol. 326:35-48, 2003), only a few of the 10-base SELEX (systematic evolution of ligands by exponential enrichment) assay winners contained short motifs in their minus-sense orientation that were similar to TCV replication elements. However, all second- and third-round winning replacement sequences folded into hairpins flanked by CA-rich sequence predicted to be more stable on plus strands than minus strands. Plus strands of several of the most fit satellite RNAs contained insertions of CA-rich sequence at the base of their hairpins whose presence correlated with enhanced replication and reduced detection of virions. Deletion of the M1H resulted in no detectable virions despite very low satellite accumulation. These results support the hypothesis that a sequence-nonspecific plus-strand hairpin brings together flanking CA-rich sequences in the M1H region that confers fitness to satC by reducing the accumulation of stable virions.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
21
|
Wierzchoslawski R, Dzianott A, Kunimalayan S, Bujarski JJ. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus. J Virol 2003; 77:6769-76. [PMID: 12767997 PMCID: PMC156210 DOI: 10.1128/jvi.77.12.6769-6776.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic RNA recombination plays an important role in viral evolution, but its molecular mechanism is not well understood. In this work we describe homologous RNA recombination activity that is supported by a subgenomic promoter (sgp) region in the RNA3 segment of brome mosaic bromovirus (BMV), a tripartite plus-strand RNA virus. The crossover frequencies were determined by coinoculations with pairs of BMV RNA3 variants that carried a duplicated sgp region flanked by marker restriction sites. A region composed of the sgp core, a poly(A) tract, and an upstream enhancer supported homologous exchanges in 25% of the analyzed RNA3 progeny. However, mutations in the sgp core stopped both the transcription of the sgp RNA and homologous recombination. These data provide evidence for an association of RNA recombination with transcription.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, De Kalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.
Collapse
Affiliation(s)
- K Sivakumaran
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
23
|
Zhang X, Kim CH, Sivakumaran K, Kao C. Stable RNA structures can repress RNA synthesis in vitro by the brome mosaic virus replicase. RNA (NEW YORK, N.Y.) 2003; 9:555-565. [PMID: 12702814 PMCID: PMC1370421 DOI: 10.1261/rna.2190803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 02/11/2003] [Indexed: 05/24/2023]
Abstract
A 15-nucleotide (nt) unstructured RNA with an initiation site but lacking a promoter could direct the initiation of RNA synthesis by the brome mosaic virus (BMV) replicase in vitro. However, BMV RNA with a functional initiation site but a mutated promoter could not initiate RNA synthesis either in vitro or in vivo. To explain these two observations, we hypothesize that RNA structures that cannot function as promoters could prevent RNA synthesis by the BMV RNA replicase. We documented that four different nonpromoter stem-loops can inhibit RNA synthesis from an initiation-competent RNA sequence in vitro. Destabilizing these structures increased RNA synthesis. However, RNA synthesis was restored in full only when a BMV RNA promoter element was added in cis. Competition assays to examine replicase-RNA interactions showed that the structured RNAs have a lower affinity for the replicase than do RNAs lacking stable structures or containing a promoter element. The results characterize another potential mechanism whereby the BMV replicase can specifically recognize BMV RNAs.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|